On a representation of a C*-algebra in a Lorentz algebra

SHÔICHI ÔTA

§ 1. Introduction. Let \mathscr{K} be a Hilbert space with the usual inner product (,) and let J be an hermitian unitary aperator on \mathscr{K} . A Lorentz algebra on $\{\mathscr{K}, J\}$ is defined as a Banach subalgebra of the full operator algebra $\mathfrak{B}(\mathscr{K})$ on \mathscr{K} , invariant under the involution $a \rightarrow Ja^*J$ [3]. A non-zero closed subspace \mathscr{M} of \mathscr{K} is said to be J-uniformly positive if there is a constant $\lambda \in (0, 1]$ with $\lambda ||x||^2 \leq (Jx, x)$ for all x in \mathscr{M} .

In this paper we shall study, for a given C^* -algebra \mathfrak{A} acting on a Hilbert space \mathscr{H} and ist derivation δ , a certain representation π_{δ} (defined in § 3) of \mathfrak{A} on $\{\mathscr{H} \oplus \mathscr{H}, J_0\}$ with $\pi_{\delta}(a^*) = J_0 \pi_{\delta}(a)^* J_0$ for all a in \mathfrak{A} . In Section 2 we shall show that there is a bijective correspondence between the set $\mathscr{M}(J_0)$ of all maximal \mathscr{J} -uniformly positive subspaces of $\mathscr{H} \oplus \mathscr{H}$ and a certain class of operators on \mathscr{H} . In Section 3 we shall investigate the relationship between globally $\pi_{\delta}(\mathfrak{A})$ -invariant elements of $\mathscr{M}(J_0)$ and derivations of \mathfrak{A} .

The author would like to express his sincere gratitude to Dr. Y. Nakagami for valuable discussions. He is deeply indebted to Professor M. Tomita for his encouragement.

§ 2. The set $\mathcal{M}(J_0)$. Let \mathcal{H} be a Hilbert space and J_0 the operator on $\tilde{\mathcal{H}} = \mathcal{H} \oplus \mathcal{H}$ defined by $J_0(\xi \oplus \eta) = \eta \oplus \xi$ for all $\xi, n \in \mathcal{H}$. Then $J_0 = J_0^* = J_0^{-1}$. For an operator S on \mathcal{H} we denote by G(S) the graph of S in $\tilde{\mathcal{H}}$, i.e., the set of all $\xi \oplus S\xi \in \tilde{\mathcal{H}}$ with $\xi \in D(S)$, where D(S) denotes the domain of S.

Let J_1 be the hermitian unitary operator on $\tilde{\mathscr{H}}$ defined by $J_1(\xi \oplus \eta) = \xi \oplus (-\eta)$ for all $\xi, \eta \in \mathscr{H}$ and let $\mathscr{M}(J_1)$ be the set of all maximal J_1 -uniformly positive subspaces of $\tilde{\mathscr{H}}$. The following lemma is shown in [2].

Lemma 2.1. G is a bijection from the set of all $S \in \mathfrak{B}(\mathcal{H})$ with ||S|| < 1 onto $\mathcal{M}(J_1)$.

Received March 29, 1976.

Shôichi Ôta

Theorem 2.2. G is a bijection from the set of all $T \in \beta(\mathcal{H})$ with

(1)
$$(T+1)^{-1} \in \mathfrak{B}(\mathcal{H}) \text{ and } ||(T-1)(T+1)^{-1}|| < 1$$

onto $\mathcal{M}(J_0)$. In this case $T^{-1} \in \mathfrak{B}(\mathcal{H})$.

Proof. We shall show that the following correspondences

$$\{T: (1)\} \xrightarrow{(i)} \{S: \|S\| < 1\} \xrightarrow{(ii)} \mathcal{M}(J_1) \xrightarrow{(iii)} \mathcal{M}(J_0)$$
$$T \mapsto S \mapsto \mathcal{M}_1 \mapsto \mathcal{M}(J_0)$$

are bijections given by (i) $S = (T-1)(T+1)^{-1}$, (ii) $G(S) = \mathcal{M}_1$ (by Lemma 2.1), (iii) $\mathcal{M} = u\mathcal{M}_1$; and that $G(T) = \mathcal{M}$, where $u = 2^{-1/2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$.

