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A note on quasisimilarity of operators

L. A. FIALKOW

1. Introduction. Let $ be a separable, infinite dimensional complex Hilbert
space, and let £($) denote the algebra of all bounded, linear operators on $.
An operator X in Z(9) is quasi-invertible ') if X is injective and has dense range
(i.e., ker (X)=ker (X*)={0}). Operators 4 and B in L(9) are quasisimilar if
there exist quasi-invertible operators X and Y in Z($) such that 4AX=XB and
YA=BY. Two operators that are similar are clearly quasisimilar, and similar opera-
tors have equal spectra; one purpose of this note is to study the relationships between
the spectra of quasisimilar operators.

There are several cases in which the quasisimilarity of two operators 4 and B
implies the equality of their spectra: this is true if 4 and B are decomposable [7]
or if A and B are hyponormal [6]. In section 4 we give necessary and sufficient
conditions for two injective weighted shifts to be quasisimilar. We prove that if
shifts W, and W, are quasisimilar, then they have equal spectra; if, in addition,
W, or Wj is invertible, then W, is similar to Wj.

Contrasting with these results is an example, due to Hoover [15), of two quasi-
similar non-injective weighted shifts 4 and B such that ¢(4)={0} and o(B)=
=D={z¢C:|z|]=1}, In [18] Sz.-NaGy and Foiag gave necessary and sufficient
conditions for a contraction to be quasisimilar to a unitary operator, and they gave
an example of such an operator whose spectrum equals the disk D. The general
result governing all of these cases is the following well-known corollary of Rosen-
blum’s Theorem: The intersection of the spectra of quasisimilar operators is non-
empty [15). In Theorem 2.5 we prove the following refinement of this result: If
AX=XB, where X is injective, and S is a part of B, then each non-empty closed-
and-open subset of ¢(S) has non-empty intersection with ¢(A4). In Theorem 2.6,
Lemma 2.8, and Lemma 2.11 we give partial analogues of this result for the essential
spectra of 4 and B.
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In [13] Foias and PEARCY established a model for quasinilpotent operators up to
similarity, and in [19] PEARCY inquired whether an analogous model could be given
for quasinilpotent operators up to quasisimilarity. Since quasisimilarity is a transitive
relation, such a model would apply to each operator in 2,,={T€£(9): T is quasi-
similar to some quasinilpotent operator in Z($)}; in particular, the hyperinvariant
subspace problem for operators in 2, is equivalent to the hyperinvariant subspace
problem for operators in 2 (see [15)). In section 3 we study properties of operators
in 2,,. While quasisimilarity does not, in general, preserve quasitriangularity {24],
we prove that each operator in 2, is quasitriangular; in addition, 2, is a proper
subset of the norm closure of the set of all nilpotent operators (i.c., 2,,& A4 77).
We prove that 2,; contains no non-quasinilpotent decomposable or hyponormal
operators. On the other hand, 2, is closed under countable direct sums (Proposition
3.10), and this result is used to prove that a subset XcC is the spectrum of an
operator in 2, if and only if X is compact, connected, and contains 0 (Theorem
3.11).

We conclude this section with some terminology and notation. Let 2 denote
the ideal of all compact operators in £($); if T is in Z($), let T denote the
image of T in the Calkin algebra #(9)/A4. The essential spectrum of T, o,(7),
is the spectrum of 7° with respect to the Calkin algebra [11]. We will use results
from [9] about semi-Fredholm operators and quasitriangular operators. We denote
by A and 2 the sets of all nilpotent and, respectively, quasinilpotent operators
in Z(9). If T is in £(9), then apartof T isanoperator S of the form S=T|M,
where M is a closed subspace of $ such that TP and DM={0} M=9
is permitted). We denote the spectrum of T by ¢(7) and the spectral radius of
T by r(T)=sup {|2|: A€o (T)}=lim | T"|""; thus 2={T in L($H):r(T)=0}.

2. On the spectra of quasisimilar operators. Let </ denote a complex Banach
algebra with identity and let .#(2/) denote the Banach algebra consisting of all
22 matrices with entries from &/ (where the norm of a matrix is its norm as an
operator on the Banach space #/@s/). Let a,b, and x denote elements of /.
Let o(y) denote the spectrum of an element y of &.

Lemma 2.1. If fis a function that is analytic in a neighborhood of (@)U (),
-and ax=xb, then f(ayx=x f(b).

Proof. Let M and N denote, respectively, the elements of #(s/) whose

matrices are
a0 and 0 x
0 b| 0 0}

Since f is analytic in a neighborhood of o(M)=06(@)Uc(b), then f(a), f(b), and
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f(M) are defined by the Riesz functional calculus, and it is easy to prove that

0
f(b)

Since ax=xb, N commutes with M, and Theorem 7.4 of {5, page 33] implies that
N commutes with f(M). A matrix calculation now shows that f(@)x=xf(b) and
the proof is complete. _

The following well-known result is usually proved as a corollary of Rosen-
blum’s Theorem [20, Theorem 0.12, page 8]; we give an elementary proof based on
Lemma 2.1.

F0) = [f (()“) ] (see, e.g., the proof of [10, Lemma 2.1]).

Lemma 2.2. If ax=xb and c(e)No(b)=0, then x=0.

Proof. Without loss of generality we may replace a and b, respectively, by
a—2 and b—4, where A is any complex number, and we may thus assume that
a is invertible. Let f(z) be an analytic function such that f(z)=z in a neighborhood
of a(e) and f(z2)=0 in a neighborhood of a(b). Since f(a)=a and f(b)=0,
Lemma 2.1 implies that ax=0, and the invertibility of a implies that x=0.

Using Lemma 2.2 and basic properties of the spectral measure of a normal oper-
ator, we can prove the following refinement of Lemma 2.2. The proof, which is not
needed in the sequel, will be omitted.

Proposition 2.3. Suppose that T, X, and N are in L(9), where N is normals
and TX=XN or XT'=NX. Let E(-) denote the spectral measure of N. If
E(6(T))=0, then X=0.

