An integrability theorem for power series

L. LEINDLER and J. NÉMETH

1. One of the first results concerning integrability theorems for power series is due P. Heywood [6] who proved that

$$
\int_{0}^{1}(1-x)^{-\gamma} f(x) d x<\infty \quad \text { for } \quad f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}, \quad a_{k} \geqq 0, \quad \gamma<1
$$

if and only if

$$
\sum_{n=1}^{\infty} n^{y-2} \sum_{k=0}^{n} a_{k}<\infty
$$

A theorem, which states only an implication, was proved earlier by Hardy and Littlewood [5], as follows:

$$
\text { If } a_{k} \geqq 0, r \geqq p>1, q>0 \text { and }
$$

$$
A(x)=\sum_{k=0}^{\infty} a_{k} x^{k},
$$

then

$$
\int_{0}^{1}(1-x)^{\frac{r}{q}-1} A^{r}(x) d x \leqq K\left(\sum_{k=1}^{\infty} k^{-\frac{p+q-p q}{q}} a_{k}^{p}\right)^{r / p}
$$

where $K=K(p, q, r)$ depends on p, q and r only.
Henceforth - to our knowledge - P. B. Kennedy [9], R. P. Boas and J. M. Gon-zález-Fernández [3], P. Heywood [7], Y. M. Chen [4], R. Askey [1], R. S. Khan [10], L. Leindler [11], R. Askey and S. Karlin [2] and P. Jain [8] have proved similar theorems.

Very recently one of the authors ([12]) generalized most of the results known up to that time as follows:

Theorem A. Let $\lambda(t)>0$ be a nonincreasing function on the interval $0<t \leqq 1$ such that

$$
\sum_{n=k}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \leqq M \lambda\left(\frac{1}{k}\right) k^{-1}
$$

Received June 3, 1976.
and let

$$
F(x)=\sum_{n=0}^{\infty} c_{n} x^{n} ; \quad 0 \leqq x<1
$$

Suppose there is a positive monotonic sequence $\left\{\varrho_{n}\right\}$ with $\sum_{n=1}^{\infty} \frac{1}{n \varrho_{n}}<\infty$ such that

$$
c_{n}>\frac{-K}{\left(\varrho_{n} \lambda\left(\frac{1}{n}\right)\right)^{1 / p} n^{1-\frac{1}{p}}} \quad(0<p<\infty, K>0)
$$

for all sufficiently large values of n. Then $\lambda(1-x)(|F(x)|)^{p} \in L(0,1)$ if and only if

$$
\sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2}\left(\sum_{k=0}^{n}\left|c_{k}\right|\right)^{p}<\infty
$$

In the particular case $\lambda(t)=t^{-\gamma}(\gamma<1)$ and $\varrho_{n}=n^{\varepsilon}$ Theorem A reduces to a theorem of Jain [8], which, for $p=1$, was previously proved by Heywood [7].

In the present paper we give a generalization of Theorem A .
2. We use the following notations:
$\Phi=\Phi(p)(p \geqq 1)$ denotes the set of all nonnegative functions $\varphi(u)$ having the properties: $\varphi(u) / u$ is nondecreasing and $\varphi(u) / u^{p}$ is nonincreasing on ($0, \infty$).
$\Psi=\Psi(p)$ denotes the set of all functions $\psi(u)$ whose inverse functions belong to Φ.
$P=P(R)$ denotes the set of all nonnegative nondecreasing functions $\varrho(u)$ with $\varrho\left(u^{2}\right) \leqq R \cdot \varrho(u)(u \in(0, \infty))$.

We use the notation $\bar{f}(x)$ to denote the inverse of $f(x)$.
3. We prove the following

Theorem. Let $\lambda(t)$ be a positive nonincreasing function on the interval $0<t \leqq 1$.such that

$$
\begin{equation*}
\sum_{n=k}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \leqq M \lambda\left(\frac{1}{k}\right) k^{-1} \tag{1}
\end{equation*}
$$

and let $\left\{\alpha_{n}\right\}$ be a positive increasing sequence with

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n \cdot \alpha_{n}}<\infty . \tag{2}
\end{equation*}
$$

Suppose that $\varrho(u) \in P$, that $\eta(u)$ denotes either a function of Φ or a function of Ψ, and that

$$
\begin{equation*}
F(x)=\sum_{n=0}^{\infty} c_{n} x^{n}, \quad 0 \leqq x<1 \tag{3}
\end{equation*}
$$

