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An integrability theorem for power series

L. LEINDLER and J. NEMETH

1. One of the first results concerning integrability theorems for power series:
is due P. HEywoop [6] who proved that

1 oo
[ =071 fXdx <o for f(x)= Fax", az=0, y<I
0 . k=0

if and only if

A theorem, which states only an implication, was proved earlier by HARDY
and LitTLEwOOD [5], as follows:

If a=0, r=zp=>1, g=0 and

A(x) = 2 akxks
¥=0
then 1 . o _ P+q—pq rlp
f (1—x)2 A"(x)dxéK[Z'k g a;’f] )
0 k=1

where K=K(p, q,r) depends on p, q and r only.

Henceforth — to our knowledge — P. B. KENNEDY [9], R. P. Boasand J. M. Gon-
zALEZ-FERNANDEZ [3], P. HEywooD [7], Y. M. CHEN [4], R. AskEy [1], R. S. KHAN
[10], L. LEINDLER [11], R. Askey and S. KARLIN [2] and P. JAIN [8] have proved
similar theorems.

Very recently one of the authors ([12]) generalized most of the results known
up to that time as follows:

Theorem A. Let A(t)=0 be a nonincreasing function on the interval 0<t=1
such that
< 1 -2 < 1 -1
Zilg)r =] e
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.and let

F(x) = S’c,,x"; O0=x<1.
n=0

.Suppose there is a positive monotonic sequence {go,} with 2
n=1 1P,

<oo such that

—-K

¢, > L
[Q,,A[;]] n?

Sor all sufficiently large values of n. Then 2(1—x)(|F(x)|)?€L(0,1) if and only if

O<p<<=, K=0)

o 1 n 4
Sa[a)ne[ Sel) <=
n=1 n). =
In the particular case A(t)=t"" (y<1) and g¢,=n* Theorem A reduces to a
‘theorem of Jain [8], which, for p=1, was previously proved by HEywoop [7].
In the present paper we give a generalization of Theorem A.

2. We use the following notations:

d=&(p) (p=1) denotes the set of all nonnegative functions ¢ (¥) having the
‘properties: ¢(u)/u is nondecreasing and ¢ (u)/u? is nonincreasing on (0, o).

Y=%(p) denotes the set of all functions i (¥) whose inverse functions belong
to .

P=P(R) denotes the set of all nonnegative nondecreasing functions ¢(u) with
QW)=R-0(u) (u€(0, «)).

We use the notation f(x) to denote the inverse of f(x).

3. We prove the following

Theorem. Let /(t) be a positive nonincreasing function on the interval 0<t=1
Such that

st 1 1
. —ln2= —| k1
o S22 = mfl)
and let {a,} be a positive increasing sequence with
) s
( n=1 N*0, )

Suppose that o)< P, that n(u) denotes either a function of & or a function of ¥,
.and that

3) F) = Sex, 0=x<l.
n=0
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Then, under the condition

. n -

@ €= —Kn7q [a,.l(l/n)e..]’ (K> 0),

A =xX)n(|F(x))e(IF(x)))€ L(0, 1) if and only if

5 $(0) e ) -
n=1 k=0

It is clear that this theorem includes Theorem A, namely, if o,=g,, 0o(x)=1
and n(x)=x" or n(x)=x"? (p=1) then it reduces to Theorem A.

4. We require the following

Lemma. Let A(t), ¢(u) and n(u) be defined as in our Theorem, and be

0 f(x)=k§')a,‘x" with a,=0, 0=x<1.
Then

) A1 =) (f(x)e(f(x)€ LO, 1)

if and only if

® 3 a[Hn-enapetn <=

or equivalently

A[%] non(4)e(Ap) < =

M3

®

where

i
-

M=

A"= ag.

k

[
I

Proof. First of all we show that (8) and (9) are equivalent.
It is easy to verify that (8) implies (9). Namely, (8) implies the existence of a
natural number k such that for all n(=2)

5o the implication (8)=>(9) is obvious. In order to show that (9) also implies (8)
we use the following property of the function g(u) for any integer r there exists a

7
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constant C, such that for any numbers a=0, =0

(10) %-0(8) = Ca- () +VBe(8)

(this property may be proved as the statement (2.38) of Lemma 13 in [15]). Using
(10) and considering that n(u)/u?} and g(u)€P we obtain for any integer r that

(Y nmearem =6, 3L nmcapetrian+ 3 (L) n-snrom =
an  =KenR 34 [%] ntn(de)+ 3 [%] n=2nig(n).

