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Completeness of eigenfunctions of seminormal operators

KEVIN F. CLANCEY

Let $ be a separable complex Hilbert space and Z($) the algebra of bounded
linear operators on §. An operator T in Z(9) is called a seminormal operator
in case its self-commutator D=T*T—TT* is semidefinite. In the case D=0
(respectively, D=0) the operator T is said to be hyponormal (respectively, cohy-
ponormal). The operator T in £($H) will be said to be completely non-normatl
in case the only subspace reducing the operator T on which T is a normal operator
‘is the zero subspace. The notations sp(T), sp.(7) and 7,(T) will be used for the
spectrum, essential spectrum and the set of eigenvalues of the operator T, respec-
tively.

Let T be a hyponormal operator on $. It is easy to verify that ker T (thé
kernel of T) is a reducing subspace for -T. Consequently, n,(T) must be empty
whenever T is completely non-normal. On the other hand, #,(T*) is sometimes
non-empty. The following result will be proved in Section 1.

v

Theorem 1. Let T be a completely non-normal cohyponormal operator. Assume

that the planar Lebesgue measure of sp.(T) is zero, then
i.%s]ﬁ?(lf) {ker (T—-2)} =9, A
where cl.m.{...} denotes the closed linear manifold generated by {...}.

If T is an operator with a rank one self-commutator, then T is either hyponor-

mal or cohyponormal. It is still an open question as to whether such an operator T

has a non-trivial invariant subspace. In certain cases T is known to possess an inva-
riant subspace. (See [2] and [3].) On the other hand there are not many-operators
" with a rank one self-commutator that are known to possess cyclic vectors. Theorem 1
‘can be used to provide examples in this direction.
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In Sections 2 and 3 we will study the singular integral operator S, defined on
L*(c, d) by

d

where b is a non-vanishing smooth function on the interval [c, d]. The operator
. 2

S, is an irreducible cohyponormal operator that satisfies S; S,—S,S;=——(, b)b;
3

here, ( , ) denotes the inner product in L?(c, d).

In Section 3 it will be shown that & is a cyclic vector for the operator S,.
The method will entail constructing a pair of analytic continuations of the local
resolvent (S, —2)"'b onto portions of m,(S,). This leads to a discussion of solutions
of singular integral equations in Section 2.

The interest in the operator S, stems from the fact that every completely
non-normal seminormal operator has a singular integral representation (see, e.g.,
{8}, [9] and [10)).

§ 1. Completeness of eigenfunctions. PuTnAM [11] established the following
remarkable inequality. Let 7 be a seminormal operator on . Then

) n|T*T—T T*| = meas, (sp(T)),

where meas, denotes planar Lebesgue measure. Below we will show how Theorem 1
follows from the inequality (1).

Proof of Theorem 1. Let 9J2=;(é.l.rr(1i){ker (4—T)}). Relative to the decom-
. ¢ sp,
position H=MBS M+, the operator T has the matrix form

_ (Tw X]

here T, is the restriction of 7 to M and Ty, denotes the compression of 7' to M+,
The operator T is cohyponormal.

Let A¢sp.(T). It follows from the continuity of the orthogonal projection onto
ker (u—1T), on the complement of sp,(7), that (1—T), has dense range. It is
easy to see that (1—T),, has closed range and therefore (4—T),, is onto. The
surjectivity of (A—T)y, and the fact that ker (A —T)CM imply 24¢sp(Top).

The last paragraph shows that meas; (sp(7y1))=0. Thus Putnam’s inequality
(1) applied to the operator Ty,;1 shows that Ty,1 is a normal operator. Since T is
completely non-normal it must be that M+ is the zero subspace. This completes
the proof. ‘

Let A bean operatoron $ and let Q be an open subset of the complex plane
such that for every 1¢Q the operator A—2 is surjective. G. R. ALLAN [} has
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shown that it is possible to construct an analytic right resolvent for 4 on Q. This
means there is a Z(9)-valued analytic function R(A) defined on @ such that
(A-2)R()=I. The operator P(})=I—R(?)(A—7) then defines an analytic
projection valued function on Q. It is clear that the range of P(2) is the kernel of
A—2.

Suppose now that 7T is an irreducible cohyponormal operator satisfying
meas, (sp.(7))=0. Let Q(T)=sp(T)\sp.(T) and assume Q(T) is connected.
Let {4,}:>; be an infinite sequence that accumulates in Q(7). Then

2 c.l';m. {ker (T—2)} = 9.