Then, under the condition

$$
\begin{equation*}
c_{n}>-K n^{-1} \cdot \bar{\eta}\left(\frac{n}{\alpha_{n} \lambda(1 / n) \varrho_{n}}\right), \quad(K>0), \tag{4}
\end{equation*}
$$

$\lambda(1-x) \eta(|F(x)|) \varrho(|F(x)|) \in L(0,1)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \varrho(n) \eta\left(\sum_{k=0}^{n}\left|c_{k}\right|\right)<\infty \tag{5}
\end{equation*}
$$

It is clear that this theorem includes Theorem A, namely, if $\alpha_{n}=\varrho_{n}, \varrho(x) \equiv 1$ and $\eta(x)=x^{p}$ or $\eta(x)=x^{1 / p}(p \geqq 1)$ then it reduces to Theorem A.
4. We require the following

Lemma. Let $\lambda(t), \varrho(u)$ and $\eta(u)$ be defined as in our Theorem, and be

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \quad \text { with } \quad a_{k} \geqq 0, \quad 0 \leqq x<1 \tag{6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lambda(1-x) \eta(f(x)) \varrho(f(x)) \in L(0,1) \tag{7}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \eta\left(A_{n}\right) \varrho(n)<\infty ; \tag{8}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \eta\left(A_{n}\right) \varrho\left(A_{n}\right)<\infty \tag{9}
\end{equation*}
$$

where

$$
A_{n}=\sum_{k=1}^{n} a_{k}
$$

Proof. First of all we show that (8) and (9) are equivalent.
It is easy to verify that (8) implies (9). Namely, (8) implies the existence of a natural number k such that for all $n(\geqq 2)$

$$
A_{n} \leqq n^{k}
$$

so the implication $(8) \Rightarrow(9)$ is obvious. In order to show that (9) also implies (8) we use the following property of the function $\varrho(u)$ for any integer r there exists a
constant C_{r} such that for any numbers $\alpha>0, \beta>0$

$$
\begin{equation*}
\alpha \cdot \varrho(\beta) \leqq C_{r} \alpha \cdot \varrho(\alpha)+\sqrt{\beta} \varrho(\beta) \tag{10}
\end{equation*}
$$

(this property may be proved as the statement (2.38) of Lemma 13 in [15]). Using (10) and considering that $\eta(u) / u^{p} \downarrow$ and $\varrho(u) \in P$ we obtain for any integer r that

$$
\begin{align*}
& \sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \eta\left(A_{n}\right) \varrho(n) \leqq C_{r} \sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \eta\left(A_{n}\right) \varrho\left(\eta\left(A_{n}\right)\right)+\sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} n^{1 / r} \varrho(n) \leqq \\
& \text { (11) } \quad \leqq K(p, r, R) \sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \eta\left(A_{n}\right) \varrho\left(A_{n}\right)+\sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} n^{1 / r} \varrho(n) . \tag{11}
\end{align*}
$$

An easy computation gives by (1) and $\varrho(u) \in P$ that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} n^{1 / r} \varrho(n)<\infty \tag{12}
\end{equation*}
$$

for all sufficiently large values of r. So, by (9), (11) and (12), we have (8). Now we prove the equivalence of (7) and (9). Set $y=1-x$. Since $\left(1-\frac{1}{n}\right)^{n}$ is an increasing sequence, we have for $\frac{1}{n+1} \leqq y \leqq \frac{1}{n}(n \geqq 2)$:

$$
f(1-y) \geqq \sum_{k=0}^{n} a_{k}(1-y)^{k} \geqq \sum_{k=0}^{n} a_{k}\left(1-\frac{1}{n}\right)^{k} \geqq\left(1-\frac{1}{n}\right)^{n} \sum_{k=0}^{n} a_{k} \geqq \frac{1}{4} A_{n} .
$$

Using this we obtain for $m \geqq 2$:

$$
\begin{gathered}
\sum_{n=1}^{m} \lambda\left(\frac{1}{n}\right) n^{-2} \eta\left(A_{n}\right) \varrho\left(A_{n}\right) \leqq 2 \sum_{n=1}^{m} \int_{\frac{1}{n+1}}^{1 / n} \lambda(y) d y \eta\left(A_{n}\right) \varrho\left(A_{n}\right) \leqq \\
\leqq 2 \int_{1 / 2}^{1} \lambda(y) d y \eta\left(A_{1}\right) \varrho\left(A_{1}\right)+\sum_{n=2}^{m} \int_{\frac{1}{n+1}}^{1 / n} \lambda(y) d y \eta\left(A_{n}\right) \varrho\left(A_{n}\right) \leqq \\
\leqq O(1)+K \sum_{n=2}^{m} \int_{\frac{1}{n+1}}^{1 / n} \lambda(y) \eta(f(1-y)) \varrho(f(1-y)) d y \leqq \\
\leqq O(1)+K \int_{0}^{1} \lambda(1-x) \eta(f(x)) \varrho(f(x)) d x .
\end{gathered}
$$

This proves that (9) follows from (7). To prove the inverse statement of the equivalence we consider the following estimations for $m \geqq 1$

$$
\begin{align*}
& \int_{0}^{1-\frac{1}{m+1}} \lambda(1-x) \eta(f(x)) \varrho(f(x)) d x=\sum_{n=1}^{m} \int_{\frac{1}{n+1}}^{1 / n} \lambda(y) \eta(f(1-y)) \varrho(f(1-y)) d y= \\
& =\sum_{n=1}^{m} \int_{\frac{1}{n+1}}^{1 / n} \lambda(y) \eta\left(\sum_{k=0}^{\infty} a_{k}(1-y)^{k}\right) \varrho\left(\sum_{k=0}^{\infty} a_{k}(1-y)^{k}\right) d y \leqq \\
& \quad \leqq \sum_{n=1}^{m} \int_{\frac{1}{n+1}}^{1 / n} \lambda(y) \eta\left(\sum_{k=0}^{\infty} a_{k}\left(1-\frac{1}{n+1}\right)^{k}\right) \varrho\left(\sum_{k=0}^{\infty} a_{k}\left(1-\frac{1}{n+1}\right)^{k}\right) d y \leqq \tag{13}\\
& \quad \leqq O(1) \sum_{n=1}^{m} \lambda\left(\frac{1}{n}\right) n^{-2} \eta\left(\sum_{k=0}^{\infty} a_{k}\left(1-\frac{1}{n+1}\right)^{k}\right) \varrho\left(\sum_{k=0}^{\infty} a_{k}\left(1-\frac{1}{n+1}\right)^{k}\right) .
\end{align*}
$$

Since $\frac{1}{2} \geqq\left(1-\frac{1}{n+1}\right)^{n} \geqq\left(1-\frac{1}{n+2}\right)^{n+1}$ for $n=1,2, \ldots$ we have

$$
\sum_{k=0}^{\infty} a_{k}\left(1-\frac{1}{n+1}\right)^{k} \leqq \sum_{j=0}^{\infty} \sum_{k=n j}^{n(j+1)} a_{k}\left(1-\frac{1}{n+1}\right)^{k} \leqq
$$

$$
\begin{equation*}
\leqq \sum_{j=0}^{\infty}\left(1-\frac{1}{n+1}\right)^{n j} \sum_{k=n j}^{n(j+1)} a_{k} \leqq 2 \sum_{i=1}^{\infty} 2^{-i} A_{n i} . \tag{14}
\end{equation*}
$$

Henceforth we split the proof into two parts. If $\eta(u)=\varphi(u)$ then we use the inequality

$$
\begin{equation*}
\varphi\left(\frac{\sum_{i=1}^{\infty} a_{i} b_{i}}{\sum_{i=1}^{\infty} a_{i}}\right) \varrho\left(\frac{\sum_{i=1}^{\infty} a_{i} b_{i}}{\sum_{i=1}^{\infty} a_{i}}\right) \leqq K \cdot \frac{\sum_{i=1}^{\infty} a_{i} \varphi\left(b_{i}\right) \varrho\left(b_{i}\right)}{\sum_{i=1}^{\infty} a_{i}} \tag{15}
\end{equation*}
$$

This property of the function $\varphi(u) \varrho(u)$ immediately follows from results of H. P. Mulholland [13] (see Theorem 1 and Remark (2.34)) and from the properties of the functions $\varphi(u)$ and $\varrho(u)$. By (15) we get:

$$
\begin{equation*}
\varphi\left(\sum_{i=1}^{\infty} 2^{-i} A_{n i}\right) \varrho\left(\sum_{i=1}^{\infty} 2^{-i} A_{n i}\right) \leqq K \sum_{i=1}^{\infty} 2^{-i} \varphi\left(A_{n i}\right) \varrho\left(A_{n i}\right) \tag{16}
\end{equation*}
$$

