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Completeness of eigenfunctions of seminormal operators 
KEVIN F. CLANCEY 

Let $ be a separable complex Hilbert space and &(§>) the algebra of bounded 
linear operators on An operator T in is called a seminormal operator 
in case its self-commutator D = T*T—TT* is semidefinite. In the case D^O 
(respectively, D ^ 0) the operator T is said to be hyponormal (respectively, cohy-

' ponormal). The operator T in &(§>) will be said to be completely non-normal 
in case the only subspace reducing the operator T on which T is a normal operator 
is the zero subspace. The notations sp(r) , spc(7") and n0(T) will be used for the -
spectrum, essential spectrum and the set of eigenvalues of the operator T, respec-
tively. 

Let T be a hyponormal operator on §>. It is easy to verify that ker T (the 
kernel of T) is a reducing subspace for T. Consequently, n0(T) must be empty 
whenever T is completely non-normal. On the other hand, n0(T*) is sometimes 
non-empty. The following result will be proved in Section 1. 

Theorem 1. Let T be a completely non-normal cohyponormal operator. Assume 
that the planar Lebesgue measure of spe(7") is zero, then 

c l.m {ker (T—l)} = 

where c.I.m.{...} denotes the closed linear manifold generated by {...}. 

If T is an operator with a rank one self-commutator, then T is either hyponor-
mal or cohyponormal. It is still an open question as to whether such an operator T 
has a non-trivial invariant subspace. In certain cases T is known to possess an inva-
riant subspace. (See [2] and [3].) On the other hand there are not many operators 
with a rank one self-commutator that are known to possess cyclic vectors. Theorem 1 
can be used to provide examples in this direction. 
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In Sections 2 and 3 we will study the singular integral operator Sb defined on 
U{c,d) by 

c 

where b is a non-vanishing smooth function on the interval [c, d]. The operator 
2 

Sb is an irreducible cohyponormal operator that satisfies Si Sb — Sb = (,b)b; 
71 

here, ( , ) denotes the inner product in L2(c, d). 
In Section 3 it will be shown that b is a cyclic vector for the operator Sb. 

The method will entail constructing a pair of analytic continuations of the local 
resolvent ( 5 6 — o n t o portions of n0(Sb). This leads to a discussion of solutions 
of singular integral equations in Section 2. 

The interest in the operator Sb stems from the fact that every completely 
non-normal seminormal operator has a singular integral representation (see, e.g., 
[8], [9] and [10]). 

§ 1 . Completeness of eigenfunctions. P U T N A M [ 1 1 ] established the following 
remarkable inequality. Let T be a seminormal operator on §>. Then 

(1) 7tHT*T-TT*H S meas2(sp(r)), 

where meas2 denotes planar Lebesgue measure. Below we will show how Theorem 1 
follows from the inequality (1). 

P roof of Theorem 1. Let 9Ji= c.l.m. {ker(/. —T)}. Relative to the decom-¿(sP.tD 
position §=9Ji©9)i-L, the operator T has the matrix form 

1 X T = , 
o Fan-t-

here Tw is the restriction of T co SOi and TmL denotes the compression of T to SR-. 
The operator Tm± is cohyponormal. 

Let /l$spe(r). It follows from the continuity of the orthogonal projection onto 
ker (n~T), on the complement of spe(r), that (J. — T)m has dense range. It is 
easy to see that (?> — T)m has closed range and therefore (A — T)m is onto. The 
surjectivity of ( / . - T ) w and the fact that ker (A-7)cSOI imply /isp(7TO±). 

The last paragraph shows that meas2 (sp(7,
a)i_L))=0. Thus Putnam's inequality 

(1) applied to the operator Tw± shows that Tw± is a normal operator. Since T is 
completely non-normal it must be that SOi-1- is the zero subspace. This completes 
the proof. 

Let A be an operator on § and let Q be an open subset of the complex plane 
such that for every ).cQ the operator A—), is surjective. G. R. A L L A N [1] has 
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shown that it is possible to construct an analytic right resolvent for A on Q. This 
means there is a ^(§)-valued analytic function R(A) defined on Q such that 
04-A)P(A)=7. The operator P (A)=7—7?(A) (A — A) then defines an analytic 
projection valued function on Q. It is clear that the range of P(A) is the kernel of 

Suppose now that T is an irreducible cohyponormal operator satisfying 
meas2(spe(r))=0. Let Q(T)=sp(T)\spe(T) and assume Q(T) is connected. 
Let {A„}~=1 be an infinite sequence that accumulates in Q(T). Then 

This last identity follows from Theorem 1 and the discussion in the preceding 
paragraph which demonstrates the existence of an analytic projection valued map 
onto ker (A — T) for 'A^Q(T). 

