The lattice of translations on a lattice

JUHANI NIEMINEN

1. Introduction and preliminaries. The purpose of this paper is to consider the lattice of all translations on a lattice and to illuminate the decomposition of lattices generated by translations on lattices. Also some properties of translations on meet-semilattices are given.

Let S be a meet-semilattice and φ a single-valued mapping of S into itself. φ is called a meet-translation, briefly a translation, on S, if $\varphi(x \land y) = \varphi(x) \land y$ for each pair x, y of elements in S. A translation φ on a lattice L is defined analogously. Each translation φ on S (and on L) has the following properties [7]: $\varphi(x) \leq x, \varphi(x) = \varphi(\varphi(x))$, and $x \leq y \Rightarrow \varphi(x) \leq \varphi(y)$. In a lattice L the fixelements of φ , i.e. the elements $t = \varphi(t)$, constitute an ideal K_{φ} of L, which determines φ uniquely.

A non-empty subset J of a meet-semilattice S is called a semi-ideal of S, if (i) $a \leq b$ and $b \in J$ imply $a \in J$, and (ii) $a, b \in J$ imply $a \lor b \in J$ whenever $a \lor b$ exists in S. As one can easily conclude from [7, Thm. 1], the fixelements of a translation φ on a meet-semilattice S form a semi-ideal K_{φ} of S, and K_{φ} determines φ uniquely [7, Thm. 3].

We denote by $\mathscr{I}(L)$ the lattice of all ideals of a lattice L, $(a] = \{x | x \leq a, x, a \in S\}$ is the principal ideal generated by a. The semi-ideals of a meet-semilattice S constitute a lattice $\mathscr{J}(S)$ with respect to the set-theoretical inclusion; $I \lor J$ means the least semi-ideal containing I and J of $\mathscr{J}(S)$.

A translation $s_a(x) = a \wedge x$ is called a specified translation.

The following lemma was proved in [6]:

Lemma 1. An ideal I of a lattice L generates a translation φ on L, i.e. $K_{\varphi} = I$, if and only if for each $y \in L$ there is an element $k_{y} \in I$ such that $I \wedge (y] = (k_{y}]$.

A direct analogy holds for translations φ on a meet-semilattice S and semiideals J of S.

Received May 31, revised July 18, 1976.

2. Translations on a lattice. We denote by $\Phi(L)$ the set of all translations on L. As shown by SZÁSZ and SZENDREI [8, Thm. 3], $\Phi(L)$ is a meet-semilattice.

Theorem 1. Let φ and λ be two translations on a lattice L. The mapping β on L, defined by $\beta(x) = \varphi(x) \lor \lambda(x)$, is a translation on L if and only if $(K_{\varphi} \lor K_{\lambda}) \land \land (x] = (K_{\varphi} \land (x]) \lor (K_{\lambda} \land (x])$ for each $x \in L$.

Proof. Let $(K_{\varphi} \lor K_{\lambda})$ have the property of the theorem. Then $(K_{\varphi} \lor K_{\lambda}) \land \land (x] = (K_{\varphi} \land (x]) \lor (K_{\lambda} \land (x]) = (\varphi(x)] \lor (\lambda(x)] = (\varphi(x) \lor \lambda(x)]$, and so $K_{\varphi} \lor K_{\lambda}$ generates a translation on L with values $\varphi(x) \lor \lambda(x)$, i.e. $K_{\varphi} \lor K_{\lambda}$ generates a translation β on L. Conversely, let β be a translation on L. The fixelements of β are the elements $\varphi(x) \lor \lambda(x)$ $(x \in L)$, and so $K_{\beta} = K_{\varphi} \lor K_{\lambda}$. According to Lemma 1, $(\beta(x)] = (K_{\varphi} \lor K_{\lambda}) \land (x] = (\varphi(x)] \lor (\lambda(x)] = (K_{\varphi} \land (x]) \lor (K_{\lambda} \land (x])$, and the latter part of the theorem follows.

Corollary 1. Let φ be a translation on L. The mapping $\varphi \lor \lambda$ is a translation on L for each $\lambda \in \Phi(L)$ if and only if K_{φ} is a standard element of $\mathcal{I}(L)$.

Proof. If K_{φ} is standard, then $(K_{\varphi} \lor K_{\lambda}) \land (x] = (K_{\varphi} \land (x]) \lor (K_{\varphi} \land (x])$ for each $\lambda \in \Phi(L)$. Hence $\beta(x) = \varphi(x) \lor \lambda(x)$ is a translation on L. Conversely, if $\varphi \lor \lambda$ is a translation for each $\lambda \in \Phi(L)$, then, in particular the relation $((a] \lor K_{\varphi}) \land$ $\land (x] = ((a] \land (x]) \lor (K_{\varphi} \land (x])$ holds for each specified translation s_a , $a \in L$, and for each $x \in L$. But already this equation implies the standardness of K_{φ} according to [1, Thm. $2(\alpha'')$].

Corollary 2. The meet-semilattice $\Phi(L)$ is a lattice if and only if L is a distributive lattice.

Proof. If L is a distributive lattice, each $I \in \mathscr{I}(L)$ is a standard element in $\mathscr{I}(L)$, and the first part of the assertion follows. Conversely, if $\Phi(L)$ is a lattice, then each ideal (a] generating a specified translation s_a on L is a standard element of $\mathscr{I}(L)$, from which the distributivity of L follows.

Lemma 2. $\Phi(L)$ contains always a greatest element ω , and there is a least element τ in $\Phi(L)$ if and only if $0 \in L$.

Proof. The identical mapping $\omega(x) = x$ is a translation on L and $K_{\omega} = L$; evidently it is the greatest translation on L. The mapping $\tau(x) = 0$ is obviously the least translation on L whenever a least element 0 exists in L, and $k_{\tau} = (0]$. If there is no least element in L, then there exists for each $a_1 \in L$ an infinite chain $a_1 > a_2 > \ldots$ and the corresponding specified translations form an infinitely descending chain, whence $\tau \notin \Phi(L)$.

In the following we shall consider a decomposition of a lattice by means of translations on this lattice. In [2] JANOWITZ considered the decomposition of a lattice

into a direct sum; this decomposition is generalized for join-semilattices in [5]. Let L be a lattice with 0. $a \bigtriangledown b$ denotes the fact that $a \land b = 0$ and $(a \lor x) \land b = x \land b$ for all $x \in L$. For a subset H of L we denote by H^{\bigtriangledown} the set of elements $a \in L$ such that $a \bigtriangledown b$ for all $b \in H$. In a lattice L with 0, let H_1, \ldots, H_n be subsets of L, each of which contains 0. We say that L is the direct sum of H_1, \ldots, H_n and write $L = H_1 \oplus \ldots \oplus H_n$ when

(1) every element $a \in L$ can be expressed in the form $a = a_1 \lor ... \lor a_n$, $a_i \in H_i$, i=1, ..., n, and

(2) $H_i \subset H_i^{\nabla}$ for $i \neq j$.

The subsets $H_1, ..., H_n$ are called direct summands of L. If $L=H_1\oplus ...\oplus H_n$, then the expression in (1) unique and the sets $H_1, ..., H_n$ are ideals of L [4, Lemma 4.8]. Moreover, in a lattice L with 0, an ideal J of L is a central element of $\mathscr{I}(L)$ if and only if it is a direct summand of L [2, Thm. 1]. Now we are able to prove a theorem on direct sums of a lattice.

Theorem 2. A lattice L with 0 has a decomposition into non-trivial direct summands if and only if there are at least two non-trivial translations φ and λ on L such that $\varphi \lor \lambda = \omega$ and $\varphi \land \lambda = \tau$, and φ and λ have join with each translation on L.

Proof. Let $L=J\oplus K$. According to [2, Thm. 1], J and K are standard elements of $\mathscr{I}(L)$, and $J \wedge K=(0]$ and $J \vee K=L$ in $\mathscr{I}(L)$. Consider the meet $J \wedge (x]$, $x \in L$. As $L=J \oplus K$, $x=a_1 \vee a_2$, $a_1 \in J$ and $a_2 \in K$, and the expression $x=a_1 \vee a_2$ is unique. So $J \wedge (x]=(a_1], a_1 \in J$, and hence J generates a translation φ on L. As J is standard in $\mathscr{I}(L)$, the join $\varphi \vee \mu$ exists for each translation $\mu \in \Phi(L)$. Similar facts hold also for the translation λ on L generated by K. $\varphi \wedge \lambda$ corresponds to the translation generated by the ideal $J \wedge K=(0]$, i.e. τ , and $\varphi \vee \lambda$ that of $J \vee K=L$, i.e. ω . As J, $K \neq L$, $(0], \varphi$ and λ are non-trivial translations on L, and the first part of the theorem follows.

Conversely, let φ and λ be two translations with the properties given in the theorem. As $\varphi \lor \mu$ exists for each translation $\mu \in \Phi(L)$, the ideal J generating φ is a standard element of the lattice $\mathscr{I}(L)$ (by Corollary 1 to Theorem 1), and this holds also for the ideal K generating λ . As $\varphi \land \lambda = \tau$ and $\varphi \lor \lambda = \omega$, $J \land K = (0]$, and $J \lor K = L$, respectively. As J and K are standard and complements, they belong to the center of $\mathscr{I}(L)$ [3, Thm. 7.2] and, accordingly, $L = J \oplus K$ [2, Thm. 1]. As φ and λ are non-trivial, $J, K \neq L$, (0], and the decomposition is also non-trivial.

3. Translations on partial lattices. We call a meet-semilattice S a partial lattice if $a \lor b$ exists for any two $a, b \in S$ having a common upper bound in S. At first we consider the structure of meet-semilattices S for which $\Phi(L)$ is a lattice.

Let $\varphi(x)$ and $\lambda(x)$ be translations on a partial lattice S. As in the case of lattices, one can show that $\beta(x) = \varphi(x) \lor \lambda(x)$ is a translation on S if and only if $(K_{\varphi} \lor K_{\lambda}) \land (x] = (K_{\varphi} \land (x]) \lor (K_{\lambda} \land (x])$ for each $x \in S$, K_{φ} , K_{λ} , $(x] \in \mathscr{J}(S)$.