We note that the preceding result is also valid if N is a spectral operator.
An element e in & is said to be idempotent if e*=e.

Lemma 2.4. If ax=xb and if there exists no non-zero idempotent e such that
xe=0, then each non-empty closed-and-open subset of a(b) has non-empty intersec-
tion with o(a).

Proof. Suppose that 7 is a non-empty closed-and-open subset of a(b) that
is disjoint from o(a@). Since &/ has an identity, x=0, and Lemma 2.2 implies that
t#0(b). Thus there exists an analytic function f such that f(z)=0 in a neighbor-
hood of a(a)U(a(b)—1) and f(z)=1 in a neighborhood of 7. Then f(a)=0 and
[S, Prop. 7.9, page 36] implies that f(b) is a non-zero idempotent in /. Lemma 2.1
implies that 0=f(a@)x=xf(b), and the hypothesis on x implies that f(b)=0, which
is a contradiction.

Theorem 2.5. Let A, B, and X be in L(9). Suppose that AX=XB, X is
injective, and P is a non-zero projection such that P9 is invariant for B (P=1 is
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permitted). Then each non-empty closed-and-open subset of ¢(B|P9) has non-empty
intersection with o(A).

Proof. We may assume from Lemma 2.4 that P>1. Suppose that 7 is a non-
empty closed-and-open subset of o(B|PH) such that tNe(4)=0. Let . be
chosen so that (B—A)|P$ is invertible; since PBP=BP, we have (¥)(4—1) (XP)=
=(XP)(B—2)P. Let f be an analytic function such that f(z)=1 ina neighborhood
of —/ and f(z)=0 in a neighborhood of ¢(4—A)U(a((B—A)|PH)—(x=2))U {0}.
(This definition of f is valid since t—A is a mon-empty closed-and-open subset
of o((B—2)|PH) such that (t—)Ne(4—21)=P and 0¢c((B—-7)|PH).) Since
o((B—A)P)=c((B—N|PH)U{0}, f is defined in a neighborhood of o(4—2)U
Ue((B—7%)P), and Lemma 2.1 and () imply that f(4—2) (XP)=(XP) f((B—7)P).
Now f(A—7)=0 and E=f((B—2)P) is a non-zero idempotent; thus we have
O0=XPE. Further, [20, Theorem 2.10, page 31] implies that (B—7)P commutes
with E, that the range of E is invariant for (B—2)P, and that o((B—2)P|EH)=
=71— .. With respect to the decomposition $=PH @ (1 —P)$H, the operator matrices
of B and P are, respectively,

B, * (1 0
[0 ] [} 0].

Thus the operator matrix of (B—A)P is

B, =) 0]
0o o)

where B,—2Z is invertible in £ (P$). Let

E, E,
E; E,
denote the operator matrix of E. Since E commutes with (B—2)P, a calculation

shows that E,=0 and E;=0. We claim that E,=0 in £((1 —P)9). Indeed, if
x is a nonzero vector in (1—P)$ such that E,x>0, then

B,—% O|[E o][o] _[o]-
0 ojlo EJlx] |o]” -
and so 0€o((B—A)P|EH)=7—4, which is a contradiction since 2¢c(B|P$H). Now

E,=0, so we have PE=F and 0=XPE=XE. Since X is injective, £E=0, and
we have a contradiction which completes the proof.

Remark. If Xis non-injective, then the conclusion of Theorem 2.5 is no longer
valid; if X is a projection in £ (9), X¥=0, 1, then 1X=X2,
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In contrast to Theorem 2.5, it can be shown that quasisimilarity does not preserve
the connectedness of spectra. Indeed, HoovER [15] gives an example of quasisimilar
operators 4 and B such that o(4)={0} while ¢(B) equals the closed unit disk.
Then A@®(4—1/2) is quasisimilar to B®(B—1/2); the spectrum of the first opera-
tor is disconnected and the spectrum of the second operator is connected.

The analogue of Theorem 2.5 for essential spectra is false. Let U denote a uni-
lateral (unweighted) shift of multiplicity one in £ ($) and let W, denote the unila-
teral weighted shift defined by a,=1/n for n=1 (see section 4 for notation). Let
X denote the injective diagonalizable operator defined by Xe,=p,e,, where f,=
=B,=1 and B,=1/(n—1)! for n=3. Now W,X=XU; however, o,(W, and
6.(U) are disjoint, since ¢, (W,)={0} and o¢.(U) is the unit circle.

Despite the preceding example we have the following perhaps surprising result.

Theorem 2.6. If A and B are quasisimilar operators in £(9), then o,(A)
and o,(B) have non-empty intersection. ’

Before proceding with the proof of Theorem 2.6, the following observation
seems pertinent. If X is in £($), and if X is “injective” in the Calkin algebra
(i.e., if there exists no non-zero idempotent £ in the Calkin algebra such that X£=0),
then X is left invertible in the Calkin algebra (see [11, Theorem 1.1]); thus if X is
also quasi invertible, then X is invertible. This fact implies that if two operators are
quasi-similar but not similar, then the intertwining quasi invertible operators are
both non-injective in the Calkin algebra. Thus it appears to be difficult to directly
adapt the proof of Lemma 2.4 to the setting of the Calkin algebra in order to prove
Theorem 2.6.

Our proof of Theorem 2.6 is instead inspired by the techniques and terminology
of [19]. We next summarize some of the results and terminology from {19]. Let
T be in Z(H). A subset HcC is said to be a hole in ¢,(T) if H is a bounded
connected component of C—a,(7T); thus bdry(H)ce, (7).

Lemma 2.7. If H is a hole in ¢,(T) and H\o(T) is uncountable, then HC
co(T). In this case, if S is quasisimilar to T, then HCo(S) and bdry (H)C
co,(T)Na(S). If H isacomponent of C—a,(T) and H(\o(T) is finite or countably
infinite, then each point of H(a(T) is an isolated point of o(T) and an eigenvalue
of finite multiplicity; moreover, if K is the unbounded component of C—o,(T), then
KMo (T) is either empty, finite, or countably infinite.