It is interesting to note that if T is a seminormal operator and meas2(sp(,(7,))=0, 
then the self-commutator of T is compact. This follows because the projection T 
of T into the Calkin algebra is a seminormal element in the C*-algebra # 
with meas2(sp(f))=0. Since Putnam's inequality (1) holds for seminormal elements 
in any C* algebra, then T must be a normal element in c£. This shows that T* T— 
— TT* is compact. This last observation was pointed out to the author by D. D. 
ROGERS. 

In the case where T is an irreducible cohyponormal operator with rank one 
self-commutator it is easy to show that the dimension of ker (T) is at most one. 
It follows that if X is an element commuting with T, then X leaves ker T invariant. 
The following is an immediate corollary of this last remark and Theorem 1. 

Coro l l a ry 1. Let T be an irreducible operator with a rank one self-commutator 
such that meas2 (spc(7")) = 0. Then the commutant of T is abelian. 

We remark that there are very few operators T satisfying the hypothesis of 
Corollary 1 for which an exact description of the commutant is known. 

§ 2. Seminormal singular integral operators. Let E be a bounded measurable 
subset of the real line having positive measure. Let a and b be bounded measurable 
functions on E such that a(t) is real and b(t)*0 almost everywhere. For / in 
I,2 (7s) define the singular integral operator 

The singular integral is interpreted as a Cauchy principal value. The operator S 
2 

satisfies S*S—SS*~ (,b)b; where (,) denotes the inner product in L2(E). 

A-A. 

(2) c.l.m. {ker(T—A„)} = 

(3) 

7T 

3 
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The fact that 6 ( 0 ^ 0 ensures that S is irreducible. For a description of sp (S) 
and spe(S) the reader is referred to [7] and [6]. 

It should be remarked that if T is an irreducible cohyponormal operator with 
a rank one self-commutator such that the real part of T has simple spectrum, then 
T is unitarily equivalent to an operator of the form S. In particular, if £=[—1, 1], 
a = 0 and ¿(/) = (1 —/2)1/4, then theoperator S defined by (3) is unitarily equivalent 
to the unilateral shift. 

We will be concerned with the case where E=I=[c, d] is an interval, a = 0 
and the function b is a non-vanishing real valued element in C'(I). In this case 
we will denote the operator S defined by (3) as Sb. The spectrum and essential 
spectrum of the operator Sb can be described as follows: 

and spe(Sb) is the boundary of sp(Sb). Moreover, n0(Sb)=sp(Sb)\spe(Sb) and 
in view of the fact that SbSb—SbS% is one dimensional, then each eigenvalue of the 
operator Sb has multiplicity one. 

Below we will establish the existence of two analytic continuations of the local 
resolvent £ (A) = (S - A) - 1 ¿> (A <i sp (Sb)) onto portions of sp(S6). In fact, we will 
construct two weakly analytic L2(/)-valued functions b+ and Z>_, where b+ is 
analytic in J + =(c,°°) and b- is analytic on /_=(—=», d), such that 
(Sb—X)b±(X)—b, i € / + . Further, e(A) =6_(/.)—6+(A) will be a non-zero eigen-
function of the operator corresponding to A in J+f]J-=(c, d). 

The construction of the local resolvent necessitates solving the singular integral 
equation (Sb—).)x—b. The basic method employed is discussed in the book of 
TRICOMI [12] (see, also [ 4 ] and [5]). 

Let H denote the Hilbert transform on the real line R. Thus for / d L ^ R ) , 
Hf{x) is defined at almost every real x by the Cauchy principal value integral 

It is well known that the operator H defines a bounded linear operator on L"(R), 
/ » 1 . 

Let E be a bounded measurable subset of the real line and let 9 be a real 
valued bounded measurable function supported on E. It is known that if exp [H0\ 
belongs to L"(J), for some / » 1 , where 7 is a bounded interval containing the 
(essential) closure of E in its interior, then 

(4) cos 9 exp HQ = H[sm 9 exp H9] +1. 

sp(S t) = {A = n + iv : nil, |v| S b*(n)} 
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Now for A£/ ± , we define the function 

(A-s) + i62(s) 
0í(s) = arg ± [(A-s)2+b4(s)]1/2 s6/. 

The branch of the argument is chosen such that —7r<arg zS7t(z^0). We remark 
that for A fixed in J ± , the function belongs to C'(7). We will tacitly assume, 
whenever necessary, that the function is extended to be zero off I. 

