On a representation of a \mathbf{C}^{*}-algebra in a Lorentz algebra

SHÔICHI ÔTA

§ 1. Introduction. Let \mathscr{K} be a Hilbert space with the usual inner product (,) and let J be an hermitian unitary aperator on \mathscr{K}. A Lorentz algebra on $\{\mathscr{K}, J\}$ is defined as a Banach subalgebra of the full operator algebra $\mathfrak{B}(\mathscr{K})$ on \mathscr{K}, invariant under the involution $a \rightarrow J a^{*} J$ [3]. A non-zero closed subspace \mathscr{M} of \mathscr{K} is said to be J-uniformly positive if there is a constant $\lambda \in(0,1]$ with $\lambda\|x\|^{2} \leqq(J x, x)$ for all x in \mathscr{M}.

In this paper we shall study, for a given C^{*}-algebra \mathfrak{A} acting on a Hilbert space \mathscr{H} and ist derivation δ, a certain representation π_{δ} (defined in §3) of \mathfrak{A} on $\left\{\mathscr{H} \oplus \mathscr{H}, J_{0}\right\}$ with $\pi_{\delta}\left(a^{*}\right)=J_{0} \pi_{\delta}(a)^{*} J_{0}$ for all a in \mathfrak{H}. In Section 2 we shall show that there is a bijective correspondence between the set $\mathscr{M}\left(J_{0}\right)$ of all maximal \mathscr{F}-uniformly positive subspaces of $\mathscr{H} \oplus \mathscr{H}$ and a certain class of operators on \mathscr{H}. In Section 3 we shall investigate the relationship between globally $\pi_{\delta}(\mathfrak{H})$-invariant elements of $\mathscr{M}\left(J_{0}\right)$ and derivations of \mathfrak{A}.

The author would like to express his sincere gratitude to Dr. Y. Nakagami for valuable discussions. He is deeply indebted to Professor M. Tomita for his encouragement.
§ 2. The set $\mathscr{M}\left(J_{0}\right)$. Let \mathscr{H} be a Hilbert space and J_{0} the operator on $\tilde{\mathscr{H}}=\mathscr{H} \oplus \mathscr{H}$ defined by $J_{0}(\xi \oplus \eta)=\eta \oplus \xi$ for all $\xi, n \in \mathscr{H}$. Then $J_{0}=J_{0}^{*}=J_{0}^{-1}$. For an operator S on \mathscr{H} we denote by $G(S)$ the graph of S in $\tilde{\mathscr{H}}$, i.e., the set of all $\xi \oplus S \xi \in \tilde{\mathscr{H}}$ with $\xi \in D(S)$, where $D(S)$ denotes the domain of S.

Let J_{1} be the hermitian unitary operator on $\tilde{\mathscr{H}}$ defined by $J_{1}(\xi \oplus \eta)=\xi \oplus(-\eta)$ for all $\xi, \eta \in \mathscr{H}$ and let $\mathscr{M}\left(J_{1}\right)$ be the set of all maximal J_{1}-uniformly positive subspaces of $\tilde{\mathscr{H}}$. The following lemma is shown in [2].

Lemma 2.1. G is a bijection from the set of all $S \in \mathfrak{B}(\mathscr{H})$ with $\|S\|<1$ onto $\mathscr{M}\left(J_{1}\right)$.

Received March 29, 1976.

Theorem 2.2. G is a bijection from the set of all $T \in \beta(\mathscr{H})$ with

$$
\begin{equation*}
(T+1)^{-1} \in \mathfrak{B}(\mathscr{H}) \text { and }\left\|(T-1)(T+1)^{-1}\right\|<1 \tag{1}
\end{equation*}
$$

onto $\mathscr{A l}\left(J_{0}\right)$. In this case $T^{-1} \in \mathfrak{B}(\mathscr{H})$.
Proof. We shall show that the following correspondences

$$
\begin{aligned}
& \{T:(1)\} \xrightarrow{(\mathrm{i})}\{S:\|S\|<1\} \xrightarrow{(\mathrm{ii})} \mathscr{M}\left(J_{1}\right) \xrightarrow{\text { (iii) }} \mathscr{M}\left(J_{0}\right) \\
& T \quad \mapsto \quad S \quad \mapsto \quad \mathscr{M}_{1} \quad \mapsto \quad \mathscr{M}
\end{aligned}
$$

are bijections given by (i) $S=(T-1)(T+1)^{-1}$, (ii) $G(S)=\mathscr{M}_{1} \quad$ (by Lemma 2.1), (iii) $\mathscr{M}=u \mathscr{M}_{1}$; and that $G(T)=\mathscr{M}$, where $u=2^{-1 / 2}\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$.