Proof. The proof follows immediately from the results of [19].

Lemma 2.8. If A and B are quasisimilar, then each non-empty closed-and
open subset of ¢,(B) has non-empty intersection with c(A4).
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Proof. Let T be a non-empty closed-and-open subset of ¢,(B). If 7 is open
in o(B), then Theorem 2.5 implies that tMNo(4)>0. Otherwise, there exists ¢ in 7,
and a sequence {t,}o(B)—1, such that #,—~z. Since 7 is openin ¢,(B), we may
assume that each ¢, is in o(B)—o,(B). Thus ¢, is an eigenvalue of B (and thus
of A) for infinitely many »n, or #, is an eigenvalue of B* (and thus of A4*) for
infinitely many ». In either case, ¢ is in o,(B)No(A4), and the proof is complete.

Remark. Let X denote a non-empty, bounded, open, connected subset of the
complex plane; let ¢(X) denote the unbounded component of the complement of
the closure of X, and let B(X)=bdry (¢(X)); note that B(X)cbdry(X). It is
a result of the topology of the plane that B(X) is connected [23, Theorem 14.2,
page 123]. In particular, if T isin £($H) and B(X)co(T)—o,(T), then the connec-
tedness of B(X) implies that f(X) is contained in some component H of C—o¢,(7);
further, since f(X) is uncountable, Lemma 2.7 implies that H is a hole in o, (7).

Lemma 2.9.If A and B are quasisimilar operators in F(9H), and if there
exists a hole Hy in o,(A) such that Hyco(A4), then 6,(4)Ne,(B)=0.

Proof. Suppose to the contrary that o,(4) and o¢,.(B) are disjoint. Since H,c
Ca(A), then Hyco(B), and thus S(Hy)co.(4)Ne(B)Yco(B)—o,.(B). The above
Remark implies that there exists a hole K; in o¢,(B) such that (H,cK,, and it
follows by a connectedness argument that ¢ (K;)" C@(H,). Now p(K,) is an un-
countable connected subset of o¢,(B); thus, as above, there exists a hole H, in
o.(4) such that f(K))cH;, and we also have ¢(H,)” c¢o(K;). Moreover, H,
and H, are disjoint; indeed, otherwise H, and H, (components of C—g,(4))
are equal, and since S(K;)c H,, it follows that there is a point in @(K)NH,=
=@ (Ky)NH,. Since @(K)ce(Hy)cC—H,, we have a contradiction, and thus
HyNHy=9. '

The above procedure may now be used to inductively define two sequences
{H;} (i=0) and {K;} (i=1) such that:

i) H; is a hole in o,(4); f(H)Co.(4) (i=0);

ii) K; is a hole in ¢.(B); B(K)co.(B) (i=0);

iii) B(H)C Ki11, BKis)CTH;yq (1=0);

iv) o (H)~ co(K), ¢o(K)™ Co(H;-y) (=1);

v) KiNK;=0, HNH;=0 for all i#j.
Now iii) and iv) imply that B(H)NB(H;)=9 for all i=j. Let {h;} (i=0) denote
a sequence such that #; isin (H;) for i=0. Since these points are distinct, there
exists a convergent subsequence h,-k—>h, and i) implies that 4 is in o,(4). Since
I,>1i,_,, iv) implies that (p(H,.k)cgo(K,-k)cq)(H,-k_l)C...cgo(H,.k_l); now if L
denotes the line segment from h,-k to hik—l’ then L contains a point 8i, from
B(K.). Since |g, —h|=lg, —h; [+ —h, |+ _ —h|=2\h —h; _|+|h; _ —hl,

-1
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it follows that g,-k—>h. Now ii) implies that 4 isin ¢.(B). Since 4 is also in ¢,(4),
we have a contradiction, which completes the proof.

Lemma 2.10. If A and B are quasisimilar, and if there exists an inﬁnite sequ-
ence {z,} of distinct isolated points of o(A) such that dim (ker (4—z,))=0 or
dim (ker ((4—z,)"))=>0 for each n, then ¢,(4)No.(B)#0.

Proof. Since A and B are quasisimilar, {z,}Co(B); by passing, if necessary,
to a subsequence, we may assume that z,—~z, where z isin o(B). Since z is an
accumulation point of bdry (¢(4)), [19, Corollary 1.26] implies that z is in o,(A4),
and we claim that z is also in o¢,(B). For otherwise, since z is in ¢(B)—o0.(B)
and z is not an isolated point of ¢(B), Lemma 2.7 implies that there exists an open
disk D centered at z, suchthat B—w or {(B—w)* is non-injective for each w in D.
Since Dco(A), and since there exists some z, in D, it follows that z, is not an
isolated point of o(4), which is a contradiction. Thus z isin ¢,(4)(¢,(B), and
with the proof is complete.

Lemma 2.11. Let A, B, and X be in Z(9), with X injective and AX=XB.
If H is a component of C—ao,(A) such that K=H\o(B) is a non-empty closed-and-
open subset of o(B), and KNo,(B)#0, then Hca(A).

Proof. The hypothesis implies that K is a closed subset of the open set H;
thus there exists an open set U such that KcUcU-cH. If we assume that
Hd 6(A), then Lemma 2.7 implies that H contains no limit points of &(4); in
particular, L=UNa(4) is a finite set. Since U contains no limit points of &(4),
L is an open subset of ¢(4). Since K is a non-empty closed-and-open subset of
g(B), and L>KNo(A4), Lemma 2.4 implies that L is non-empty: moreover,
since LNo,(A)=0, then L=a(4).