This last identity follows from Theorem 1 and the discussion in the preceding
paragraph which demonstrates the existence of an analytic projection valued map
onto ker (A—T) for 1€ Q(T).

It is interesting to note that if 7T is a seminormal operator and meas,(sp,.(7))=0,
then the self-commutator of T is compact. This follows because the projection 7’
of T into the Calkin algebra # is a seminormal element in the C*-algebra ¥
with meas,(sp (r ))=0. Since Putnam’s inequality (1) holds for seminormal elements
inany C* algebra, then 7 must be a normal element in %. This shows that T*7—
—TT* is compact. This last observation was pointed out to the author by D. D.
ROGERS.

In the case where T is an irreducible cohyponormal operator with rank one
self-commutator it is easy to show that the dimension of ker (T) is at most one.
Itfollows that if X is an element commuting with 7, then X leaves ker T invariant.
The following is an immediate corollary of this last remark and Theorem 1.

Corollary 1. Let T be an irreducible operator with a rank one self-commutator
such that meas, (sp,(T))=0. Then the commutant of T is abelian.

We remark that there are very few operators T satisfying the hypothesis of
Corollary 1 for which an exact description of the commutant is known.

§ 2. Seminormal singular integral operators. Let E be a bounded measurable
subset of the real line having positive measure. Let @ and b be bounded measurable
functions on E such that a(z) is real and b(¢)#0 almost everywhere. For f in
L*(E) define the singular integral operator

o) Sf(s) = of(5)+i [a @re+2 [ B(t’)_f © dt] .
E

The singular integral is interpreted as a Cauchy principal value. The operator S

2
" satisfies S*S—SS*=——(, b)b; where (,) denotes the inner product in L2(E).
n

3
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The fact that b(z)=0 ensures that S is irreducible. For a description of sp (S)
and sp.(S) the reader is referred to [7] and [6].

It should be remarked that if 7 is an irreducible cohyponormal operator with
a rank one self-commutator such that the real part of T has simple spectrum, then
T is unitarily equivalent to an operator of the form S. In particular, if E=[—1, 1],
a=0 and b(t)=(1—12)"% then theoperator S defined by (3) is unitarily equivalent
to the unilateral shift.

We will be concerned with the case where E=I=[c, d] is an interval, a=0
and the function b is a non-vanishing real valued element in C’(I). In this case
we will denote the operator S defined by (3) as S,. The spectrum and essential
spectrum of the operator S, can be described as follows:

sp(Sy) = {A = p+iv: pel, | = b*(u)}

and sp.(S;) is the boundary of sp(S,). Moreover, my(S,)=sp(S,)\sp.(S,) and
in view of the fact that S;S,—.S,S; is one dimensional, then each eigenvalue of the
operator S, has multiplicity one.

Below we will establish the existence of two analytic continuations of the local
resolvent b(/1)=(S—l)‘1b(Ae£sp(S,,)) onto portions of sp(S,). In fact, we will
construct two weakly analytic L2(])-valued functions b, and b_, where b, is
analytic in Jy=(c,) and b_ is analytic on J_=(—o,d), such that
(Sy—A)b.(A)=b, 1eJ.. Further, e(A)=b_(A)—b, (1) will be a non-zero eigen-
function of the operator corresponding to 4 in J,.NJ_=(c, d).

The construction of the local resolvent necessitates solving the singular integral
equation (S,—A)x=b. The basic method employed is discussed in the book of
Tricomi [12] (see, also [4] and [5]).

Let H denote the Hilbert transform on the real line R. Thus for f¢L1(R),
Hf(x) is defined at almost every real x by the Cauchy principal value integral

Hf (%) = % -tj:_g_%dt.

It is well known that the operator H defines a bounded linear operator on L?(R),
p>1.

Let E be a bounded measurable subset of the real line and let 6 be a real
valued bounded measurable function supported on E. It is known that if exp [H6]
belongs to LP(J), for some p>1, where J is a bounded interval containing the
(essential) closure of E in its interior, then

@ : cos § exp HO = H[sin 8 exp HO}+1.
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Now for AcJ., we define the function

(A—s)+ib%*(s)

[(A—s)2+ b ()2 |’ sel.

0% (s) = arg |+

The branch of the argument is chosen such that —n<argz=n(z=0). We remark
that for 4 fixed in J,, the function 8 belongs to C’(I). We will tacitly assume,
whenever necessary, that the function 65 is extended to be zero off 1.