It is clear that (i) and (ii) are bijections. We shall show that (iii) is also a bijection. If a closed subspace \mathscr{M}_{1} of $\tilde{\mathscr{H}}$ is J_{1}-uniformly positive, then there exists a constant $\lambda \in(0,1]$ such that

$$
\lambda\|u x\|^{2}=\lambda\|x\|^{2} \leqq\left(J_{1} x, x\right)=\left(J_{0} u x, u x\right)
$$

for all $x \in \mathscr{M}_{1}$. Hence $u \mathscr{M}_{1}$ is J_{0}-uniformly positive. Conversely, if \mathscr{M} is a J_{0} uniformly positive closed subspace of $\check{\mathscr{H}}, u^{*} \mathscr{M}$ is J_{1}-uniformly positive. As the correspondence preserves the order of set inclusion, if \mathscr{M}_{1} is maximal, so is $u \mathscr{H}_{1}$ and vice versa.

We shall show that $G(T)=\mathscr{M}$. Since $(1-S) \mathscr{H}=\mathscr{H}$, it follows that

$$
\begin{aligned}
G(T)= & G\left((1+S)(1-S)^{-1}\right)=\{(1-S) \xi \oplus(1+S) \xi: \xi \in \mathscr{H}\}= \\
& =u\{\xi \oplus S \xi: \xi \in \mathscr{H}\}=u G(S)=u \mathscr{M}_{1}=\mathscr{M} .
\end{aligned}
$$

Finally, since $T=(1+S)(1-S)^{-1}$, it is clear that $T^{-1} \in \mathfrak{B}(\mathscr{H})$. The proof is complete.
§ 3. Representations of \mathbf{C}^{*}-algebras in a Lorentz algebra on $\left\{\tilde{\mathscr{H}}, J_{0}\right\}$. Let \mathfrak{N} be a C^{*}-algebra acting on \mathscr{H} and δ be a *-derivation on $\mathfrak{A}\left(\delta\left(a^{*}\right)=\delta(a)^{*}\right.$ for all $a \in \mathfrak{H})$. We shall define a mapping π_{0} of \mathfrak{H} into $\mathfrak{B}(\tilde{\mathscr{H}})$ by

$$
\pi_{\delta}(a)=\left[\begin{array}{cc}
a & \delta(a) \\
0 & a
\end{array}\right]
$$

for all a in \mathfrak{A}. Then it is easily seen that π_{δ} is a faithful representation of \mathfrak{N} on $\tilde{\mathscr{H}}$ with $\pi_{\delta}\left(a^{*}\right)=J_{0} \pi_{\delta}(a)^{*} J_{0}$ for $a \in \mathfrak{Y}$, and $\pi_{\delta}(\mathfrak{H})$ is a Lorentz algebra on $\left\{\tilde{\mathscr{H}}, J_{0}\right\}$. Therefore $\pi_{\delta}(\mathfrak{H})$ is C^{*}-equivalent (that is, isomorphic to some C^{*}-algebra as an involutive Banach algebra).

Lemma 3.1. Let \mathscr{K} be a Hilbert space with $\operatorname{dim} \mathscr{K}=2$ and π the natural representation of \mathfrak{H} onto $\mathfrak{H} \otimes 1_{\mathscr{H}}$.
(i) $\pi_{\boldsymbol{z}}$ is similar to π.
(ii) π_{δ} is similar to $\pi_{\delta^{\prime}}$ for any ${ }^{*}$-derivation δ^{\prime}.

Proof. (i) Since δ is implemented by some $k \in \mathfrak{B}(\mathscr{H})$ [6], we have

$$
\pi_{\delta}(a)=\left[\begin{array}{cc}
a & k a-a k \\
0 & a
\end{array}\right]=\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right]\left[\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right]^{-1}
$$

for all $a \in \mathfrak{N}$. Hence π_{δ} is similar to π.
(ii) Clear from (i).

Theorem 3.2. Let T be an operator with (1) of Theorem 2.2 and $\mathscr{M}=G(T)$. Then \mathscr{M} is invariant under $\pi_{\delta}(\mathfrak{A})$ if and only if $\delta(a)=\left[T^{-1}, a\right]$ for all a in \mathfrak{A}.