Hence and from (13), (14) and (16) we deduce, for $m \geqq 1$, that

$$
\begin{gathered}
\int_{0}^{1-\frac{1}{m+1}} \lambda(1-x) \varphi(f(x)) \varrho(f(x)) d x \leqq O(1) \sum_{n=1}^{m} \lambda\left(\frac{1}{n}\right) n^{-2} \sum_{i=1}^{\infty} 2^{-i} \varphi\left(A_{n i}\right) \varrho\left(A_{n i}\right) \leqq \\
\leqq O(1) \sum_{i=1}^{\infty} 2^{-i} \sum_{n=1}^{m} \lambda\left(\frac{1}{n}\right) n^{-2} \varphi\left(A_{n i}\right) \varrho\left(A_{n i}\right) \leqq \\
\leqq O(1) \sum_{i=1}^{\infty} 2^{-i} i^{2} \sum_{n=1}^{m} \lambda\left(\frac{1}{n i}\right)(n i)^{-2} \varphi\left(A_{n i}\right) \varrho\left(A_{n i}\right) \leqq O(1) \sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \varphi\left(A_{n}\right) \varrho\left(A_{n}\right) .
\end{gathered}
$$

If $\eta(u)=\psi(u)$ the proof runs similarly but we use the following inequality

$$
\begin{gather*}
\psi\left(\sum_{i=1}^{\infty} 2^{-i} A_{n i}\right) \varrho\left(\sum_{i=1}^{\infty} 2^{-i} A_{n i}\right) \leqq O(1) \sum_{i=1}^{\infty} 2^{-\frac{i}{p}} \psi\left(A_{n i}\right) \varrho\left(\sum_{i=1}^{\infty} \frac{(n i)^{t}}{2^{i}}\right) \leqq \\
\leqq O(1) \sum_{i=1}^{\infty} 2^{-\frac{i}{p}} \psi\left(A_{n i}\right) \varrho(n) \tag{17}
\end{gather*}
$$

instead of (16). Inequality (17) is just an easy consequence of the following elementary facts:

$$
\psi(a+b) \leqq \psi(a)+\psi(b), \quad \psi(k x) \leqq k^{1 / p} \psi(x) \quad \text { for } \quad k<1
$$

and that, by (8), there exists an integer t such that $A_{n} \leqq n^{t}$ for any $n(\geqq 2)$. Thus the proof of Lemma is completed.

5. Proof of the theorem.

Let $A(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ for $0 \leqq x<1$ with $a_{0}=0$ and

$$
a_{k}=K \cdot k^{-1} \cdot \bar{\eta}\left(\frac{k}{\alpha_{k} \lambda(1 / k) \varrho(k)}\right) .
$$

First we consider the case $\eta(u)=\varphi(u)$.
We show that these coefficients a_{k} satisfy condition (8). Using the inequality

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{B} \varphi\left(A_{n}\right) \leqq K_{1} \sum_{n=1}^{\infty} \lambda_{n} \varphi\left(\frac{a_{n}}{\lambda_{n}} \sum_{k=n}^{\infty} \lambda_{k}\right) \tag{18}
\end{equation*}
$$

which holds for any $\lambda_{n}>0$ and $a_{n} \geqq 0$ (see the inequality (8) of [14]) with $\lambda_{n}=$ $=\lambda(1 / n) n^{-2} \varrho(n)$, and the following consequence of (1)

$$
\sum_{n=k}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \varrho(n) \leqq M \lambda\left(\frac{1}{k}\right) k^{-1} \varrho(k)
$$

we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \varphi\left(A_{n}\right) \varrho(n) \leqq O(1) \sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \varrho(n) \varphi\left(n \cdot a_{n}\right) \leqq \\
& \leqq O(1) \sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \varrho(n) n \frac{1}{\alpha_{n} \lambda(1 / n) \varrho(n)} \leqq O(1) \sum_{n=1}^{\infty} \frac{1}{n \cdot \alpha_{n}}<\infty .
\end{aligned}
$$

Hereby we proved that the coefficients of the function $A(x)$ satisfy condition (8), so by Lemma

$$
\begin{equation*}
\lambda(1-x) \varphi(A(x)) \varrho(A(x)) \in L(0,1) \tag{19}
\end{equation*}
$$

By (4) the coefficients $a_{n}+c_{n}$ are positive for all sufficiently large values of n, thus the functions

$$
A(x)+F(x)=\sum_{n=0}^{\infty}\left(a_{n}+c_{n}\right) x^{n}
$$

has the property

$$
\begin{equation*}
\lambda(1-x) \varphi(A(x)+F(x)) \varrho(A(x)+F(x)) \in L(0,1) \tag{20}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \varphi\left(\sum_{k=0}^{n}\left(a_{k}+c_{n}\right)\right) \varrho(n)<\infty \tag{21}
\end{equation*}
$$

