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Concerning the uniqueness lemma for absolutely 
continuous functions 

MAURICE HEINS 

1. We recall the classical lemma from the elements of real analysis bearing on the 
uniqueness of absolutely continuous functions [1], [2] which we restate in terms of 
vector-valued functions: 

Given f : [a,b\^-X where — + «> and X is a Banach space over R. 
I f f is absolutely continuous and f'(t)= 0 (the zero element of X) for almost 
allt£[a,b], thenf is constant. (For the vector-valued situation we cannot assert in 
general the almost everywhere existence of / '(?)•) 

The object of this note is to show that the lemma as stated may be established 
in a very simple way without the introduction of ancillary considerations such as the 
Vitali covering theorem or the "rising sun lemma" of F. Riesz (taken with the Hahn-
Banach theorem). To be sure, these powerful approaches would appear to be indispen-
sable to develop fully the theory of absolutely continuous functions of a single real 
variable and its relation to the theory of the Lebesgue integral. 

2. We start with two arbitrary positive numbers e and t] in a manner remi-
niscent of the classical approach which uses the notion of a Vitali covering and let <5 
denote a positive number such that whenever [xk,yk], xk<yk, k=l, ...,«, are 
nonoverlapping segments in [a,b] which satisfy 2(yk~x k )=8 , we have Z l l / O ' * ) -

—f(Xk)\\—>1- Here || [| denotes the norm of X. Let £2 denote an open subset 
of R containing [a, 6] — { / ' ( 0 = 0 } whose Lebesgue measure is at most 8. We 
introduce the class <2, of finite sequences s that satisfy: (1) the domain of s is 
an initial segment (l ,«(s)) of the positive integers, (2) s maps its domain in a 
monotone strictly increasing fashion into [a, b] with s ( l )=a , and finally, (3) 
for each integer k satisfying 1 ^k<n(s) either [J(A:), s{k+\)](zQ or 

||/[s(/c+l)]-/[s(/c)]|| S 8[s(k+l)-s(k)l 

We note that S is not empty and that 

ll/{s[n(s)]}-/(«)ll Sr,+£(b-a). 
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Let c=supi[n(s)]. We are assured that 

| | / (c ) - / (a) | | *t,+e(b-a). 

Clearly a < c ë 6 as we see on noting that either a€£2 or f'(a)=0. The assumption 
leads to a contradiction. For if c£Q and í[n(í)] is sufficiently near c, we 

may extend S to a member with domain ( 1 , T J ( S ) + 1 ) such that [<T[«(J)], 
<t[«(í) + l ] ] c i 2 and o-[n(i)+l]>c, while if c^Q and is sufficiently near c, 
we may this time extend s to a a satisfying cr[n( j )+l]>c and 

| | / { < 7 t n ( 5 ) + l]}-/{(7[n(s)]}[| S £(<x[n(s+l)]-<7[n(s)]). 

Hence c—b. It follows that f(b)=f(a), given the arbitrariness of e and t]. The 
same argument applies when b is replaced by a point of (a, b). 

The lemma is thereby established. 
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