Concerning the uniqueness lemma for absolutely continuous functions

MAURICE HEINS

1. We recall the classical lemma from the elements of real analysis bearing on the uniqueness of absolutely continuous functions [1], [2] which we restate in terms of vector-valued functions:

Given $f: [a, b] \rightarrow X$ where $-\infty < a < b < +\infty$ and X is a Banach space over R. If f is absolutely continuous and f'(t)=0 (the zero element of X) for almost all $t \in [a, b]$, then f is constant. (For the vector-valued situation we cannot assert in general the almost everywhere existence of f'(t).)

The object of this note is to show that the lemma as stated may be established in a very simple way without the introduction of ancillary considerations such as the Vitali covering theorem or the "rising sun lemma" of F. Riesz (taken with the Hahn-Banach theorem). To be sure, these powerful approaches would appear to be indispensable to develop fully the theory of absolutely continuous functions of a single real variable and its relation to the theory of the Lebesgue integral.

2. We start with two arbitrary positive numbers ε and η in a manner reminiscent of the classical approach which uses the notion of a Vitali covering and let δ denote a positive number such that whenever $[x_k, y_k]$, $x_k < y_k$, k=1, ..., n, are nonoverlapping segments in [a, b] which satisfy $\sum (y_k - x_k) \le \delta$, we have $\sum ||f(y_k) - -f(x_k)|| \le \eta$. Here || || denotes the norm of X. Let Ω denote an open subset of R containing $[a, b] - \{f'(t)=0\}$ whose Lebesgue measure is at most δ . We introduce the class \mathfrak{S} , of finite sequences s that satisfy: (1) the domain of s is an initial segment $\langle 1, n(s) \rangle$ of the positive integers, (2) s maps its domain in a monotone strictly increasing fashion into [a, b] with s(1)=a, and finally, (3) for each integer k satisfying $1 \le k < n(s)$ either $[s(k), s(k+1)] \subset \Omega$ or

$$||f[s(k+1)] - f[s(k)]|| \leq \varepsilon[s(k+1) - s(k)].$$

We note that \mathfrak{S} is not empty and that

$$||f\{s[n(s)]\} - f(a)|| \leq \eta + \varepsilon(b-a).$$

Received September 8, 1976.

94 Maurice Heins: Concerning the uniqueness lemma for absolutely continuous functions

Let $c = \sup s[n(s)]$. We are assured that

$$\|f(c) - f(a)\| \leq \eta + \varepsilon(b - a).$$

Clearly $a < c \le b$ as we see on noting that either $a \in \Omega$ or f'(a) = 0. The assumption c < b leads to a contradiction. For if $c \in \Omega$ and s[n(s)] is sufficiently near c, we may extend s to a member $\sigma \in \mathfrak{S}$ with domain $\langle 1, n(s) + 1 \rangle$ such that $[\sigma[n(s)], \sigma[n(s)+1]] \subset \Omega$ and $\sigma[n(s)+1] > c$, while if $c \notin \Omega$ and s[n(s)] is sufficiently near c, we may this time extend s to a σ satisfying $\sigma[n(s)+1] > c$ and

$$||f\{\sigma[n(s)+1]\}-f\{\sigma[n(s)]\}|| \leq \varepsilon(\sigma[n(s+1)]-\sigma[n(s)]).$$

Hence c=b. It follows that f(b)=f(a), given the arbitrariness of ε and η . The same argument applies when b is replaced by a point of (a, b).

The lemma is thereby established.

References

[1] F. RIESZ-B. SZ.-NAGY, Leçons d'analyse fonctionnelle, Akad. Kiadó (Budapest, 1952). [2] H. ROYDEN, Real analysis (1963).

UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND