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An integrability theorem for power series 
L. L E I N D L E R and J. N E M E T H 

1. One of the first results concerning integrability theorems for power series 
is due P. HEYWOOD [6] who proved that 

r 
/ (1 - x ) ~ y f ( x ) for f(x) = 2 akx\ akS 0, y < 1 
o *=o 

if and only if 

n = l k=0 

A theorem, which states only an implication, was proved earlier by HARDY 

and LITTLEWOOD [ 5 ] , as follows: 

If akS0, r^p>l, q>0 and 
CO 

= 2akxk> 
k = 0 

^ l e n 1 ( ~ p+g-pg y/p 
f (1-x)" A'(x)dx^KyZk " atj , 

where K = K(p,q,r) depends on p, q and r only. 

Henceforth — to our knowledge — P . B . KENNEDY [ 9 ] , R . P . BOAS and J . M . G O N -

ZALEZ-FERNANDEZ [3], P . HEYWOOD [7], Y . M . CHEN [4], R . ASKEY [1], R . S . KHAN. 

[ 1 0 ] , L . LEINDLER [ 1 1 ] , R . ASKEY and S . KARLIN [ 2 ] and P . JAIN [ 8 ] have proved 
similar theorems. 

Very recently one of the authors ([12]) generalized most of the results known 
up to that time as follows: 

Theorem A. Let X(t)>0 be a nonincreasing function on the interval 1 
such that 

n~2 MX k~\ 
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•and let 

F(x)= Zc„x"; O s x < l . 
n = 0 

~ 1 
..Suppose there is a positive monotonic sequence {g„} with — <00 such that 

n = 1 HQ„ 

Cn > —"TT7 T (0 < p < •», 0) 

for all sufficiently large values of n. Then A(1 —x)(|F(x)|)piL(0,1) if and only if 

¿¿(ttH^M 
n = l \ . n ) u = 0 ) 

p 
= CO. 

In the particular case X(t) = t~y (y<l) and Q„=ne Theorem A reduces to a 
theorem of JAIN [ 8 ] , which, for p = 1 , was previously proved by HEYWOOD [ 7 ] . 

In the present paper we give a generalization of Theorem A. 

2. We use the following notations: 
$ = 4>(p) (p = l) denotes the set of all nonnegative functions q>(u) having the 

properties: (p(u)/u is nondecreasing and cp(u)jup is nonincreasing on (0, 
yj = 1/(p) denotes the set of all functions \p(u) whose inverse functions belong 

to 4>. 
P=P(R) denotes the set of all nonnegative nondecreasing functions Q(U) with 

QIU^R-Q(U) (w£(0, <*>)). 
We use the notation J(x) to denote the inverse of f(x). 

3. We prove the following 

Theorem. Let / ( / ) be a positive nonincreasing function on the interval 0 < i S l 
.such that 

.and let {a„} be a positive increasing sequence with 

~ 1 
'(2) 

«=1 n • a„ 

Suppose that Q (m) € P, that rj(u) denotes either a function of <f> or a function of f , 
.and that 

<3) F(x) = Z c n x 0 s x < l . 
n —0 
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Then, under the condition 
( 4 ) 

A(l-*)ii(|F(*)|)e(|F(x)|)€l.(0, 1) if and only if 

(5) 

It is clear that this theorem includes Theorem A, namely, if X„ = Q„, Q (X) = 1 
and r\(x)=xp or rj(x)=x1,p (pS 1) then it reduces to Theorem A. 

4. We require the following 

Lemma. Let l(t), Q(U) and T](u) be defined as in our Theorem, and be 

(6) f(x) = 2 ak** with aks 0, 1. 
k=0 

Then 

(7) A(l -x)^( / (x))g( / (x))€L(0, l ) 

if and only if 
(8) 

or equivalently 

(9) n Z ^ n - 2 r , ( A n ) Q ( A n ) ^ ~ > 

where 
n 

An= 2 a k -
k = 1 

Proof . First of all we show that (8) and (9) are equivalent. 
It is easy to verify that (8) implies (9). Namely, (8) implies the existence of a 

natural number k such that for all «(=2) 

= nk 

so the implication (8)=>(9) is obvious. In order to show that (9) also implies (8) 
we use the following property of the function Q(U) for any integer r there exists a 

7 
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constant Cr such that for any numbers a> 0 , /?>0 

(10) + 

(this property may be proved as the statement (2.38) of Lemma 13 in [15]). Using 

(10) and considering that TI(U)/UP\ and Q(U)£P we obtain for any integer r that 

¿ / ( - J - ) n-*n(An)Q(n) S c r n - M A M n ( A „ ) ) + J 4 - J - ) n - ' n ^ Q i n ) s 

(11) S K(p, r, R) ¿¿[-J-] n-*r,(An)Q(An)+ 5 i f l ] n-W'Qin). 
n=l \ n ) „ = i ^«J 

An easy computation gives by (1) and g(u)£P that 

r (12) Z ^ y ^ n - W q i n ) 

for all sufficiently large values of r. So, by (9), (11) and (12), we have (8). Now we 
f IV 

prove the equivalence of (7) and (9). Set >>= l—x. Since 1 is an increasing 
1 1 I "J 

sequence, we have for S y S — (n^2): 
n+l n 

/ (1 - y) S 1 ak( 1 -yf £ 2 ak[\ f l - 1 ) " 2 ^ I Am. 

k=0 k = 0 V n) ^ tl) = 0 "> 

Using this we obtain for 
- i l l - V" 2k\-\n-*>1(An)e(An)s2 2 f Hy)dyr,(An)e(A„)^ 

n = l /1=1 1 
n+l 

1 m 1/" 
S 2 dyr,(AJe(AJ +2 f My)dyf}(A„MA„)^ 

1/2 " = 2 1 
n+l 

m ^0(i)+K2 f HyHf(i-y))e(f(i-y))dy s 
n = 2 1 

n + l 
1 

^ 0 ( 1 ) + * / -*)ii(/(jc))eC/-(jc))djc. 
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This proves that (9) follows from (7). To prove the inverse statement of the equiv-
alence we consider the following estimations for m ^ l 

(13) 

J ;.(1 -x)r,{f(x))Q(f(x))dx = 2 f Hy)ri(fO-y))e(f(i-y))dy = 
0 " = 1 1 

n + 1 

= 2 f 'Hy)n\2ak(i-y)k}e\2adi-y)k]dy ^ n=i i u=o ) U=o ) 
n + 1 

s

 .1 It"' (' -irrD
 8

 (.1 (' "inf)
a 

n+1 

S 0 ( „ J i ( 1 ) ( J . . ( , - ^ j ' ) , ( J „ ( . - i - f l . 

1 v* 
Since — £ 1 

2 I n + 1 

2 ak 
k = 0 

for n—1, 2, ... we have 

1 )k no+i) ( i 

(14) 
~ ( 1 YJ "U+D 

2 ak^222-lAni. j=o\ n + i) k=„j i = i 

Henceforth we split the proof into two parts. If 17 (u)=<p(u) then we use the inequality 

(15) <P 
2«ibt i = 1 Q 

' « 

2aibi ¡=1 
CO Q CO 

2"i ¡=i ¡=1 

K-
2a,q>(bMbd 
i-1 

0 0 

2ai ¡=1 

This property of the function <P(U)Q(U) immediately follows from results of 
H . P. M U L H O L L A N D [13] (see Theorem 1 and Remark (2.34)) and from the properties 
of the functions <p(u) and Q(U). By (15) we get: 

(16) <p ( 2 2 - X J E ^ K 2 2-icp(Ani)e(Ani). 

7» 
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Hence and from (13), (14) and (16) we deduce, for m ^ l , that 

i 1 

n-2 22-'<p(AJe(Ani) 
» + 1 m (1 

/ A(1 -x)q>(f(x))g(f(x))dx s 0(1) 2 M ~ 
D n=l 

S 0(1) ¿ 2 - ' ¿ a U n-2q>(AnMAni) s 
i=1 n = l 

S 0(1) 2 2 _ i i 2 J A U ) ( m ) - 2 < p ( ^ K ; ) S 0(1) ¿ i f i - ] 

If t](u)=il/(u) the proof runs similarly but we use the following inequality 

<A (12-Mmj <? 2-^ni] S O(l) 1 i j , ( A J g s 

== 0(1) 22~h(AnMn) 
¡=i 

instead of (16). Inequality (17) is just an easy consequence of the following element-
ary facts: 

xl/(a + b)^\l/(a) + ij/(b), ij/(kx)^ k^^ix) for k < 1, 

and that, by (8), there exists an integer t such that A„sn' for any «(=s2). Thus 
the proof of Lemma is completed. 

5. P roof of the theo rem. 
oo 

Let A(x) = 2ak** f ° r O S x < l with a 0 = 0 and 
«1 = 0 

ak = K-k^-rj 
(akA(l/fe)e(/c))-

First we consider the case rj(u)=(p(u). 
We show that these coefficients ak satisfy condition (8). Using the inequality 

(18) 2 >-MAn) = Kx 2 K<P [ y 1 2 h 
n=l n=l V ".fl k=n 

which holds for any A„>0 and a „ s 0 (see the inequality (8) of [14]) with ).„--
=A(1 ¡n)n~2Q(n), and the following consequence of (1) 
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we have 

i A [ - ] n-WAJe(n) ^ 0(1) 2 A "H n-*Q(n)cp(n. a„) S 
n=l \ n ) „=1 \ n ) 

1) 2:4-}n-2Q(n)n 1 ^ O ( l ) 

Hereby we proved that the coefficients of the function A(x) satisfy condition (8), 
so by Lemma 

(19) A(1-X)(P(A(X))Q(A(X))£L(0, 1). 

By (4) the coefficients a„ + c„ are positive for all sufficiently large values of n, thus 
the functions 

A(x) + F(x) = 2("n + cn)x" 
n=0 

has the property 

(20) A(l-x)<p(^(x) + F(x))e(^(x) + F(x))eL(0, 1) 

if and only if 

( 2 1 ) ¿ 4 - U - 2 4 I ( « F T + O ] I ? ( « ) < ~ > -
n=i \.n) ) 

If A(l-x)<p(|F(x)|)e(|F(.x)|)eL(0, 1), then (19) implies (20) which implies (21). 
But by (4) we have 

\cn\ — 2«„ + c„, 

whence, by (8) and (21), (5) follows. 
If (5) holds, then this implies (21) because from (15) immediately follows that 

(22) <p (a + b)Q (a + b) K(q> (a)g (a) + q>(b)g (b)), a > 0, b > 0. 

But from (21) follows (20). By (19) and (20) 

; . ( i - x ) < H № ) l M № ) l ) € £ ( o , i) 

follows obviously. 
Thus the theorem is proved for t](u) = cp(u). The proof for r\(u)=^(u) runs 

similarly. To prove (8) wc use the inequality 

\j/ (a + b) ^ ip (a) + ij/ (b) for all a > 0, 6 > 0 ; 
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thus 

s f ( о д е т » ) ) 

From this point the proof runs on the same line as before. The proof is thus com-
pleted. 
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