Thus K and L are, respectively, non-empty closed-and-open subsets of o(B)
and o(4). Now there exists an analytic function f such that f(z)=1 in a neighbor-
hood of KUL, and f(z)=0 in a neighborhood of (c(4)—L)U(c(B)—K). As in
the proof of Theorem 2.5, f(A) is an idempotent commuting with 4, o(4|f(4) )=
=L, and o(4|(1-f(4)H)=6(4)—L. Since each idempotent operator in
ZL(9) is similar to an orthogonal projection, there exists an invertible operator J
such that P=J-1f(A)J is an orthogonal projection; then R=J-14J commutes
with P, and R|P$ issimilar to A|f(4)9. We assert that P$ is finite dimensional;
otherwise, ¢.(R|P9) is a nonempty subset of o(R|P$H)=0(A4]f(4)H)=L. Since
R|P$ is a direct summand of R, it follows that some point of L isin ¢,(R)=0,(4),
which is a contradiction.

Since AX=XB, Lemma 2.1 implies that f(4)X=Xf(B). Since P has finite
rank, so does f(4), and since X is injective it follows that f(B) also has finite
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rank. In particular, f(B)#1 and so Ks¢c(B). Now f(B) is a nontrivial idempotent
that commutes with B. Proceeding as above, there exists an invertible operator M
such that OQ=M-1f(B)M is an orthogonal projection, Q commutes with
S=M-'BM, ¢(S|09)=K, and ¢(S|(1-0)9)=0(B)—K (since S|Q9 is similar to
B|f(B) and S|(1—Q)9 is similar to B|(1 —f(B))9). If z isin KNo.(B), then
with respect to the orthogonal decomposition H=096(1 —Q0)$, we have S—z=
=(129) B ((S—2)I(1 - 0)9)) +((S—z—1D)|QH)B(0|(1 — 0)H)). Since the first term
on the right is invertible, while the second term in the sum is a finite rank operator,
it follows that S—z is a Fredholm operator, which contradicts the assumption that
z isin ¢,(B)=0,(S). Thus Hco(A4), and the proof is complete.

Proofof Theorem 2.6. By Lemma 2.9 we may assume that if there exists
a hole H in o¢.,(4), then Hdo(4), for otherwise the proof is complete.
Moreover, we may assume from Lemmas 2.7 and 2.10 that H(Na(A4) is at most
finite, and that if K denotes the unbounded component of C—o,(4), then KNo(4)
is at most finite. Let X=0,(B)No(4); Lemma 2.8 implies that X is non-empty.
If we assume that XNo,(4)=0, then there exists a component H of C—o,(A4)
such that XN H>0; from the preceding remarks we may assume that Ho(A4)
is a finite set. Since (¢,(B)NH)~ Nbdry(H)<o,(B)No,(4), we may assume that
there is an open set U such that ¢,(B)NHc Uc U~ < H; in particular, Y=06,(B)NH
is a closed subset of o (B).
We assert that Y is also an open subset of ¢(B); indeed, if Y is not open
in o(B), then there exists an infinite sequence of distinct points {z,}co(B)—Y"
such that z,—z, where z is some pointin Y. We may assume (excluding at most
“a finite number of points) that each z, isin U; thuseach z, isin ¢(B)—0o,(B)C
co(Ad). Now each z, is in HNa(A4), which contradicts the fact that HNo(A)
is finite. Thus Y is a non-empty closed-and-open subset of ¢(B), and Lemma 2.11
implies that Hco(A4), which also contradicts the fact that HNo(4) is finite.
The proof is now complete.

Remark. In a preliminary version of this paper, the author was unable to prove
Theorem 2.6, and instead posed it as a question. L. R. WiLLIAMS, meanwhile, inde-
pendently found a somewhat different proof of Theorem 2.6, which will appear in his
note [22].

Corollary 2.12. Let A, B, and X be in £ (D) with X injective and AX=XB.
If S isapart of B and S is decomposable, then ¢(S)Co(A).

Proof. Let S=B|¥, where Z={0} and B¥cC¥. If o(S)qG c(4), then
there exists an open subset UcC such that UNe(S)=0 and UNo(4)=0. Since
S is decomposable, [7, Lemma 1.2, page 30] implies that there exists an S-invariant
closed subspace Mc L such that M= {0} and o (S|V)cU. Since M H is also
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invariant for B and ¢(4A)No(BM)ce(4)NU=0, we have a contradiction to
- Theorem 2.5, and the proof is complete.

3. On quasisimilarity and quasinilpotent operators. In this section we give some
properties of operators in 2,,. An operator T in Z(9) is called a quasiaffine
transform of the operator § if there exists a quasi-invertible operator X in Z(9)
such that XT=SX. Let 2,,={T€Z(9): T is a quasiaffine transform of some
quasinilpotent operator} and let 2;={TcZ(9):T*€2,}; thus 2,C2,N2;.

Theorem 3.1. If T is in 2,12}, then T satisfies the following properties:

i) If P is a non-zero projection such that (1—P)TP=0, then o(T|P%) is
connected and contains 0; if additionally P1, then o((1—P)T|(1—P)$) is connected
and contains 0. '

ii) 6(T)— {0} {/€C: T—2 and (T—2)* are injective}.

iti) If A>20 and T—} is semi-Fredholm, then T—1 is invertible.

iv) o (T)=0,(T).

v) T is bi-quasitriangular.

Proof. Let Q and R be quasinilpotent operators and let X’ and Y be quasi-
invertible operators such that QX=XT and RY=YT".

i) If P>0 and (1—P)TP=0, then since X is injective, Theorem 2.5. implies
that o(7|P$) isconnected and contains 0. If P>1, thensince (1—P)$ isinvariant
for T* and Y is injective, o(T*|(1—P)9) is connected and contains 0. Since
o((1—P)T|(1-P)H)={2€C: Zca(T*|(1—P)$)}, the proof is complete.

i) Since (Q—A)X=X(T-72), (R-DHY=Y(T-7)*, and o(Q)=c(R)={0},
it is clear that if 1540, then T— 2 and (T'— A)* are injective.

iii) If T—/ is semi-Fredholm but not invertible, then either T—4 or (T'—24)*
is non-injective, so the result follows from ii).

iv) Since 6,(7) is a non-empty subset of o(T), we may assume that 7 is not
quasinilpotent. It is clear from iii) that each non-zero member of ¢(T) is in 6,(7);
now i) implies that O is a limit point of ¢,(7) and so Oisin o, (7).

v) For each vector / in 9, we have |T"Y*A|YVr=||Y*R*"h|V =|Y*|V".
[IR*|¥|hj¥*~0. Since Y* has dense range, Theorem 3.1 of [1] implies that T
is quasitriangular. A similar argument, using the equation T X*=X*Q*", implies
that T* is quasitriangular.

