Approximation by unitary and essentially unitary operators

DONALD D. ROGERS

In troduction. In [9] P. R. Halmos formulated the problem of normal spectral approximation in the algebra of bounded linear operators on a Hilbert space. One special case of this problem is the problem of unitary approximation; this case has been studied in [3], [7, Problem 119], and [13]. The main purpose of this paper is to continue this study of unitary approximation and some related problems.

In Section 1 we determine the distance (in the operator norm) from an arbitrary operator on a separable infinite-dimensional Hilbert space to the set of unitary operators in terms of familiar operator parameters. We also study the problem of the existence of unitary approximants. Several conditions are given that are sufficient for the existence of a unitary approximant, and it is shown that some operators fail to have a unitary approximant. This existence problem is solved completely for weighted shifts and compact operators.

Section 2 studies the problem of approximation by two sets of essentially unitary operators. It is shown that both the set of compact perturbations of unitary operators and the set of essentially unitary operators are proximinal; this latter fact is shown to be equivalent to the proximinality of the unitary elements in the Calkin algebra.
-
Notation. Throughout this paper H will denote a fixed separable infinitedimensional complex Hilbert space and $B(H)$ the algebra of all bounded linear operators on H. For an arbitrary operator T, we write $\|T\|=\sup \{\|T f\|: f$ in H and $\|f\|=1\}$ and $m(T)=\inf \{\|T f\|: f$ in H and $\|f\|=1\}$. The spectral radius of T is $r(T)$. We write $|T|=\left(T^{*} T\right)^{1 / 2}$, and $E(\cdot)$ is the spectral measure for $|T|$.

The index of an operator T is defined by ind $(T)=\operatorname{dim} \operatorname{ker}(T)-\operatorname{dim} \operatorname{ker}\left(T^{*}\right)$ if at least one of these numbers is finite, and we use the convention that ind $(T)=0$ if both number are \aleph_{0}.

Received October 30, 1975, in revised form June 9, 1976.
This paper is part of the author's Ph. D. thesis written at Indiana University under the direction of Professor P. R. ifalmos.

The ideal of compact operators is denoted by $K(H)$, and π is the canonical homomorphism from $B(H)$ onto the Calkin algebra $C(H)=B(H) / K(H)$. The operator T is Fredholm if $\pi(T)$ is invertible in $C(H)$. The spectrum of $\pi(T)$ is $\sigma_{e}(T)$ with spectral radius $r_{e}(T)$; the complement of $\sigma_{e}(T)$ is denoted by $\varrho_{e}(T)$. We write $\|T\|_{e}=\|\pi(T)\|$ and $m_{e}(T)=$ the infimum of $\sigma_{e}(|T|)$. The unilateral weighted shift of multiplicity one with weight sequence $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ is denoted shift $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$. If \mathscr{M} is a set of operators, then an operator X_{0} in \mathscr{M} is an \mathscr{A}-approximant of the operator T if $\left\|T-X_{0}\right\|=\inf \{\|T-X\|: X$ in $\mathscr{M}\}$. The set \mathscr{H} is proximinal in $B(H)$ (or simply proximinal) if every operator T has an \mathscr{M} approximant.

1. Unitary operators. We shall frequently use the following theorem. It appears in [5, Theorem 2.2] for the case that T_{1} is a Fredholm operator; a slightly different proof is given below for completeness.
1.1. Theorem. If T_{1} and T_{2} are in $B(H)$ and if $\left\|T_{1}-T_{2}\right\|_{e}<m_{e}\left(T_{1}\right)$, then ind $\left(T_{1}\right)=$ ind $\left(T_{2}\right)$.

Proof. Consider first the case $T_{1}=1$. If $\left\|1-T_{2}\right\|_{e}<1$, then there exists K in $K(H)$ such that $\left\|1-T_{2}-K\right\|<1$. Hence $T_{2}+K$ is invertible, so clearly ind $\left(T_{2}+K\right)=$ $=0$ Thus T_{2} is Fredholm and $\operatorname{ind}\left(T_{2}\right)=$ ind $\left(T_{2}+K\right)=0$ [2, Lemma 5.20]. Thus ind $\left(T_{2}\right)=$ ind $(1)=0$.

For the general case, we can assume that $m_{e}\left(T_{1}\right)>0$. Then there exists L in $B(H)$ such that $\|L\|_{e}=1 / m_{e}\left(T_{1}\right)$ and $L T_{1}$ is a compact perturbation of the identity (this can be seen by looking at the polar decomposition of T_{1}). Then $\left\|1-L T_{2}\right\|_{e}=$ $=\left\|L T_{1}-L T_{2}\right\|_{e} \leqq\|L\|_{e} \cdot\left\|T_{1}-T_{2}\right\|_{e}<1$. Hence $L T_{2}$ is Fredholm of index 0 by the above result.

Consequently T_{1} is Fredholm if and only if T_{2} is Fredholm, and in this case ind $\left(T_{1}\right)=-$ ind $(L)=$ ind $\left(T_{2}\right)$ by the additivity of the index for Fredholm operators [2, Theorem 5.36].

If both T_{1} and T_{2} fail to be Fredholm, then $\operatorname{dim} \operatorname{ker} T_{1}^{*}=\aleph_{0}=\operatorname{dim} \operatorname{ker} T_{2}^{*}$. This follows because both $L T_{1}$ and $L T_{2}$ are Fredholm, which implies that both T_{1} and T_{2} have closed range and finite-dimensional kernel [2, proof of Theorem 5.17]. Hence both T_{1} and T_{2} are Fredholm unless $\operatorname{dim} \operatorname{ker} T_{1}^{*}=\aleph_{0}=\operatorname{dim} \operatorname{ker} T_{2}^{*}$. Thus in this one remaining case it follows that ind $\left(T_{1}\right)=$ ind $\left(T_{2}\right)=-\aleph_{0}$.
1.2. Corollary. If ind $(T)<0$ and U is a unitary operator, then $\|T-U\| \geqq$ $\geqq 1+m_{e}(T)$.

Proof. Clearly $\|T-U\|=\left\|U^{*} T-1\right\| \geqq r\left(U^{*} T-1\right)$. Assertion: Each number in the open ball $\left\{\zeta:|\zeta|<m_{e}(T)\right\}$ is an eigenvalue of $T^{*} U$. To see this, let $|\zeta|<m_{e}(T)$ and apply Theorem 1.1 to the operators $T_{1}=U^{*} T$ and $T_{2}=U^{*} T-\zeta$; notice
that $m_{e}(T)=m_{e}\left(U^{*} T\right)$ and ind $\left(U^{*} T\right)=\operatorname{ind}(T)$. Hence ind $\left(U^{*} T-\zeta\right)=\operatorname{ind}\left(U^{*} T\right)<0$. This proves the assertion, and the assertion implies 1.2.

We can now determine the distance from an arbitrary operator T to the set of unitary operators. Write $u(T)=\inf \{\|T-U\|: U$ a unitary operator $\}$.
1.3. Theorem.
(i) If ind $(T)=0$, then $u(T)=\max \{\|T\|-1,1-m(T)\}$.
(ii) If ind $(T)<0$, then $u(T)=\max \left\{\|T\|-1,1+m_{e}(T)\right\}$.
(The case ind $(T)>0$ follows from (ii) by considering the adjoint of T).
Proof. Assertion (i) is true also in finite dimensions [3] and is proved here in a similar manner. The main point is that it is possible to find a unitary operator U such that $T=U|T|$ by enlarging the partial isometry in the polar decomposition of T (if necessary). Then $\|T-U\|=\||T|-1\|$, and it is easy to see that $\||T|-1\|=$ $=\max \{\|T\|-1,1-\bar{m}(T)\}$. That this maximum is a lower bound for $u(T)$ is also easy to see by using the triangle inequality. This proves assertion (i).

To prove assertion (ii), let $E(\cdot)$ be the spectral measure for $|T|$, and for $\varepsilon>0$ let E_{ε} denote the projection $E\left(\left[0, m_{e}(T)+\varepsilon\right]\right)$. Then $\operatorname{dim} E_{\varepsilon}(H)=\kappa_{0}$ since $m_{e}(T)$ has the equivalent definition $m_{e}(T)=\inf \left\{x \geqq 0: \operatorname{dim} E([0, x]) H=\aleph_{0}\right\}$ (see [4, p. 185]).