Fix A in J.. The function exp HO is easily seen to be bounded in a neigh-
borhood of every point on R except possibly the points ¢ and d. Similarly one
can check that when A¢J, the function exp HO; is bounded in a neighborhood
of the point 4 and that when A€J_ the function exp HO; is bounded in a neigh-
borhood of the point ¢. In order to conclude that exp HO; is square integrable
in a neighborhood of the point ¢ and exp HO; is square integrable in a neighbor-
hood of the point 4, one needs only to apply Lemma 1 of [5].

Making the substitution 8% for 6 in equation (4), one obtains

b2(t)_j_'£t ©) 4= 1,

, s€r;

) G-+ [
1

here
Fexp [HOF]

o= (=02 + " ()"

It follows that b, (A)=bf satisfies (S,—A)b.(1)=>b and further, b, (A)€L2(l),
for all AeJ,.

Note that for A€J,NJ_, the function e(i)=b_(A)—b,()) is a non-zero
L*(I) eigenfunction of the operator S, corresponding to the eigenvalue A.

It is possible to extend the functions A—-6% to domains of the form

Ji={A=itiv: peJy, | <&},
where £,>0 is chosen sufficiently small. This is accomplished by defining for 1¢J,

+(A—s5)+ib3%(s)

[(A—s)2+bi(s)M2 ]’ sel

® 03 ) = log

Here, if z=re,r>0, —n<0=n, then logz=log r+i@ and yz=r2¢®?%, The
exact choice of ¢, will depend only on the function b. The constant g, is chosen
such that for every s fixed on I the functions 1-0F(s) are analytic on J,.

It is not difficult to verify that
' _ Fb(s)exp HOE (s)
P+ OO = o+ ore

3‘
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belong to L?(I) whenever ;<J,. Moreover the map 2—b, () isa weakly analytic
L2(I)-valued mapping on J.. It follows that (S,—2)b,(1)=b, A€J.. We have
therefore constructed two distinct analytic continuations 5, and b_ of the local
resolvent (S,—7)-1b onto J, and J_, respectively.

§ 3. Cyclic vectors. We are now in a position to establish the following:

Proposition 1. Let I=[c,d] and assume b is a nonvanishing function in
C’(I). Let S, be the cohyponormal operator defined on L*(I) by (3). The vector
b is a cyclic vector for the operator S,.

Proof. The operator S, is a completely non-normal cohyporormal operator
with a rank one self-commutator. Moreover, measz(spe(Sb))zo. Let Z¢€(c, d)
and let e(?) be the eigenfunction corresponding to the value 4 described in the
preceding section. It follows from the identity (2) that 5;1},19.} {e(AD}=L2(D).

Suppose that f is in L*(/) and f is orthogonal to c.l'.,m. {Sib}, then
((Sy—N)~1tb, £)=0, for |2] large. It follows that (6:(2),f)=0, for 2cJ.. Con-
sequently, (e(2),f)=0 for every A€(c, d), and we conclude f=0. This completes
the proof.

It would be interesting to find the exact conditions on an element b in C’([)
which ensure that b is a cyclic vector for the operator S,. Similarly one can ask
for necessary and sufficient conditions for the function 4 in L?(E) to be cyclic for
the operator S defined by (3).

§ 4. Conclusion. It is not difficult to construct irreducible cohyponormal opera-
tors T such that sp (T)\sp.(T) is non-empty and possesses the property that

;g.l.l(r}.) [ker (T—21)]=9. The following is such an example.
. ¢ sp,

Example. Let K .be a perfect nowhere dense set of positive measure in [0,1],
and let J be a closed interval disjoint from K. Set E=JUK and let S, be the
singular integral operator defined on L*(E) by (3) with the choice =0 and b=1.
The sp (Sey=EX[—1, 1] and sp (Sp)\sp. (S,) is the interior of JX[—1, 1]. Using
the usual functional calculus it is possible to obtain a non-trivial invariant subspace
M for the operator S, such that the spectrum of S, restricted to M is Jx[—1, 1].
Any vector in ker(S;—2) for A€JXI must be in M. It follows that
c.l.m. ker (S;—2) = L2(E) for 2¢sp,(Sy).

Corollary 1 leads to an interest in describing the commutant of an irredu-
cible operator 7' with a rank one self-commutator. In particular, one can ask if the
commutant of such an operator is abelian.

More specific questions can be asked about the commutants of the operators
S,, where b is a non-vanishing element in C’(f). In particular, one can ask if the
commutant of S, equals the weakly closed algebra generated by S, and the identity.
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