Mean Ergodic Theorem in reflexive spaces

D. J. PATIL

The mean ergodic theorem proved by Lorch [4] states that if T is a linear operator on a reflexive Banach space X with $\|T\| \leqq 1$ then

$$
\begin{equation*}
\frac{1}{n}\left(I+T+T^{2}+\ldots+T^{n-1}\right) x \rightarrow P x \tag{1}
\end{equation*}
$$

for each $x \in X, P$ being a projection onto the subspace $\{x \in X: T x=x\}$. BLum and others in a series of papers $[1,2,3]$ studied the question of the convergence

$$
\begin{equation*}
\frac{1}{n}\left(T^{k_{1}}+T^{k_{2}}+\ldots+T^{k_{n}}\right) x \rightarrow P x \tag{2}
\end{equation*}
$$

where $\left(k_{n}\right)$ is a given subsequence of the positive integers and X is a Hilbert space. The definitive result due to these authors is that if X is a Hilbert space and $\|T\| \leqq 1$ then (2) holds for each $x \in X$ if for each z on the unit circle it is true that

$$
\begin{equation*}
\frac{1}{n}\left(z^{k_{1}}+z^{k_{\mathbf{a}}}+\ldots+z^{k_{n}}\right)(1-z) \rightarrow 0 \tag{3}
\end{equation*}
$$

This result is the best possible in the sense that if (2) holds for each contraction T then (3) must follow. The methods used to prove these results depend heavily on the Hilbert space structure and do not apply in the case where X is not a Hilbert space. We prove below a theorem which enables us to obtain a condition on the subsequence (k_{n}) which is sufficient for the truth of (2) where T now acts on any reflexive Banach space. Since it involves no additional effort we have stated our theorem for a sequence of polynomials more general than the one appearing in (3).

Theorem. Let X be a reflexive Banach space, T a linear contraction on X, $\left(p_{k}\right)_{1}^{\infty}$ a sequence of complex polynomials and $q(z)=\left(z-\lambda_{1}\right) \ldots\left(z-\lambda_{n}\right), \quad \lambda_{1}=1,\left|\lambda_{i}\right|=1$,
$1 \leqq i \leqq n ; \lambda_{i} \neq \lambda_{j}$ if $i \neq j$. Suppose that
(ii)
(iii)

$$
\begin{align*}
p_{k}(1) \rightarrow 1, p_{k}\left(\lambda_{i}\right) & \rightarrow 0(2 \leqq i \leqq n), \quad \text { as } \quad k \rightarrow \infty, \tag{i}\\
\sup _{k}\left\|p_{k}(T)\right\| & <\infty,
\end{align*}
$$

$$
q(T) p_{k}(T) x \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty, x \in X
$$

Then for each $x \in X, p_{k}(T) x \rightarrow P x$ where P is the bounded projection onto the subspace $\{x \in X: T x=x\}$ such that the range of $I-P$ is the closure of the range of $I-T$.

Proof. In the following, for an operator S on a reflexive space B we will denote by $R(S)$ and $N(S)$ the closure of the range of S and the null space of S, respectively. We note the well-known result that if $\|S\| \leqq 1$, then

$$
\begin{equation*}
B=R(I-S) \oplus N(I-S) \tag{4}
\end{equation*}
$$

We now claim that the following relations hold:

$$
\begin{equation*}
X=N(q(T)) \oplus R(q(T)) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
(R q(T)), N\left(\left(T-\lambda_{2} I\right) \ldots\left(T-\lambda_{n} I\right)\right) \subseteq R(I-T) \tag{6}
\end{equation*}
$$

Assuming the truth of (5) and (6), we will prove the theorem.
First, the relation (5) implies that $p_{k}(T) x$ converges for each $x \in X$. This is so since for $x \in R(q(T))$ and $\varepsilon>0, x=q(T) y+y^{\prime}$ with $\left\|y^{\prime}\right\|<\varepsilon$. By (iii) and (ii) we will then have that $p_{k}(T) x \rightarrow 0$. If $x \in N(q(T))$ then $x=x_{1}+\ldots+x_{n}$ with $T x_{i}=\lambda_{i} x_{i}, \quad(1 \leqq i \leqq n)$. Thus $p_{k}(T) x=p_{k}\left(\lambda_{1}\right) x_{1}+\ldots+p_{k}\left(\lambda_{n}\right) x_{n}$, and by the relations in (i), the sequence $p_{k}(T) x$ converges to x_{1}.

Next, if we also have the relation (6), then noting that $N(q(T))=N(I-T) \oplus$ $\oplus N\left(\left(T-\lambda_{2} I\right) \ldots\left(T-\lambda_{n} I\right)\right)$ we have in view of the decomposition (4) that $p_{k}(T) x \rightarrow P x$ where P is as in the statement of the theorem.