Because ind $(T)<0$, there exists a (non-unitary) isometry S such that $T=S|T|$. Because $E_{\varepsilon}(H)$ and $\operatorname{ker} S^{*} \oplus S E_{\varepsilon}(H)$ have equal dimension and co-dimension, there exists an isometry V_{ε} in $B(H)$ that maps $E_{\varepsilon}(H)$ onto ker $S^{*} \oplus S E_{\varepsilon}(H)$. Define the operator $U_{\varepsilon}=V_{\varepsilon} E_{\varepsilon}+S\left(1-E_{\varepsilon}\right)$.

Assertion: U_{ε} is a unitary operator.
Proof. It is easy to see that U_{ε} is an isometry; that U_{ε} is onto follows since
and

$$
U_{\varepsilon}\left(E_{\varepsilon}(H)\right)=\operatorname{ker} S^{*} \oplus S E_{\varepsilon}(H)
$$

$$
U_{\varepsilon}\left(H \ominus E_{\varepsilon}(H)\right)=S\left(H \ominus E_{\varepsilon}(H)\right)
$$

Assertion: $\left\|T-U_{e}\right\| \leqq \max \left\{\|T\|-1,1+m_{e}(T)+\epsilon\right\}$.
Proof. Clearly $\left\|T-U_{\varepsilon}\right\|=\left\|U_{\varepsilon}^{*} T-1\right\|$; we examine the operator $U_{\varepsilon}^{*} T$. It is not difficult to see from the definition of U_{ε} that $E_{\varepsilon}(H)$ reduces $U_{\varepsilon}^{*} T=U_{\varepsilon}^{*} S|T|$. With respect to the decomposition $H=E_{\varepsilon}(H) \oplus\left(1-E_{\varepsilon}\right)(H)$, if follows that $U_{\varepsilon}^{*} T=$ $=X_{\varepsilon} \oplus Y_{\varepsilon}$ with $\left\|X_{\varepsilon}\right\| \leqq m_{e}(T)+\epsilon$ and $Y_{\varepsilon}=$ restriction of $|T|$ to the (reducing) subspace $\left(1-E_{\varepsilon}\right)(H)$.

Thus $\quad\left\|U_{\varepsilon}^{*} T-1\right\|=\max \left\{\left\|X_{\varepsilon}-1\right\|,\left\|Y_{\varepsilon}-1\right\|\right\}$. Clearly $\quad\left\|X_{\varepsilon}-1\right\| \leqq 1+m_{e}(T)+\epsilon$ and $\left\|Y_{\varepsilon}-1\right\| \leqq\||T|-1\|$. The fact that $\max \left\{1+m_{\varepsilon}(T)+\epsilon,\||T|-1\|\right\}=\max \{1+$ $\left.+m_{e}(T)+\epsilon,\|T\|-1\right\}$ follows easily. This proves $u(T) \leqq \max \left\{1+m_{e}(T),\|T\|-1\right\}$.

The reverse inequality follows from Corollary 1.2 and the triangle inequality. This proves Theorem 1.3.

In [8] it was shown that every operator has a positive approximant that is in the C^{*}-algebra generated by the identity and the operator. For approximation by unitary operators, however, the situation is considerably different.
1.4. Theorem.
(i) If ind $(T)=0$, then $T=U|T|$ for some unitary approximant U.

If the index of T is non-zero, then $u(T) \geqq 1$; we consider the following two cases.
(ii) If ind $(T) \neq 0$ and $u(T)=1$, then T fails to have a unitary approximant.
(iii) If ind $(T)<0$ and $u(T)>1$, then each one of the following conditions is suffcient for T to have a unitary approximant:

$$
\begin{equation*}
\|T\|-1>1+m_{e}(T) \tag{a}
\end{equation*}
$$

(b)

$$
\operatorname{dim} E\left(\left[0, m_{e}(T)\right]\right)(H)=\aleph_{0}
$$

(c) $m_{e}(T)$ is a cluster point of eigenvalues of $|T|$.
(The case ind $(T)>0$ and $u(T)>1$ follows from (iii) by considering the adjoint of T).