It is clear that (i) and (ii) are bijections. We shall show that (iii) is also a bijection. If a closed subspace \mathcal{M}_1 of $\tilde{\mathcal{H}}$ is J_1 -uniformly positive, then there exists a constant $\lambda \in (0, 1]$ such that

$$\lambda \|ux\|^{2} = \lambda \|x\|^{2} \le (J_{1}x, x) = (J_{0}ux, ux)$$

for all $x \in \mathcal{M}_1$. Hence $u\mathcal{M}_1$ is J_0 -uniformly positive. Conversely, if \mathcal{M} is a J_0 uniformly positive closed subspace of $\mathcal{H}, u^*\mathcal{M}$ is J_1 -uniformly positive. As the correspondence preserves the order of set inclusion, if \mathcal{M}_1 is maximal, so is $u\mathcal{M}_1$ and vice versa.

We shall show that $G(T) = \mathcal{M}$. Since $(1-S)\mathcal{H} = \mathcal{H}$, it follows that

$$G(T) = G((1+S)(1-S)^{-1}) = \{(1-S)\xi \oplus (1+S)\xi : \xi \in \mathcal{H}\} =$$
$$= u\{\xi \oplus S\xi : \xi \in \mathcal{H}\} = uG(S) = u\mathcal{M}_1 = \mathcal{M}.$$

Finally, since $T = (1+S)(1-S)^{-1}$, it is clear that $T^{-1} \in \mathfrak{B}(\mathcal{H})$. The proof is complete.

§ 3. Representations of C*-algebras in a Lorentz algebra on $\{\tilde{\mathcal{H}}, J_0\}$. Let \mathfrak{A} be a C*-algebra acting on \mathcal{H} and δ be a *-derivation on \mathfrak{A} ($\delta(a^*) = \delta(a)^*$ for all $a \in \mathfrak{A}$). We shall define a mapping π_0 of \mathfrak{A} into $\mathfrak{B}(\tilde{\mathcal{H}})$ by

$$\pi_{\delta}(a) = \begin{bmatrix} a & \delta(a) \\ 0 & a \end{bmatrix}$$

for all a in \mathfrak{A} . Then it is easily seen that π_{δ} is a faithful representation of \mathfrak{A} on \mathscr{H} with $\pi_{\delta}(a^*) = J_0 \pi_{\delta}(a)^* J_0$ for $a \in \mathfrak{A}$, and $\pi_{\delta}(\mathfrak{A})$ is a Lorentz algebra on $\{\mathscr{H}, J_0\}$. Therefore $\pi_{\delta}(\mathfrak{A})$ is C^* -equivalent (that is, isomorphic to some C^* -algebra as an involutive Banach algebra).

130

Lemma 3.1. Let \mathscr{K} be a Hilbert space with dim $\mathscr{K}=2$ and π the natural representation of \mathfrak{A} onto $\mathfrak{A}\otimes 1_{\mathscr{K}}$.

(i) π_{δ} is similar to π .

(ii) π_{δ} is similar to $\pi_{\delta'}$ for any *-derivation δ' .

Proof. (i) Since δ is implemented by some $k \in \mathfrak{B}(\mathcal{H})$ [6], we have

$$\pi_{\delta}(a) = \begin{bmatrix} a & ka - ak \\ 0 & a \end{bmatrix} = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}^{-1}$$

for all $a \in \mathfrak{A}$. Hence π_{δ} is similar to π .

(ii) Clear from (i).

Theorem 3.2. Let T be an operator with (1) of Theorem 2.2 and $\mathcal{M}=G(T)$. Then \mathcal{M} is invariant under $\pi_{\delta}(\mathfrak{A})$ if and only if $\delta(a)=[T^{-1},a]$ for all a in \mathfrak{A} .