Theorem 3. Let S be a partial lattice. Then the following three assumptions are equivalent:

(i) The meet-semilattice of all translations on S is a lattice.

(ii) Each translation on S is a join-endomorphism on S.

(iii) (x] is a distributive sublattice of S for each $x \in S$.

Proof. We shall show that (i) \Leftrightarrow (iii) and (ii) \Leftrightarrow (iii).

(iii) \Rightarrow (i). We shall show that $\mathscr{I}(S)$ is a distributive lattice, from which the validity of the assertion follows.

Let $I, J \in \mathscr{J}(S)$. $I \wedge J = I \cap J$, and $I \vee J = \{x | x \leq i \vee j, i \in I, j \in J \text{ and } i \vee j \in S\}$. We must only show that $F \wedge (I \vee J) \subseteq (F \wedge I) \vee (F \wedge J)$ when $F, I, J \in \mathscr{J}(S)$. Clearly, $x \in F \wedge (I \vee J) \Leftrightarrow x \in F$ and $x \leq i \vee j$, where $i \in I$ and $j \in J$. By assumption, $(i \vee j]$ is a distributive sublattice of S and $i, j, x \in (i \vee j]$. So $x = x \wedge (i \vee j) = (x \wedge i) \vee (x \wedge j)$, where $(x \vee i) \in F \wedge I$ and $x \vee j \in F \wedge J$. Therefore, $x \in (\wedge I) \vee (F \wedge J)$.

(i) \Rightarrow (ii). Let $\Phi(S)$ be a lattice and $w, y, z \in (x]$ in S. Then the mapping $s_y \lor s_z$ is a translation on S, whence $(y \lor z] \land (u] = (y \land u] \land (z \lor u]$ for each $u \in S$ by the analogy of Theorem 1. The distributivity of (x] follows now by putting u = w.

(iii) \Rightarrow (ii). Let J be a semi-ideal of S generating a translation φ on S, and assume that $x \lor y$ exists in S. As $x \lor y$ exists and $x \le \varphi(x), y \le \varphi(y)$, then $\varphi(x) \lor \lor \varphi(y)$ exists in S. As shown in the proof (iii) \Rightarrow (i), $\mathscr{J}(S)$ is a distributive lattice. Let us consider now $\varphi(x \lor y)$, i.e. the meet $J \land (x \lor y] = (J \land (x]) \lor (J \land (y])$, which implies that $\varphi(x \lor y) = \varphi(x) \lor \varphi(y)$. Thus φ is also a join-endomorphism on S.

(ii) \Rightarrow (iii). Let $u, w, z \in (x]$. As the mapping s_u is also a join-endomorphism, $s_u(w \lor z) = (u] \land (w \lor z] = s_u(w) \lor s_u(z) = ((u] \land (w]) \lor ((u] \land (z]))$, from which the distributivity of (x] follows.

As above, one can easily prove that in a partial lattice S each (x] is a modular lattice of S if and only if $\mathscr{J}(S)$ is a modular lattice. The proof of the following theorem is analogous to that of Theorem 3, and hence we omit it.

Theorem 4. Let S be a partial lattice. Each translation on S has the property that $\varphi(\varphi(z) \lor y) = \varphi(z) \lor \varphi(y)$ when $\varphi(z) \lor y$ exists in S, if and only if (x] is a modular sublattice of S for each $x \in S$.

The equivalenc (ii) \Leftrightarrow (iii) in Theorem 3 and Theorem 4 are generalizations of Theorems 4 and 5 in Szász's paper [7].

Acknowledgement. The author wishes to thank the referee for his valuable comments and suggestions.

References

- G. GRÄTZER and E. T. SCHMIDT, Standard ideals in lattices, Acta Math. Acad. Sci. Hung., 12 (1961), 17-86.
- [2] M. F. JANOWITZ, A note on normal ideals, J. Sci. Hiroshima Univ. Ser. I-A, 30 (1966), 1-9.
- [3] M. F. JANOWITZ, A characterization of standard ideals, Acta Math. Acad. Sci. Hung., 16 (1965), 289-301.
- [4] F. MAEDA and S. MAEDA, Theory of symmetric lattices, Springer-Verlag (Berlin-Heidelberg-New York, 1970).
- [5] J. NIEMINEN, A note on direct sums of join-semilattices, Bull. Acad. Polon,. Sér. Sci. Math. Astron. Phys., 23 (1975), 1051-1054.
- [6] J. NIEMINEN, Derivations and translations on lattices, Acta Sci. Math., 38 (1976), 359-363.
- [7] G. Szász, Translationen der Verbände, Acta Univ. Comenianae Math., 5 (1961), 449-453.
- [8] G. SZÁSZ and J. SZENDREI, Über die Translationen der Halbverbände, Acta Sci. Math., 18 (1957), 44–47.

DEPARTMENT OF TECHNICAL SCIENCES FINNISH ACADEMY LAUTTASAARENTIE 1 00200 HELSINKI 20, FINLAND