Proof. Assertion (i) follows easily from the proof of Theorem 1.3 (i).
Assertion (ii) is a consequence of [14, p. 408]. For if ind $(T) \neq 0$ and U is a unitary operator such that $\|U-T\|=u(T)=1$, then $\left\|1-U^{*} T\right\|=1$ and hence [14] implies ind $\left(\left(1-U^{*} T\right)-1\right)=0=$ ind $\left(-U^{*} T\right)$. It is easy to see, however, that ind $\left(-U^{*} T\right)=$ ind (T). Hence no such unitary operator U exists.

For the proof of (iii) (a), choose $\epsilon>0$ such that $m_{e}(T)+1+\epsilon \leqq\|T\|-1=u(T)$. Then the unitary operator U_{ε} constructed in the proof of Theorem 1.3 (ii) is shown by that proof to be a unitary approximant of T.

If (iii) (b) holds, then the construction of U_{ε} can be carried out in exactly the same way as above with $\epsilon=0$; again, this can be seen from the proof of Theorem 1.3 (ii).

If (iii) (c) holds, the construction is as follows. If $m_{e}(T)=0$, then (iii) (a) gives a unitary approximant since $\|T\|-1=u(T)>1$ by hypothesis (iii). If $m_{e}(T)>0$, then we use the following lemma to construct a unitary approximant of T; after this lemma is proved, the proof of (iii) (c) is straightforward.
1.5. Lemma. If $\alpha>0$, then there exists a sequence $\left\{\alpha_{k}\right\}$ of real numbers such that $\alpha_{k}>\alpha$ for all k and such that $\left\|1+\operatorname{shift}\left(\alpha_{1}, \alpha_{2}, \ldots\right)\right\|=1+\alpha$.

Proof. Notation: Let $\left\{e_{1}, e_{2}, \ldots\right\}$ be an orthonormal basis that is shifted. For any sequence $\left\{\alpha_{k}\right\}$, let A_{n} be the compression of the operator $\left|1+\operatorname{shift}\left(\alpha_{1}, \alpha_{2}, \ldots\right)\right|^{2}$ to the span of $\left\{e_{1}, \ldots, e_{n}\right\}$.

We prove below that there is some choice of $\left\{\alpha_{k}\right\}$ such that $\alpha_{k}>\alpha$ for all k and $A_{n}<(1+\alpha)^{2}$ for all n (where $<$ is the usual partial order for Hermitian operators). Since the norm is weakly lower semicontinuous, this proves $\left\|1+\operatorname{sihft}\left(\alpha_{1}, \alpha_{2}, \ldots\right)\right\| \leqq 1+\alpha$; the reverse inequality follows from Theorem 1.3 (ii) since $m_{e}\left(\operatorname{shift}\left(\alpha_{1}, \alpha_{2}, \ldots\right)\right) \geqq \alpha$.

The n-by- n matrix A_{n} is a tridiagonal matrix, about which the following two facts are known [11, p. 180]:
(1) For the characteristic polynomials $p_{0}(x)=1$ and $p_{n}(x)=\operatorname{det}\left(A_{n}-x\right)$, $n=1,2, \ldots$, there are recursion relations $p_{n+1}(x)=\left\{1+\alpha_{n+1}^{2}-x\right\} p_{n}(x)-\alpha_{n}^{2} p_{n-1}(x)$, $n=1,2, \ldots$.
(2) For any real number x, the number of eigenvalues of A_{n} that are less than x is equal to the number of sign changes between consecutive terms of the sequence $\left\{p_{0}(x), p_{1}(x), \ldots, p_{n}(x)\right\}$.

By (2) we shall prove 1.5 if we show there exists some choice of $\left\{\alpha_{k}\right\}$ such that $\alpha_{k}>\alpha$ and $\operatorname{sign} p_{n}\left((1+\alpha)^{2}\right) \neq \operatorname{sign} p_{n+1}\left((1+\alpha)^{2}\right)$ for all n. This is because there will be n sign changes (with $\left.x=(1+\alpha)^{2}\right)$, and hence all n (positive) eigenvalues of A_{n} will be less than $(1+\alpha)^{2}$. Write $q_{n}=p_{n}\left((1+\alpha)^{2}\right)$. It thus suffices to define $\left\{\alpha_{k}\right\}$ such that $\alpha_{k}>\alpha$ and such that for all integers n we have $q_{n} / q_{n+1}<0$.