Proof. Since we have

$$
\begin{equation*}
\pi_{\delta}(a)(\xi \oplus T \xi)=(a \xi+\delta(a) T \xi) \oplus a T \xi=\left(a T^{-1}+\delta(a)\right) T \xi \oplus a T \xi \tag{2}
\end{equation*}
$$

for all $a \in \mathfrak{N}$ and $\xi \in \mathscr{H}$, it follows that the invariance of $\mathscr{M}=G(T)$ under $\pi_{\boldsymbol{\delta}}(\mathfrak{l})$ is equivalent to the fact that $\delta(a)=\left[T^{-1}, a\right]$ for all $a \in \mathfrak{H}$, which completes the proof.

Any operator T with $\mathscr{M}=G(T)$ in Theorem 3.2 (or Theorem 2.2) can not be skew-adjoint. Otherwise $S=(T-1)(T+1)^{-1}$ is unitary, which is impossible by Theorem 2.2.

In our previous paper [3], we have shown that a Lorentz algebra with identity with respect to J is C^{*}-equivalent if it has a maximal J-uniformly positive invariant subspace. Even in the case of a Lorentz algebra without identity, we remark, this statement holds by [4; Corollary 12] and the same way as a proof of [3; Theorem 3.5]. The converse holds whenever the C^{*}-equivalent Lorentz algebra with identity is commutative by [5; Theorem 6.1]. As for Lorentz algebras $\pi_{\delta}(\mathfrak{H})$, we have

Corollary 3.3. $\pi_{\delta}(\mathfrak{H})$ always has a maximal J_{0}-uniformly positive invariant subspace.

Proof. Since δ is a *-derivation, there exists an invertible skew-adjoint operator k in the double commutant $\mathfrak{X}^{\prime \prime}$ of \mathfrak{Y} implementing δ, [6]. If we set $T=(k+\varepsilon 1)^{-1}$ for any constant $\varepsilon>0$, then T satisfies (1) of Theorem 2.2 and $\delta(a)=\left[T^{-1}, a\right]$ for all $a \in \mathfrak{A}$. Therefore $\mathscr{M}=G(T) \in \mathscr{M}\left(J_{0}\right)$ by Theorem 2.2 and it is invariant under $\pi_{\delta}(\mathfrak{Q})$ by Theorem 3.2. This completes the proof.

Example. For any fixed non-zero skew-adjoint operator k and a given C^{*} -
algebra \mathfrak{A} acting on \mathscr{H}, we define an algebra on $\check{\mathscr{H}}$ as follows;

$$
\tilde{\mathfrak{A}}_{k}=\left\{\left[\begin{array}{cc}
a & k b-a k \\
0 & b
\end{array}\right]: a, b \in \mathfrak{H}\right\}
$$

Then it is a Lorentz algebra on $\left\{\tilde{\mathscr{H}}, J_{0}\right\}$, but it has no maximal J_{0}-uniformly positive invariant subspace. In fact, if $\tilde{\mathfrak{A}}_{k}$ has a maximal J_{0}-uniformly positive invariant subspace $\mathscr{M}=G(T)$, by the same computation as the proof of Theorem 3.2, $k b-a k=T^{-1} b-a T^{-1}$ for every $a, b \in \mathfrak{N}$, which implies $k=T^{-1}$ since a C^{*}-algebra has an approximately identity. This is a contradiction to the non-skew-adjointness of T.

Let Rep \mathfrak{A} be the set of all *-representations of \mathfrak{H} on Hilbert spaces (in a usual sense) and \sim the unitary equivalence in Rep \mathfrak{A}. Let $\operatorname{Rep}_{\delta} \mathfrak{H}$ be the subset of all $\pi \in \operatorname{Rep} \mathfrak{A}$ similar to π_{0}. If $\pi \in \operatorname{Rep}_{\delta} \mathfrak{N}$ then there exists an intertwining operator A such that $\pi(a)=A \pi_{\delta}(a) A^{-1}$ for all $a \in \mathfrak{N}$. Then we have

Theorem 3.4. There is a bijection of $\pi \in \operatorname{Rep}_{\delta} \mathfrak{H} / \sim$ onto the set of all positive operators B on $\tilde{\mathscr{H}}$ with $B^{-1} \in B(\tilde{\mathscr{H}})$ and $J_{0} B \in \pi_{\delta}(\mathfrak{A})^{\prime}$ (the commutant of $\left.\pi_{\delta}(\mathfrak{H})\right)$ by the condition $B=A^{*} A$, where A denotes the intertwining operator mentioned above. Furthermore if we put $\langle x, y\rangle_{B}=(B x, y)$ for $x, y \in \tilde{\mathscr{H}}$ then π_{δ} is a^{*}-representation on a Hilbert space $\left\{\tilde{\mathscr{H}},\langle,\rangle_{B}\right\}$.

