Concerning the uniqueness lemma for absolutely continuous functions

MAURICE HEINS

1. We recall the classical lemma from the elements of real analysis bearing on the uniqueness of absolutely continuous functions [1], [2] which we restate in terms of vector-valued functions:

Given $f:[a, b] \rightarrow X$ where $-\infty<a<b<+\infty$ and X is a Banach space over R. If f is absolutely continuous and $f^{\prime}(t)=0$ (the zero element of X) for almost all $t \in[a, b]$, then f is constant. (For the vector-valued situation we cannot assert in general the almost everywhere existence of $f^{\prime}(t)$.)

The object of this note is to show that the lemma as stated may be established in a very simple way without the introduction of ancillary considerations such as the Vitali covering theorem or the "rising sun lemma" of F. Riesz (taken with the HahnBanach theorem). To be sure, these powerful approaches would appear to be indispensable to develop fully the theory of absolutely continuous functions of a single real variable and its relation to the theory of the Lebesgue integral.
2. We start with two arbitrary positive numbers ε and η in a manner reminiscent of the classical approach which uses the notion of a Vitali covering and let δ denote a positive number such that whenever $\left[x_{k}, y_{k}\right], x_{k}<y_{k}, k=1, \ldots, n$, are nonoverlapping segments in $[a, b]$ which satisfy $\sum\left(y_{k}-x_{k}\right) \leqq \delta$, we have $\sum \| f\left(y_{k}\right)-$ $-f\left(x_{k}\right) \| \leqq \eta$. Here $\|\|$ denotes the norm of X. Let Ω denote an open subset of R containing $[a, b]-\left\{f^{\prime}(t)=0\right\}$ whose Lebesgue measure is at most δ. We introduce the class \mathcal{G}, of finite sequences s that satisfy: (1) the domain of s is an initial segment $\langle 1, n(s)\rangle$ of the positive integers, (2) s maps its domain in a monotone strictly increasing fashion into $[a, b]$ with $s(1)=a$, and finally, (3) for each integer k satisfying $1 \leqq k<n(s)$ either $[s(k), s(k+1)] \subset \Omega$ or

$$
\|f[s(k+1)]-f[s(k)]\| \leqq \varepsilon[s(k+1)-s(k)] .
$$

We note that \mathbb{S} is not empty and that

$$
\|f\{s[n(s)]\}-f(a)\| \leqq \eta+\varepsilon(b-a)
$$

Received September 8, 1976.

Let $c=\sup s[n(s)]$. We are assured that

$$
\|f(c)-f(a)\| \leqq \eta+\varepsilon(b-a)
$$

Clearly $a<c \leqq b$ as we see on noting that either $a \in \Omega$ or $f^{\prime}(a)=0$. The assumption $c<b$ leads to a contradiction. For if $c \in \Omega$ and $s[n(s)]$ is sufficiently near c, we may extend s to a member $\sigma \in G$ with domain $\langle 1, n(s)+1\rangle$ such that $[\sigma[n(s)]$, $\sigma[n(s)+1]] \subset \Omega$ and $\sigma[n(s)+1]>c$, while if $c \notin \Omega$ and $s[n(s)]$ is sufficiently near c, we may this time extend s to a σ satisfying $\sigma[n(s)+1]>c$ and

$$
\|f\{\sigma[n(s)+1]\}-f\{\sigma[n(s)]\}\| \leqq \varepsilon(\sigma[n(s+1)]-\sigma[n(s)])
$$

Hence $c=b$. It follows that $f(b)=f(a)$, given the arbitrariness of ε and η. The same argument applies when b is replaced by a point of (a, b).

The lemma is thereby established.

References

[1] F. Riesz-B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Akad. Kiadó (Budapest, 1952).
[2] H. Royden, Real analysis (1963).