We define such a sequence $\left\{\alpha_{k}\right\}$ by induction.
To begin, choose $\alpha_{1}>\alpha$ such that $\alpha_{1}^{2}<\alpha^{2}((\alpha+2) /(\alpha+1))$.
We shall use the fact that this upper bound on α_{1}^{2} implies the pair of inequalities $\left.-1<\left(\alpha_{1}^{2} q_{0}\right) / \alpha q_{1}\right)<0$.

To see this, note that $\alpha_{1}^{2}(\alpha+1)-\alpha\left(\alpha^{2}+2 \alpha\right)<0$ so that $\alpha\left(\alpha_{1}^{2}-\alpha^{2}-2 \alpha\right)<-\alpha_{1}^{2}$ or $\alpha\left(\alpha_{1}^{2}-\alpha^{2}-2 \alpha\right) / \alpha_{1}^{2}<-1$ and thus $\left(\alpha q_{1}\right) /\left(\alpha_{1}^{2} q_{0}\right)<-1$ since $q_{0}=1$ and $q_{1}=\alpha_{1}^{2}-\alpha^{2}-2 \alpha$. The desired pair of inequalities now follow by inverting the above inequality.

Next, assume that $\alpha_{1}, \ldots, \alpha_{k}$ have been chosen $>\alpha$ such that for $j=1, \ldots, k$, there are the pair of inequalities $-1<\left(\alpha_{j}^{2} q_{j-1}\right) /\left(\alpha q_{j}\right)<0$.

Choose $\alpha_{k+1}>\alpha$ such that $\alpha_{k+1}^{2}<\alpha^{2}\left\{\alpha+2+\left(\left(\alpha_{k}^{2} q_{k-1}\right) /\left(\alpha q_{k}\right)\right)\right\} /(\alpha+1)$.
Assertion. This upper bound on α_{k+1}^{2} implies the pair of inequalities

$$
-1<\left(\alpha_{k+1}^{2} q_{k}\right) /\left(\alpha q_{k+1}\right)<0
$$

Proof. The upper bound clearly implies that $\alpha_{k+1}^{2}(\alpha+1)<\alpha^{2}(\alpha+2)+$ $+\left(\left(\alpha q_{k-1} \alpha_{k}^{2}\right) / q_{k}\right)$ and thus $\alpha\left(\alpha_{k+1}^{2}-\alpha^{2}-2 \alpha\right)-\left(\left(\alpha q_{k-1} \alpha_{k}^{2}\right) / q_{k}\right)<-\alpha_{k+1}^{2}$ so that $\alpha\left\{\left(\alpha_{k+1}^{2}-\alpha^{2}-2 \alpha\right) q_{k}-\alpha_{k}^{2} q_{k-1}\right\} / q_{k}<-\alpha_{k+1}^{2}$. Thus by (1) $\left(\alpha q_{k+1}\right) / q_{k}<-\alpha_{k+1}^{2}$ or $\left(\alpha q_{k+1}\right) /\left(q_{k} \alpha_{k+1}^{2}\right)<-1$.

By inverting the above inequality, the assertion follows.
Thus we can define by induction a sequence $\left\{\alpha_{j}\right\}$ such that for all j both $\alpha_{j}>\alpha$ and

$$
\left(\alpha_{j}^{2} q_{j-1}\right) /\left(\alpha q_{j}\right)<0 .
$$

This clearly implies $\operatorname{sign}\left(q_{j-1}\right) \neq \operatorname{sign}\left(q_{j}\right)$ for all j, and completes the proof of Lemma 1.5.
1.6 Remark. If $0 \leqq \beta_{k} \leqq \alpha_{k}$, with α and α_{k} as in 1.5 , then $\left\|1+\operatorname{shift}\left(\beta_{1}, \beta_{2}, \ldots\right)\right\| \leqq$ $\leqq 1+\alpha$. Proof: Write $\beta_{k}=(1 / 2)\left(\alpha_{k}^{\prime}+\alpha_{k}^{\prime \prime}\right)$ with $\left|\alpha_{k}^{\prime}\right|=\left|\alpha_{k}^{\prime \prime}\right|=\alpha_{k}$. Then $\operatorname{shift}\left(\beta_{1}, \beta_{2}, \ldots\right)$ is the average of two shifts each unitarily equivalent to shift $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ (see [7], Problem 75); this is sufficient to prove above inequality.