Corollary 3.2. If T isin 2, then T satisfies propertiesi) — V) of Theorem 3.1.

Corollary3.3.If T isin 2,; and S is a part of T that is decomposable,
then S is quasinilpotent.

Proof. The result follows from Corollary 2.12 or Theorem 3.1—i).
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Corollary 3.4. If T is a decomposable operator in 2,,, then is quasinilpotent.
Corollary 3.5. If T isin 2, and S is a part of T that is normal, then S=0.
Theorem 3.6. If T is a hyponormal operator in 2, then T=0.

Proof. Theorem 1 of [6] implies that if XA=TX and X has dense range,
then o(T)co(A); thus, if A is quasinilpotent, then so is 7. Now [20, Proposition
1.8, page 24] implies that |7 =r(T)=0.

Question 3.7. Which injective weighted shifts are in 2,,? This question,
which we are unable to answer, motivated the results of section 4. Theorem 4.8 implies
that if an injective weighted shift W is quasisimilar to a quasinilpotent injective
weighted shift, then W is quasinilpotent.

Corollary 3.8. 2, is a proper subset of A ~.

Proof. Theorem 3.1 implies that if T isin 2., then T is bi-quasitriangular
and that ¢(7) and ¢,(T) are connected and contain 0. Now [4] implies that T is in
N =. Theorem 7 of [14] implies that 4~ contains non-zero normal operators,
while Corollary 3.5 implies that there are no non-zero normal operators in 2,;
therefore, 2, is a proper subset of A"~

Question 3.9. Is the converse of Corollary 3.2 true?

We note that if 7" is a noninvertible operator in Z(9), and if T fails to satisfy
properties i) — v) of Theorem 3.1, then T has a nontrivial invariant subspace;
moreover, if T fails to satisfy properties ii) — v), then T has a nontrivial hyperin-
variant subspace. (These observations are easy to prove except with regard to pro-
perty v); the fact that a non-bi-quasitriangular operator has a nontrivial hyperin-
variant subspace is a result of [3].) Thus, if the converse of Corollary 3.2 is true,
and if each quasinilpotent operator does have a nontrivial hyperinvariant subspace,
then each operator has a nontrivial invariant subspace. It is therefore of interest to
determine whether the converse of Corollary 3.2 is true; we will show in Theorem 3.11
that as regards the topology of the spectra of operators in 2,,, Corollary 3.2 is
indeed “best possible”.

Proposition 3.10. 2, is closed under countable direct sums.

Proof. Let §; denote a separable Hilbert space (i=1,2,...), and let Ti
be in 2,, with respect to £ (9;). We seek to prove thatif {||T;]|} is bounded, then
T=Z&T; isin 2, with respect to Z(9), where H=2D9H;.

For each i=0, T; is quasisimilar to a quasinilpotent operator Q; in Z(9);
RotaA’s Theorem [20, Proposition 3.12, page 58] implies that there exists an operator
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P; in Z(9;) such that P, is similar to Q; and |P<1/i. Now [15, Theorem 2.5]
implies that 7 is quasisimilar to S=X@P;, so it suffices to prove that S is quasi-
nilpotent. Let 2 be a non-zero complex number and let # be a positive integer such
that 1/n<|i|. For i=n, |P) <1/i<1/n<|2|, and therefore

(@i =2~ = (A =IPD) < (1A =1/D)~t < (1A =1/n)~~
Now sup 1(P;— 22 émax(lsup I(P; =), (|A] —1/n)~')< oo, and hence 1§ 5 (S).
. i€ =iz=n

. Remark. In[13, Theorem 1.1] it is proved that if 7 is a quasinilpotent operator
on $, then there exists a compact, quasinilpotent backward weighted shift K in
Z(®) and a closed subspace MC L =9HD---HHPH ---, such that

i) M is invariant for L=K& - DKS---;
i) T is similar to L[9R;
iii) | LI =||T|| (see [13, Theorem 1.1, inequality 11]).

Using this result and the method of the proof of Proposition 3.10, it is not difficult
to prove the following analogue for direct sums operators in 2 :let T=28T;,
where T, is in 2, with respect to §;, and let $=IDH;. Then there exists
a compact, quasinilpotent operator K on §, of arbitrarily small norm, and a closed
subspace M L =HD---PHSD -+, such that

i) M is invariant for L=KDKD--- DKD---;

i) T is quasisimilar to L.

Theorem 3.11. 4 subset XCC is the spectrum of an operator in 2, if and
only if X is compact, connected, and contains 0.

Proof. Let X denote a compact, connected subset of the plane that contains 0.
Theorem 3.2 of [10] implies that there exists an operator 7T in #($) such that T
is a direct sum of nilpotent operators and ¢(7)=X; Proposition 3.10 implies that
Tisin 2.

The converse is contained in Theorem 3.1—i).

Remark. The proof of Theorem 3.11 did not requiré the full force of Propo-
sition 3.10, but only the fact that each countable direct sum of nilpotent operators
is in 2,,. Using (2, Theoreml] (or [21, Theoreml]), it is not difficult to prove that
each countable direct sum of nilpotent operators is quasisimilar to some compact,
quasinilpotent operator. On the other hand, not every quasinilpotent operator is
quasisimilar to a compact operator (see [13, Prop. 1.5]).

We conclude this section with an additional necessary condition for membership
in 2,. For T in Z(9), let M(T)={xcH: | T"x||¥"~0}. It is easy to prove that
MM(T) is a linear subspace of $ and that M(T)~ is a (possibly trivial) hyper-
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invariant subspace for 7. For example, if U denotes a unilateral shift of multiplicity
one in Z(9), then M(U)={0}, and since MM (U™) contains an orthonormal basis
for 9, then M(UH™=9.