Fix A in J±. The function exp HOj is easily seen to be bounded in a neigh-
borhood of every point on R except possibly the points c and d. Similarly one 
can check that when Á£J+ the function exp HQ^ is bounded in a neighborhood 
of the point d and that when / £ / _ the function exp H8j is bounded in a neigh-
borhood of the point c. In order to conclude that exp H9~l is square integrable 
in a neighborhood of the point c and exp H9j is square integrable in a neighbor-
hood of the point d, one needs only to apply Lemma 1 of [5]. 

Making the substitution 9j for 9 in equation (4), one obtains 

(5) ( s - A ) / * ( s ) + l / fc2(;}/{(0 dt= 1, ,€/; 7t * t — S 
here 

+ exp [HO}] 

It follows that b±(A)=bf* satisfies (Sb-X)b±(X)=b and further, b±(?,)eL2(I), 
for all XiJ±. 

Note that for A € / + D / _ , the function e(A)=6_ (A)—6+ (A) is a non-zero 
L2(I) eigenfunction of the operator Sb corresponding to the eigenvalue A. 

It is possible to extend the functions A—0f to domains of the form 

J± = {A = n + iv : J±, |v| < £0}, 

where £0>0 is chosen sufficiently small. This is accomplished by defining for A£7± 

(5) en* ) = j log 
±(A—s) + i£>2(s) 

[(A—s)2+b4(s)]1/2 sei. 

Here, if z=reie,r>0, then logz=logr+i '0 and j/z=/-l/2i?i9/2. The 
exact choice of e0 will depend only on the function b. The constant e0 is chosen 
such that for every s fixed on I the functions A — a r e analytic on J+. 

It is not difficult to verify that 
^b(s)expH0}(s) 

MA)(s) [(A—s)2+£>4(s)]1/2 

3« 
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belongto L2(7) whenever / £ / + . Moreoverthe map A — b±(X) is a weakly analytic 
L2(/)-valued mapping on J±. It follows that (Sh—?.)b±(X)=b, A C / + . We have 
therefore constructed two distinct analytic continuations b+ and ¿>_ of the local 
resolvent (Sb—/.)~ib onto J+ and / _ , respectively. 

§ 3. Cyclic vectors. We are now in a position to establish the following: 

P ropos i t i on 1. Let I—[c,d] and assume b is a nonvanishing function in 
C'(I). Let Sb be the cohyponormal operator defined on L2{I) by (3). The vector 
b is a cyclic vector for the operator Sb. 

Proo f . The operator Sb is a completely non-normal cohyponormal operator 
with a rank one self-commutator. Moreover, meas2(spe(5(,))=0. Let l£(c,d) 
and let e(A) be the eigenfunction corresponding to the value A described in the 
preceding section. It follows from the identity (2) that ol.rn. {e(/.)}—L2(I). 

Suppose that / is in L2(7) and / is orthogonal to c.l.m. then 
((Sb-X)~1b,f)=0, for |A| large. It follows that (b±(X),f)=0, for A<EJ±. Con-
sequently, (e(A),/)=0 for every /.£(c, d), and we conclude / = 0 . This completes 
the proof. 

It would be interesting to find the exact conditions on an element b in C'(7) 
which ensure that b is a cyclic vector for the operator Sb. Similarly one can ask 
for necessary and sufficient conditions for the function b in L2(E) to be cyclic for 
the operator 5 defined by (3). 

§ 4. Conclusion. It is not difficult to construct irreducible cohyponormal opera-
tors T such that sp {T)\spe(T) is non-empty and possesses the property that 
c.l.m. [ker (T—A)]^£>. The following is such an example. 

/4 spc(T) 
Example . Let K be a perfect nowhere dense set of positive measure in [0,1], 

and let 7 be a closed interval disjoint from K. Set E=J(JK and let 5"0 be the 
singular integral operator defined on L2(E) by (3) with the choice a=0 and b = \. 
The sp (S0)=7sX[ —1, 1] and sp (S„)\spe (S0) is the interior of Jx[-1, 1]. Using 
the usual functional calculus it is possible to obtain a non-trivial invariant subspace 
M for the operator S„ such that the spectrum of S0 restricted to M is 7X[ — 1, 1]. 
Any vector in ker(50—A) for A^7X7 must be in M. It follows that 
c.l.m. ker(S0—A)^L2(£) for A^spe(50). 

Corollary 1 leads to an interest in describing the commutant of an irredu-
cible operator T with a rank one self-commutator. In particular, one can ask if the 
commutant of such an operator is abelian. 

More specific questions can be asked about the commutants of the operators 
Sb, where b is a non-vanishing element in C'(7). In particular, one can ask if the 
commutant of Sb equals the weakly closed algebra generated by Sb and the identity. 

\ 
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