Proof. If $\pi \in \operatorname{Rep}_{\delta} \mathfrak{N K}$, there exists an invertible operator A such that $\pi(a)=$ $=A \pi_{\delta}(a) A^{-1}$ for all $a \in \mathfrak{H}$. Since we have

$$
\begin{aligned}
J_{0} A^{*} A \pi_{\delta}(a) A^{-1} A^{*-1} J_{0} & =J_{0} A^{*} \pi(a) A^{*-1} J_{0}=\left(J_{0} A^{-1} \pi\left(a^{*}\right) A J_{0}\right)^{*}= \\
= & \left(J_{0} \pi_{\delta}\left(a^{*}\right) J_{0}\right)^{*}=\pi_{\delta}(a)
\end{aligned}
$$

for all $a \in \mathfrak{A}$, it follows that $J A^{*} A \in \pi_{\delta}(\mathfrak{H})^{\prime}$.
Suppose that $\pi^{\prime}(a)=A^{\prime} \pi_{\delta}(a) A^{\prime-1}$ and $A^{\prime *} A^{\prime}=A^{*} A$. Then we have $\pi^{\prime}(a)=$ $=U^{\prime} U^{-1} \pi(a)\left(U^{\prime} U^{-1}\right)^{-1}$ for all $a \in \mathfrak{H}$, where $A=U|A|$ and $A^{\prime}=U^{\prime}\left|A^{\prime}\right|$ are the polar decompositions of A and A^{\prime} respectively. Thus $\pi^{\prime} \sim \pi$ and hence bijectivity follows.

On the other hand, since $J_{0} B \in \pi_{\delta}(\mathfrak{H})^{\prime}$ we have

$$
\left\langle\pi_{\delta}\left(a^{*}\right) x, y\right\rangle=\left(B J_{0} \pi_{\delta}\left(a^{*}\right) J_{0} x, y\right)=\left(\pi_{\delta}(a)^{*} B x, y\right)=\left\langle x, \pi_{\delta}(a) y\right\rangle
$$

for all $a \in \mathfrak{H}$ and $x, y \in \tilde{\mathscr{H}}$. Therefore π_{δ} is a ${ }^{*}$-representation of \mathfrak{H} on $\left\{\tilde{\mathscr{H}},\langle,\rangle_{B}\right\}$. This completes the proof.

Remark. The above proof shows that the result is valid for any representation ψ of \mathfrak{H} on $\{\mathscr{K}, J\}$ with $\psi\left(a^{*}\right)=J \psi(a)^{*} J$. Therefore a C^{*}-equivalent Lorentz algebra $\psi(\mathfrak{H})$ on $\{\mathscr{K}, J\}$ has a maximal J-uniformly positive invariant subspace
if and only if ψ is similar to some *-representation of \mathfrak{A} on a Hilbert space by [5; the proof of Theorem 6.1 and Remark 1].

On the other hand, as easily seen from Theorem 3.4, a representation π of a C^{*}-algebra \mathfrak{H} on $\{\mathscr{K}, J\}$ with $\pi\left(a^{*}\right)=J \pi(a)^{*} J(J \neq 1,-1)$ is not similar to any irreducible ${ }^{*}$-representation of \mathfrak{N}.

References

[I] J. Dixmier, Les C*-algèbres' et leurs représentations, Gauthier-Villars (Paris, 1964).
[2] M. G. Krein, Introduction to the geometry of indefinite J-spaces and the theory of operators in those spaces, Amer. Math. Soc. Trans., (2) 93 (1970), 103-176.
[3] S. Ôta, A certain operator algebra in an indefinite inner product space, Memoirs Fac. Sci. Kyushu Univ. Ser. A, 29 (1975), 203-210.
[4] T. W. Palmer, The Gelfand-Naimark pseudo-norm on Banach *-algebras, J. London Math. Soc., 3 (1971), 59-66.
[5] R. S. Phillips, The extension of dual subspaces invariant under an algebra, Proc. Intern. Symp. (Linear Spaces), Jerusalem (1960).
[6] S. Sakal, Derivations of W^{*}-algebras, Ann. of Math., (2) 83 (1966), 273-279.