Lemma 3.12. If T is in 2, then there exists an orthonormal basis {e.}
(I=k<w) for 9 such that for each k, ’}1_210 T e,|"=0.

Proof. Suppose that XQ=TX, where X is quasi-invertible and Q is in 2.
For each ¢ in §, we have |T" XtV =] XQ"t||*"=| X|*"|Q"*"||¢}*" —~0. Theorem
1.1 of {12] and the remarks of [12 ,page 280] imply that for S in Z(9), SH contains
an orthonormal basis for (S$)~. Since X has dense range, X9 contains an ortho-
normal basis for $, and since XHI(T), the proof is complete.

Proposition 3.13. If T isin 2,, then M(T) and M(T*) contain ortho-
norinal bases for 9; in particular, WM(T)"=MT ")~ =9.

Question 3.14. Is the converse of Proposition 3.13 true? It is known that if I
isin Z(9) and M(T)=9H, then T is quasinilpotent (see [7, Lemma, page 28]).

Proposition 3.13 is related to Theorem 3.1 by the following result.

Proposition 3.15.If T is in L) and M(T) " =MTH~ =9, then T
satisfies properties 1)—v) of Theorem 3.1.

Proof. Since M(T)-=M(T*)-=9H, Theorem 3.1 of [1] implies that T is
bi-quasitriangular.

Let P be a non-zero projection such that (1 —P)TP=0 and denote the operator
matrix of 7 with respect to the decomposition $=PH®(1—P)$H by

b 3)
0 B)
We will first show that ¢(S) contains 0. If S is invertible, thensois S*, and there
exists £>0 such that ||.S*x| =e||x| for each x in P$. If z isin §, then z=x+y,
where x isin P9 and y is in (1—P)H. Now we have |T*z|Y"=|S* x|V*=
=z¢|x||V*, which implies that M(T*c(1—P)$H. Since M(T*) is dense, this
contradiction implies that 0¢o(S); a similar argument, using the relation IM(T)~=
=$, implies that if S is a part of 7*, then S is noninvertible. In particular, T
and T* have no non-zero eigenvalues, and thus 7 satisfies ii)—iv).

To complete the proof we must show that if S is a part of T, then o(S) is
connected. Since 0€6(S), if 6(S) is not connected, then there exists a non-empty,
closed-and-open subset T o (S) such that 0¢z. If E denotes the spectral idempo-
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tent for S associated with 7, then o¢(T|E9)=0c(S|EH)=1, which contradicts the
fact that T|E9 is noninvertible.

Acknowledgment. The author is grateful to the referee for simplifying the
proof of Proposition 3.10 and for other useful suggestions. The referee also called
the author’s attention to a recent paper of C. ApostoL, “Quasiaffine transforms of
quasinilpotent compact operators”, in which it is proved that an operator 7 is a quasi-
affine transform of some compact quasinilpotent operator if and only if M(T*)-=§.
In view of C. Apostol’s result, Question 3.14 is equivalent to the following question.

Question 3.16. Is 2,,=2,,N2;.?

If the answer to Question 3.9 is affirmative, then it is clear from Proposition 3.15
that the answers to Questions 3.14 and 3.16 would also be affirmative.

4. Quasisimilarity of weighted shifts. In this section we give necessary and suffici-
ent conditions for two injective weighted shifts to be quasisimilar, and we prove that
quasisimilar injective weighted shifts have equal spectra. Several authors have con-
sidered cases in which quasisimilarity of two operators implies their similarity
or the equality of their spectra. Let S, 7, and X bein Z(H) with X quasi-inver-
tible and SX=XT. In [6, Theorem 4.4, page 55], COLOIOARA and Foias proved that
if S and T are decomposable, then ¢(S)=0(T). Each normal operator is decom-
posable [6, Example 1.6—ii, p. 33], and in [8] DouGLAS proved that if S and T are
normal, then S is unitarily equivalent to 7. Concerning operators that are not
necessarily decomposable, Hoover [15, Theorem 3.1.] proved that if Sand T are
quasisimilar isometries, then S is unitarily equivalent to T; CLARY [6, Theorem 2]
proved that if S and T are quasisimilar hyponormal operators, then ¢(S)=0(T).

Let /=7 or Z* andlet a={x,} (n€l) denote a bounded sequence of non-zero
complex numbers. An operator T in Z(9) is said to be an (injective) weighted
shift with weight sequence « if there exists an orthonormal basis {e,} (n€I) for 9
such that Te,=w,e,,, (mel). If I=2Z%,T is a unilateral shift, while if I=Z, T
is a bilateral shift.

In [17, Appendix] LAMBERT proved that if S and 7 are quasisimilar injective
unilateral weighted shifts, then S and T are similar. In the sequel we therefore:
consider only bilateral weighted shifts; thus we set I=Z and let {e,} (n€Z) denote:
a fixed orthonormal basis for §. Let W, denote the bilateral shift with weight:
sequence o corresponding to this basis. It T is a bilateral shift in £ ($) with
weight sequence «, then T is unitarily equivalent to W,; moreover, W, is uni-
tarily equivalent to W,, where B,=|x,| (n€Z). Thus, for questions concerning
quasisimilarity of injective bilateral weighted shifts, it suffices to consider shifts of
the form W,, where a,>0 (n€Z), and in the sequel we implicitly assume that the:
shifts are of this form.
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Lemma 4.1. The following are equivalent for shifts W, and Wj:
i) There exists an integer k such that

sup (g Xy )/ (Bo - Bi-) < oo

izmax(1—k, 1)

sup  (Boyr- Bogridllo—y ... 0_;) < oo

i=Zzmax(1—k,1)

and

ii) There exists a quasi-invertible operator X such that W, X=XW,.

Proof. Suppose that there is an integer & such that i) is satisfied. We consider
five cases for the values of & and define X in each case by giving the values of X
on the basis vectors.