An easy computation gives by (1) and g(W)cP that

@ 2"’/1[%] n-tntlg(n) < o

for all sufficiently large values of r. So, by (9), (11) and (12), we have (8). Now we

. 1 n
prove the equivalence of (7) and (9) Set y=1—x. Since 1———] is an increasing
n

sequence, we have for +1< y< (n=2):
n - 1) 1" 2 1
fa-y= Ja0-yp=Sall-~f=1-—| Ja= 4,
k=0 . k=0 n n) x=o 4
Using this we obtain for m=2:
27 [ ]n‘zn(A )Q(A)<2§ i(y)dyn(An)g(An)é

n

=2 [ () dymADe(d)+ 2"' M) dyn(d,)o(4,) =

1/2

tl \: ...| \"‘

ifn
=0()+K 2 f i(y)n(f(l—y))e(f(l —y)dy =

n+1

= 0()+K [ 2(1-)n(fx)e(f())dx.
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This proves that (9) follows from (7). To prove the inverse statement of the equiv-
alence we consider the following estimations for m=1

11 1
m+ n

= @e(fe)dx = 2 J 20mUa-)e(ra-y)dy =

n+1

=3 f l(y)n[Zak(l—y)"] [é’)ak(l—y)*)dyé

A(yn (kgak [1 —h—iT)kJ Q[ké:; a (lt—nil)k] dy =

=0() zmlz [%} -ty [S’ a (1 —L]k] Q[S’ a [1 —L]k].

n+1 k=0

. 1 1 n 1 n+1
Smce—%[l—- =]|1- for n=1,2,... we have
2 n+2

(14)

e 1 YV »(j+D s .
= 2[1— 1] 2 a=22274,.
i=1

k=nj

Henceforth we split the proof into two parts. If #(u)=¢ (1) then we use the inequality

> > 3 a0bob)
(15) @ '=L 0 '=L =K.1=2 — .

This property of the function ¢(u)g(u) immediately follows from results of
H. P. MULHOLLAND [13] (see Theorem 1 and Remark (2.34)) and from the properties
of the functions @ () and ¢(u). By (15) we get: '

(16) ¢ [g 2“Ani] Y [2'2“/1,,.} é-Kg 27 p(4n)o(4,)-

T*
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Hence and from (13), (14) and (16) we deduce, for m=1, that

1
m+1

S M -De(f)e(f(x)dx = O 2'"1[%] n~t 327 p(A)e(4,) =

0

11—

=om 32 52 [%] n=2p(An)e(An) =

=o( 32t 32 [%] (1)~ (A)e(4) = O() 32 [%] n=20(4,)0(4,).

If n(@)=y @) the proof runs similarly but we use the following inequality

o[ 3274 3214 = 000 Z2rwiane( 34 =

a7
=00 > 7Y (ADoln)
instead of (16). Inequality (17) is just an easy consequence of the following element-

ary facts:

Y(a+b) =@+ k), Ykx)=k/py(x) for k<1,

and that, by (8), there exists an integer ¢ such that 4,=n' for any n(=2). Thus
the proof of Lemma is completed. :

5. Proof of the theorem.

Let A(x):S'akx" for 0=x<1 with g,=0 and
k=0

k
a=K-k-f|——————|.
A ¢ 1 [akl(l/k)e(k)]
First we consider the case #(u)=¢ (u).
We show that these coefficients g, satisfy condition (8). Using the inequality

(18) gz..(p(An) = KS m»[ zzk]

nkn

which holds for any 4,>0 and a@,=0 (see the inequality (8) of [14]) with A,=
=A(1/n)n"29(n), and the following consequence of (1)

g A [%] n—%o(n) = Mi [%] k-1o(k)
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we have

g [ ]n‘2<p(An)e(n)<0(1)Zi[ ]n‘ze(n)w(n-an)é

53

o 1) _, 1
50“),.5‘[7]" 0O g = OO Sy =

Hereby we proved that the coefficients of the function A4(x) satisfy condition (8),
so by Lemma

(19) A1 =x)p(A(x))e(A(x))€L(O, 1).

By (4) the coefficients a,+ ¢, are positive for all sufficiently large values of », thus
the functions
AW+FE) = 3 @pte)s”

n=0

has the property
(20) A1 =x)@(A(x)+ F(x)) e(A(x)+ F(x))€L(0, 1)
if and only if
@1 b x[—i—] g [,5 (ak+c,,)] o) <.
If A(1—x)o([F())) e(IF(x)])€L(0, 1), then (19) implies (20) which implies (21).
But by (4) we have
le,] = 2a,+cp,

whence, by (8) and (21), (5) follows.
If (5) holds, then this implies (21) because from (15) immediately follows that

(22) o(a+b)o(a+b) = K(p(a)e(a)+o(b)e(b)), a=0, b=>0.
But from (21) follows (20). By (19) and (20)

21 =x)o(IF)|)e(IF())ELO, 1)

follows obviously. '
Thus the theorem is proved for n(u)=¢ ). The proof for n(u)=y(u) runs
similarly. To prove (8) we use the inequality

Ya+b)y=y@+y@®) forall a=0, b=>0;
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thus

2 [ ]n‘ze(n)w[Z’ak 5 23,’1 )[ ]n‘zg(n)l,lz[i"gaklg

n=2 m=0n=2"+1

=o() 3 )[2m+1]2 0(2"'“)"’[2 ﬂm))

co 2k oo l m my <
=00 2 1@ 2 [2'"_] 27"e(2") =

From this point the proof runs on the same line as before. The proof is thus com-
pleted.
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