Proof. Since we have

(2)
$$\pi_{\delta}(a)(\xi \oplus T\xi) = (a\xi + \delta(a)T\xi) \oplus aT\xi = (aT^{-1} + \delta(a))T\xi \oplus aT\xi$$

for all $a \in \mathfrak{A}$ and $\xi \in \mathscr{H}$, it follows that the invariance of $\mathscr{M} = G(T)$ under $\pi_{\delta}(\mathfrak{A})$ is equivalent to the fact that $\delta(a) = [T^{-1}, a]$ for all $a \in \mathfrak{A}$, which completes the proof.

Any operator T with $\mathcal{M}=G(T)$ in Theorem 3.2 (or Theorem 2.2) can not be skew-adjoint. Otherwise $S=(T-1)(T+1)^{-1}$ is unitary, which is impossible by Theorem 2.2.

In our previous paper [3], we have shown that a Lorentz algebra with identity with respect to J is C^* -equivalent if it has a maximal J-uniformly positive invariant subspace. Even in the case of a Lorentz algebra without identity, we remark, this statement holds by [4; Corollary 12] and the same way as a proof of [3; Theorem 3.5]. The converse holds whenever the C^* -equivalent Lorentz algebra with identity is commutative by [5; Theorem 6.1]. As for Lorentz algebras $\pi_{\delta}(\mathfrak{A})$, we have

Corollary 3.3. $\pi_{\delta}(\mathfrak{A})$ always has a maximal J_0 -uniformly positive invariant subspace.

Proof. Since δ is a *-derivation, there exists an invertible skew-adjoint operator k in the double commutant \mathfrak{A}'' of \mathfrak{A} implementing δ , [6]. If we set $T=(k+\varepsilon 1)^{-1}$ for any constant $\varepsilon > 0$, then T satisfies (1) of Theorem 2.2 and $\delta(a)=[T^{-1}, a]$ for all $a \in \mathfrak{A}$. Therefore $\mathscr{M} = G(T) \in \mathscr{M}(J_0)$ by Theorem 2.2 and it is invariant under $\pi_{\delta}(\mathfrak{A})$ by Theorem 3.2. This completes the proof.

Example. For any fixed non-zero skew-adjoint operator k and a given C^* -

9*

Shôichi Ôta

algebra \mathfrak{A} acting on \mathscr{H} , we define an algebra on $\tilde{\mathscr{H}}$ as follows;

$$\tilde{\mathfrak{U}}_{k} = \left\{ \begin{bmatrix} a & kb - ak \\ 0 & b \end{bmatrix} : a, b \in \mathfrak{A} \right\}.$$

Then it is a Lorentz algebra on $\{\mathscr{H}, J_0\}$, but it has no maximal J_0 -uniformly positive invariant subspace. In fact, if \mathfrak{A}_k has a maximal J_0 -uniformly positive invariant subspace $\mathscr{M}=G(T)$, by the same computation as the proof of Theorem 3.2, $kb-ak=T^{-1}b-aT^{-1}$ for every $a, b \in \mathfrak{A}$, which implies $k=T^{-1}$ since a C^* -algebra has an approximately identity. This is a contradiction to the non-skew-adjointness of T.

Let Rep \mathfrak{A} be the set of all *-representations of \mathfrak{A} on Hilbert spaces (in a usual sense) and \sim the unitary equivalence in Rep \mathfrak{A} . Let Rep_{δ} \mathfrak{A} be the subset of all $\pi \in \operatorname{Rep} \mathfrak{A}$ similar to π_0 . If $\pi \in \operatorname{Rep}_{\delta} \mathfrak{A}$ then there exists an intertwining operator A such that $\pi(a) = A\pi_{\delta}(a)A^{-1}$ for all $a \in \mathfrak{A}$. Then we have

Theorem 3.4. There is a bijection of $\pi \in \operatorname{Rep}_{\delta} \mathfrak{A} / \sim$ onto the set of all positive operators B on $\tilde{\mathscr{H}}$ with $B^{-1} \in B(\tilde{\mathscr{H}})$ and $J_0 B \in \pi_{\delta}(\mathfrak{A})'$ (the commutant of $\pi_{\delta}(\mathfrak{A})$) by the condition $B = A^*A$, where A denotes the intertwining operator mentioned above. Furthermore if we put $\langle x, y \rangle_B = (Bx, y)$ for $x, y \in \tilde{\mathscr{H}}$ then π_{δ} is a *-representation on a Hilbert space $\{\tilde{\mathscr{H}}, \langle , \rangle_B\}$.