Case 1. If k=2 weset ~

a) Xe;=(g... 41+ (Bo ... Bi~Dejsy for i=1;

b) Xey =0y ... 0p_16;

c) Xe,=(B;...0-10g-- Uppi-1)Chsi for —k+1=i= —1;
d) Xe_,=p_;... 0160

e) Xe_giy=B-gen- B-D/@-;...a_y)e_; for i=1.
Case 2. If k=1 equation c) may be deleted.

Case 3. If k=0, equations b)—d) may be replaced by the equation Xe,=e,.
Case 4. If k=—-2 we set

a) Xe; = (... 414/ (Bo --- Bi-De;si for i =1-—k;

b) Xe_, =1/(Bo... Bor-1e€o;

c) Xe_;_;=1/(c_;...0_15 .../f_k_i_;)e_i for 1=i=—(k+1);

d) Xeg = 1/(ay ... 00_y)ey;

e) Xe_;p=Bosry- B-DNo—;...a_pe_; for i=1—k.

Case 5. If k=—1 equation c) of case 4) may be deleted. Condition i) implies
that X may be extended to a quasi-invertible operator X in Z($), and a calculation
shows that W, X=XW,.

For the converse, let X denote a quasi-invertible operator such that W, X=
=XW,;, and denote the matrix of X with respect to the basis (e,) (n€Z) by (x;;)
(—eo<i,j<<0). X hasdense range, so there exists an integer m such that x, , 0.
An easy matrix calculation shows that for each pair of integers i and j we have
(") o_1X;_1 ;-1=X;;B;-1. Successive application of (*) gives the -identity (**)

i
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Xy m-i=Xo,m(Bm-1---Bu-/(@_1...x_;) for i=1. We consider the case m=0;
if we set k= —m, then for i=1 we have

B-1--B-ge)@-g-ca ) =B-r.. B Br-1-+ Bu-(@q o)) =
= (ﬁ—l ﬁ—k)x—i,m—i/xo,m = ”m“k“X”/xO,m'
Now (*) also implies that (***) x; ps;=(@-1...%)/(Bnsi-1---Bu)Xo m for i=1,
and therefore
(%0 - o4 i-1)/(Bo - Bim1) = Kis1,i/ X0, m) B - B-D = [ X]| ”Wp”k/xo,m,
which completes the proof when m=0. The proof for the case m=>0 may be given
similarly, by dividing (**) and (***) by (B,...Bn—1)-

Theorem 4.2. The following are equivalent for shifts W, and Wy:
i) W, is quasisimilar to Wy;
ii) There exists an integer k such that

sup (% ... %—14+0)/(Bo .. Bi—) < =
i=zmax (1,1-k)

sup )(ﬁ—1 e B (g oo ) < o0,

izmax(1,1-k

and

and there exists an integer m such that

Sup Bo - Bimr4m)(tg - 051 < oo,

izmax(1,1—m)

sup (a—l"'“—(ifm))/(ﬂ—l"'ﬁ-i) < oo,

izmax(1,1—m)
We state for ease of reference the following result concerning similarity of bila-
teral shifts.

Theorem 4.3. (KELLEY [16]) The shifts W, and W, are similar if and only if
there exist an integer k and constants M and N such that

n—1
0<M_5_.H (a1+k/[3])§N<oo fo" n=0
and 7=
O<M= [ (B_jla_ju)) =S N=<o for n<0.
j=1

The next example shows that there exist shifts W, and W, that are quasisimilar
but not similar.

Example 4.4. Let « be defined by o,=1/2%" for n=0 and «,=1 for n<O0;
let B be defined by B,=1/2*""! for n=0 and B,=1 for n<0. With the values
k=0 and m=1, « and p satisfy the inequalities of Theorem 4.2 ii), and thus W,
is quasisimilar to Wj. )

6
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If W, is similar to Wy, let k, M, and N be as in Theorem 4.3. If k=0
and n>0, then '

0 <M= (. %-14)/(Bo - Bas) = @o ot )/ (Bo - r-)

=1/2"; if k<0 and n> —k, then

o> NZ (0 ... t_14)/(Boes Bo-r4x - Bu1) =
=12 B, koo Boo) = 1(2FEB, L) = 20 FEL,

In either case, since # is arbitrary, we have a contradiction, and Theorem 4.3 implies
that W, is not similar to W,.

In Theorem 4.8 (below) we prove that quasisimilar shifts have equal spectra.
" We now show that this equality of spectra is not a consequence of the results of [6]
or [7] by proving that both W, and W} are non-hyponormal and non-decomposable.
Since B_,=1, By=2, and B,=1/2, the weight sequence f is neither increasing nor
decreasing and thus neither W, nor Wy is hyponormal.

Let U denote a unilateral (unweighted) shift of multiplicity one in Z($).
Since "1112 B,=0, itis clear that W is unitarily equivalent to a compact perturbation
of T=U®0g4. The results of [9] imply that T is non-quasitriangular, and thus W
is non-quasitriangular. Theorem 3.1 of [1] states that each decomposable operator
is quasitriangular, and it follows that W is non-decomposable.

To prove that W, is non-decomposable, we recall from [7, Corollary 1.4, p. 31]
that each decomposable operator has the single-valued extension property (in the
sense of [7]). Let D={1€€|0<|i|<1} and for A€D let

F) = e+ §<1/ﬂo)a"e-n+1+ g(ﬁl e B e

A straightforward series calculation shows that f(4) convergesin & and that f:D—
~$ is analytic. Since (Wy—4) f(A)=0 for each 4 in D, W, does not satisfy the
single-valued extension property, and is thus non-decomposable. (Note, however,
that W is quasitriangular.)

Lemma 4.5. If W, is quasisimilar to W, and W, is invertible, then Wy is
invertible.

Proof. Since W, is invertible, €= 11E1£ o;=>0, and it clearly suffices to prove
i
that ngfz‘ B;=0. Theorem 4.2 implies that there are integers k and m, and a cons-
J
tant M =0, such that
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1) (... i) <M(By... B), i=max(0, —k);

i) By Poic)<M(a_y...0_), i=>max(0, —k);
i) (Bo..- Bjam) < M(ay...;), j=max(0, —m);
iv) (@_y..asj_p)<M@B_y...B_7), Jj=max(0, —m).