We will now prove by induction on n that

$$
\begin{equation*}
X=N(I-T) \oplus \ldots \oplus N\left(I-\bar{\lambda}_{n} T\right) \oplus Y \tag{7}
\end{equation*}
$$

where $\overline{(I-T) Y}=\ldots=\overline{\left(I-\bar{\lambda}_{n} T\right) Y}=Y$. This surely implies (5) and (6).
Let us suppose that for $n-1$ there exists such a $Y=Y_{n-1}$. This Y_{n-1} is necessarily invariant under T, and by (4), we have

$$
Y_{n-1}=R\left(I-\bar{\lambda}_{n} T \mid Y_{n-1}\right) \oplus N\left(I-\bar{\lambda}_{n} T \mid Y_{n-1}\right)
$$

Now it is immediate that $N\left(I-\bar{\lambda}_{n} T\right) \subseteq Y_{n-1}$, thus $N-\left(I-\bar{\lambda}_{n} T \mid Y_{n-1}\right)=N\left(I-\bar{\lambda}_{n} T\right)$ and we only have to show that for $Y_{n}=R\left(I-\bar{\lambda}_{n} T \mid Y_{n-1}\right)$ we have $\overline{(I-T) Y_{n}}=\ldots=$ $=\overline{\left(I-\bar{\lambda}_{n} T\right) Y_{n}}=Y_{n}$. The last equality is immediate, the others follow from the corresponding equalities for Y_{n-1}, from the fact that $N\left(I-\lambda_{n} T\right)$ is invariant under
T and from the boundedness of the projections defined by the decomposition of Y_{n-1}. Thus the proof of (7) and therefore that of the theorem are complete.

The following corollaries now follow directly from the theorem. These corollaries are stated in such a way that the conditions on the operator T and the sequence $\left(p_{k}\right)$ are independent of each other.

For $p(z)=\sum_{0}^{N} a_{n} z^{n}$, set $\|p\|_{A}=\sum_{0}^{N}\left|a_{n}\right|$ and $\|p\|_{\infty}=\sup \{|p(z)|:|z| \leqq 1\}$.
Corollary 1. Let X be a reflexive Banach space and T a linear contraction on X. Let $\left(p_{k}\right), q$.be as in the theorem and suppose that the relations (i) of the theorem hold. Suppose further that
(ii)'
(iii)'

$$
\begin{gathered}
\sup _{k}\left\|p_{k}\right\|_{A}<\infty, \\
\left\|q p_{k}\right\|_{A} \rightarrow 0 \text { as } k \rightarrow \infty .
\end{gathered}
$$

Then $p_{k}(T) x \rightarrow P x(x \in X)$ where P is as in the theorem.
Corollary 2. Let X be a reflexive Banach space and T a linear operator on X such that for every polynomial $p,\|p(T)\| \leqq\|p\|_{\infty}$. Let $\left(p_{k}\right), q$ be as in the theorem and suppose that the relations (i) of the theorem hold. Suppose further that
(ii)"
(iii)"

$$
\begin{gathered}
\sup \left\|p_{k}\right\|_{\infty}<\infty \\
\left\|q p_{k}\right\|_{\infty} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
\end{gathered}
$$

Then $p_{k}(T) x \rightarrow P x(x \in X)$ where P is as in the theorem.
We now return to the problem discussed in the introduction. Let $\left(k_{n}\right)$ be a subsequence of the positive integers satisfying (3) and take $p_{n}(z)=\frac{1}{n}\left(z^{k_{1}}+\ldots+z^{k_{n}}\right)$, $q(z)=z^{v}-1, v$ a positive integer. Then all the conditions except (iii)' of Corollary 1. are satisfied. The condition (iii)' will also be fulfilled if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{N} \operatorname{card}\left(E_{N} \cap\left(E_{N}+v\right)\right)=1 \tag{8}
\end{equation*}
$$

where $E_{N}=\left\{k_{1}, \ldots, k_{N}\right\}$ and $E_{N}+\nu$ is the translate of E_{N} by v. We can therefore: conclude that for a linear contraction T on a reflexive space X if a sequence (k_{n}) satisfies (3) then the condition (8) is sufficient for the convergence of (2). The examplein [2], p. 428 is of a sequence $\left(k_{n}\right)$ satisfying (3) and (8) with $v=2$.

We note that any linear contraction T on a Hilbert space satisfies the hypothesis: (on T) of Corollary 2. However, as shown in [3], the conclusion of Corollary 2 holds under weaker hypothesis on $\left(p_{n}\right)$. Thus the Corollary 2 has significance only when. the reflexive space X is not a Hilbert space.

References

[1] J. R. Blum, B. Eisenberg and L. S. Hahn, Ergodic Theory and the measure of sets in the Bohr Group, Acta Sci. Math., 34 (1973), 17-24.
[2] J. R. Blum and B. Eisenberg, Generalized summing sequences and the mean ergodic theorem, Proc. Amer. Math. Soc., 42 (1974), 423-429.
[3] J. R. Blum and J. I. Reich, Mean Ergodic Theorem for families of contractions in Hilbert space, Proc. Amer. Math. Soc., to appear.
[4] E. R. Lorch, Means of iterated transformations in reflexive Banach spaces, Bull. Amer. Math. Soc., 45 (1939), 945-947.

DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF WISCONSIN-MILWAUKEE
MILWAUKEE, WISCONSIN 53201