If $\lambda(1-x) \varphi(|F(x)|) \varrho(|F(x)|) \in L(0,1)$, then (19) implies (20) which implies (21). But by (4) we have

$$
\left|c_{n}\right| \leqq 2 a_{n}+c_{n}
$$

whence, by (8) and (21), (5) follows.
If (5) holds, then this implies (21) because from (15) immediately follows that

$$
\begin{equation*}
\varphi(a+b) \varrho(a+b) \leqq K(\varphi(a) \varrho(a)+\varphi(b) \varrho(b)), \quad a>0, \quad b>0 \tag{22}
\end{equation*}
$$

But from (21) follows (20). By (19) and (20)

$$
\lambda(1-x) \varphi(|F(x)|) \varrho(|F(x)|) \in L(0,1)
$$

follows obviously.
Thus the theorem is proved for $\eta(u)=\varphi(u)$. The proof for $\eta(u)=\psi(u)$ runs similarly. To prove (8) we use the inequality

$$
\psi(a+b) \leqq \psi(a)+\psi(b) \quad \text { for all } \quad a>0, b>0
$$

thus

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \lambda\left(\frac{1}{n}\right) n^{-2} \varrho(n) \psi\left(\sum_{k=1}^{n} a_{k}\right) \leqq \sum_{m=0}^{\infty} \sum_{n=2^{m}+1}^{2^{m+1}} \lambda\left(\frac{1}{n}\right) n^{-2} \varrho(n) \psi\left(\sum_{k=1}^{2^{m+1}} a_{k}\right) \leqq \\
& \leqq O(1) \sum_{m=0}^{\infty} \lambda\left(\frac{1}{2^{m+1}}\right) 2^{-m} \varrho\left(2^{m+1}\right) \psi\left(\sum_{k=1}^{m+1} \psi\left(\frac{2^{k}}{\lambda\left(1 / 2^{k}\right) \alpha_{2^{k}} \varrho\left(2^{k}\right)}\right)\right) \leqq \\
& \leqq O(1) \sum_{k=1}^{\infty} \frac{2^{k}}{\lambda\left(1 / 2^{k}\right) \alpha_{2^{k}} \varrho\left(2^{k}\right)} \sum_{m=k}^{\infty} \lambda\left(\frac{1}{2^{m+1}}\right) 2^{-m} \varrho\left(2^{m}\right) \leqq O(1) \sum_{k=1}^{\infty} \frac{1}{\alpha_{2^{k}}}<\infty
\end{aligned}
$$

From this point the proof runs on the same line as before. The proof is thus completed.

References

[1] R. Askey, L^{p} behavior of power series with positive coefficients, Proc. Amer. Math. Soc., 19 (1968), 303-305.
[2] R. Askey and S. Karlin, Some elementary integrability theorems for special transforms, J. Analyse Math., 23 (1970), 27-38.
[3] R. P. Boas, Jr. and J. M. González-Fernández, Integrability theorems for Laplace-Stieltjes transforms, J. London Math. Soc., 32 (1957), 48-53.
[4] Y. M. Chen, Integrability of Power Series, Arch. Math. (Basel), 10 (1959), 288-291.
[5] G. H. Hardy and J. E. Litillewood, Elementary theorems concerning power series with positive coefficients and moment constans of positive functions, J. reine angew. Math., 157 (1927), 141-158.
[6] P. Heywood, Integrability theorems for power series and Laplace transforms. I, J. London Math. Soc., 30 (1955), 302-310.
[7] P. Heywood, Integrability theorems for power series and Laplace transforms, J. London Math. Soc., 32 (1957), 22-27.
[8] P. Jann, An integrability theorem for power series, Publ. Math. Debrecen, 20 (1973), 129-131.
[9] P. B. Kennedy, General integrability theorems for power series, J. London Math. Soc., 32 (1957), 58-62.
[10] R. S. Khan, On power series with positive coefficients, Acta Sci. Math., 30 (1969), 255-257.
[11] L. Leindler, Note on power series with positive coefficients, Acta Sci. Math., 30 (1969), 259-261.
[12] L. Leindler, An integrability theorem for power series, Acta Sci. Math., 38, (1976), 103-105.
[13] H. P. Mulholland, The generalization of certain inequality theorems involving powers, Proc. London Math. Soc., 33 (1932), 481-516.
[14] J. Németh, Generalizations of the Hardy-Littlewood inequality. II, Acta Sci. Math., 35 (1973), 127-134.
[15] П. Л. Ульянов, Вложение некоторьџх классов функций H $_{p}^{\omega}$, Изв. Акад. Наук СССР, сер. матем., 32 (1968), 649-686.

ARADI VÉRTANUK TERE 1
6720 SZEGED, HUNGARY