We consider first the case when k+m=0. For j=max(—m—1,0), let i=
=j+m-+1; now i) and iii) imply that (¢;41.--%; 1 4m+)/ Bjrm+1=&o - %414 mrX
X Bo---Bism)(Bo---Bjtmerto...a)<M?, and thus B;,,.,>(/M2)em++1 For
jzmax (1-m,k+2,2), leti=j—k—1; now ii) and iv) imply that (a_;4...
il o) B =gt By By ) By Bojo_g.a_ iy ) <M?, and thus
B_;=(1/M?»em*+1_ 1t now follows that Jlrelg B;=0 in case k+m=0.

For 6=0, the shifts 6W, and 6W, are quasisimilar, and are invertible if and
only if W, and, respectively, W are invertible. We may thus assume that || W,[=1
and [[Wy||=1; since a,=1 and f,=1 (n€Z), we may also assume in i)—iv)
that k=0 and m=0. Since the result is true when k+m=0, the proof is now
complete. '

Theorem 4.6. If W, is quasisimilar to Wy, and W, is invertible, then W,
is similar to W.

Proof. From Lemma 4.5, we may assume that W is also invertible. It is now
straightforward to show that the inequalities of Theorem 4.2—ii) imply that the
inequalities of Theorem 4.3 are satisfied for suitable values of k£, M, and N, and
thus W, is similar to Wj. (The value for k& in Theorem 4.3 may be taken to be
that of either k or m from Theorem 4.2—ii); we omit the details.)

Lemmad4.7. Let A and B be in ZL(9). Suppose that there exist positive
integers p and N, integers a, ..., a,, and positive numbers c,, ..., c,, such that
for each n=N,n+a;>0 (1=i=p) and I|A"|]§112iasxpci|]B"+”f|l.Then r(Ay=r(B).

Proof. If T is in Z(9), then r(T)=lim| T"|", and it suffices to verify that for
eachinteger a, r(T)=lim | T"+%¥* (n> —a). If r(T)=0, then lim (|| T"+°||V/C"+a)/m =
=1, so lim | T+ V" =]im || T"+e|| Y+ (T +o/ "+l = p(T).  If r(T)=0, then
O=lim | 7"+*|V"<0im || T+ V" +9| T||*"=0=r(T), and the proof is complete.

Theorem 4.8. If W, is quasisimilar to Wy, then o(W,)=a(W).

Proof. From Theorem 4.6, we may assume that both W, and W, are non-
invertible. In this case the spectra of W, and W; consist of closed disks centered
at 0 [16], and therefore, by symmetry, it suffices to prove that r(W,)=r(W).
For each ¢=0, the shifts €W, and €W, are quasisimilar; moreover r(€EW,)=

6*
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=¢cr(W,) and r(eWp)=¢cr(Wy). We may therefore assume that |W, =1 and
| Wsll=1. Theorem 4.2 implies that there exists AM>0 and integers £k and m such
that o«y...0;_ 1 =MPy...pi-y and B_y...p_ipy=Ma_,...a_; for i=zmax(l, 1-k),
and such that By...Bic1om=Moy...0; , and a_;.. _(,+,,,)_MB_ p-; for
izmax (1, 1—m). Since a;=1 and f;=1 for each J» we may assume that
k=0 and m=0. To prove that r(W,)=r(W;) we will show that the hypothesis of
Lemma. 4.7 is satisfied with A=W, and B=W,. Since || Wa"ll=§ggaj+1...aj+,,,

we may replace [|4"| in Lemma 4.7 by an arbitrary product a;,;...q;
now estimate these products.
Let N=k+m+1 and n=>N. We consider several special cases for the product

+ns and we

Ojyre-Cjgpe

i) Suppose that j=0. Since j=0=k—n,j+m=0, and n—k=m+1, then

01 Ljrn = M((ﬂo ﬂj+m)/(“0 aj))(ﬁj+m+1 ﬂj+n—k) = MzﬂWé'_k""H.

ii) Suppose that j=1. Since j=0=—n-+1+m, we have —j—n+m<-—1,
and since —j—k=-—1 and a=m+k+1, then

Aol jon = M((B—l!"ﬂ—j—k)/(a—l'"a—j))(ﬁ—j~k—1"'B—j—-n+m) = M3 W;—k—m”~

iii) We also have «q...0t,—1=MPBy...B_ 11 =M|W;7¥|, and a_,..a
SMB_r. Bonin =MW" |

The remaining products are of the form «;,;...0_1a...0;4, for —n=j=-2.
Since j+n=0 and j+1=-—1, there are p=—j—1=1 factors with a negative
subscript and g=j+n+1=1 factors with a nonnegative subscript. We consider
the possible values of p and gq.

iv) If p>m and g=k, then —1—j=m and j+n—k=>—1, and therefore

Cjgg e @y eneCypy = M2Byyysmene BorBo o Bian—i = MW~

v) If p=—j—1§m, then g=j+n+1=k since p+qg=n>m+k. Now

=
-n=

Q1o Ojpn = OOy = MBoo. Bjone k——M“WH-" 1), where —1—m §j§.—2.

Thus ;4q...0;,,=(M) max {| W;“ll:—m—kéaé—l—k}.

vi)Iif g=n+j+1=k, then p=—j—1l=m, and o .0 ;0.0 ,=
=MBjirim-B-1tp... 0, =M|W; /"™, Since n+1—k=—j=n,thenn— k —_m=
=—j-—m—1=n—m—1, and s0 a;...0;,,=(M)max {|W;*|:—k—m=a=
=—m—1}. The proof is now complete.

Remark. The example just before Corollary 2.6 shows that the conclusion of
Theorem 4.8 is false if we only have a single equation SX=XT (where S and T
are injective weighted shifts and X is quasi-invertible).
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