Proof. If $\pi \in \operatorname{Rep}_{\delta} \mathfrak{A}$, there exists an invertible operator A such that $\pi(a) = A\pi_{\delta}(a)A^{-1}$ for all $a \in \mathfrak{A}$. Since we have

$$J_0 A^* A \pi_{\delta}(a) A^{-1} A^{*-1} J_0 = J_0 A^* \pi(a) A^{*-1} J_0 = (J_0 A^{-1} \pi(a^*) A J_0)^* =$$

= $(J_0 \pi_{\delta}(a^*) J_0)^* = \pi_{\delta}(a).$

for all $a \in \mathfrak{A}$, it follows that $JA^*A \in \pi_{\delta}(\mathfrak{A})'$.

Suppose that $\pi'(a) = A' \pi_{\delta}(a) A'^{-1}$ and $A'^* A' = A^* A$. Then we have $\pi'(a) = U' U^{-1} \pi(a) (U' U^{-1})^{-1}$ for all $a \in \mathfrak{A}$, where A = U|A| and A' = U'|A'| are the polar decompositions of A and A' respectively. Thus $\pi' \sim \pi$ and hence bijectivity follows.

On the other hand, since $J_0 B \in \pi_{\delta}(\mathfrak{A})'$ we have

$$\langle \pi_{\delta}(a^*)x, y \rangle = (BJ_0\pi_{\delta}(a^*)J_0x, y) = (\pi_{\delta}(a)^*Bx, y) = \langle x, \pi_{\delta}(a)y \rangle$$

for all $a \in \mathfrak{A}$ and $x, y \in \tilde{\mathscr{H}}$. Therefore π_{δ} is a *-representation of \mathfrak{A} on $\{\tilde{\mathscr{H}}, \langle , \rangle_{B}\}$. This completes the proof.

Remark. The above proof shows that the result is valid for any representation ψ of \mathfrak{A} on $\{\mathscr{K}, J\}$ with $\psi(a^*)=J\psi(a)^*J$. Therefore a C^* -equivalent Lorentz algebra $\psi(\mathfrak{A})$ on $\{\mathscr{K}, J\}$ has a maximal J-uniformly positive invariant subspace

if and only if ψ is similar to some *-representation of \mathfrak{A} on a Hilbert space by [5; the proof of Theorem 6.1 and Remark 1].

On the other hand, as easily seen from Theorem 3.4, a representation π of a C^* -algebra \mathfrak{A} on $\{\mathscr{H}, J\}$ with $\pi(a^*)=J\pi(a)^*J$ $(J\neq 1, -1)$ is not similar to any irreducible *-representation of \mathfrak{A} .

References

- [1] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthier-Villars (Paris, 1964).
- [2] M. G. KREIN, Introduction to the geometry of indefinite J-spaces and the theory of operators in those spaces, Amer. Math. Soc. Trans., (2) 93 (1970), 103-176.
- [3] S. ÔTA, A certain operator algebra in an indefinite inner product space, Memoirs Fac. Sci. Kyushu Univ. Ser. A, 29 (1975), 203-210.
- [4] T. W. PALMER, The Gelfand—Naimark pseudo-norm on Banach *-algebras, J. London Math. Soc., 3 (1971), 59-66.
- [5] R. S. PHILLIPS, The extension of dual subspaces invariant under an algebra, Proc. Intern. Symp. (Linear Spaces), Jerusalem (1960).
- [6] S. SAKAI, Derivations of W*-algebras, Ann. of Math., (2) 83 (1966), 273-279.

DEPARTMENT OF MATHEMATICS KYUSHU UNIVERSITY FUKUOKA 812, JAPAN