By using Lemma 1.5, it is straightforward to complete the proof of Theorem 1.4 (iii) (c). Write $\alpha=m_{e}(T)>0$ and choose $\left\{\alpha_{k}\right\}$ as in 1.5. Choose a strictly decreasing sequence $\left\{a_{k}\right\}$ of eigenvalues of $|T|$ such that $\alpha<a_{k} \leqq \alpha_{k}$ for $k=1,2, \ldots$ (if it is possible to choose eigenvalues a_{k} with $0 \leqq a_{k} \leqq \alpha$ for all k, then Theorem 1.4 (iii) (b) gives a unitary approximant). Let $\left\{f_{k}\right\}$ be a sequence of (orthogonal) unit vectors such that $|T| f_{k}=a_{k} f_{k}$ and put $M=\operatorname{span}\left\{f_{1}, f_{2}, \ldots\right\}$. Because ind $(T)<0$, there exists an isometry S such that $T=S|T|$ and $-\operatorname{dim} \operatorname{ker} S^{*}=\operatorname{ind}(T)$.

If the index of T is finite, proceed as follows. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis for $\operatorname{ker} S^{*}$, where $n=\operatorname{dim} \operatorname{ker} S^{*}$. Define an operator U by $U f_{k}=-e_{k}$ for $k=1, \ldots, n$ and $U f_{k}=-S f_{k-n}$ for $k=n+1, n+2, \ldots$ and $U g=S g$ for g in $H \ominus M$. It is not difficult to see that U is a unitary operator.

Assertion. U is a unitary approximant of T.

Proof. Define $M_{k}=\operatorname{span}\left\{f_{j}: j \equiv k(\bmod n)\right\}, k=1, \ldots, n$; clearly $M=M_{1} \oplus \ldots$ $\ldots \oplus M_{n}$. It is straightforward to verify that each M_{k} reduces $U^{*} T$ and the part of $U^{*} T$ on M_{k} is $-\operatorname{shift}\left(a_{k}, a_{n+k}, a_{2 n+k}, \ldots\right)$. It is also straightforward to verify that the part of $U^{*} T$ on the (reducing) subspace $H \ominus M$ is the restriction of $|T|$ to this (reducing) subspace. Since $\left\{a_{j}\right\}$ is a strictly decreasing sequence, the norm of the identity plus shift ($a_{k}, a_{n+k}, a_{2 n+k}, \ldots$) is $\leqq 1+\alpha$ (cf. Remark 1.6); it follows that $\|T-U\|=\left\|U^{*} T-1\right\| \leqq \max \{1+\alpha,\||T|-1\|\}$. It is not difficult to see that this maximum equals $\max \{1+\alpha,\|T\|-1\}$, which is $u(T)$.

If the index of T is $-\aleph_{0}$, proceed as follows. Let $\left\{e_{1}, e_{2}, \ldots\right\}$ be an orthonormal basis for $\operatorname{ker} S^{*}$. Define the operator U by $U f_{2^{k-1}}=-e_{k}$ and $U f_{2^{k-1}(2 n+1)}=$ $=-S f_{2^{k-1}(2 n-1)}$ for $k, n=1,2, \ldots$ and $U g=S g$ for g in $H \ominus M$. It is not difficult to see that U is a unitary operator.

Assertion. U is a unitary approximant of T.

Proof. For $k=1,2, \ldots$ define the subspace $M_{k}=\operatorname{span}\left\{f_{j}: j=2^{k-1}(2 n+1)\right.$, $n=0,1,2, \ldots\}$; then $M=M_{1} \oplus M_{2} \oplus \ldots$ Each M_{k} reduces $U^{*} T$, and the restriction of $U^{*} T$ to M_{k} is $-\operatorname{shift}\left(a_{2^{k-1}}, a_{3.2^{k-1}}, a_{5 \cdot 2^{k-1}}, \ldots\right)$. Since $\left\{a_{j}\right\}$ is a strictly decreasing sequence, the norm of the identity plus each of these shifts is $\leqq 1+\alpha$. The part of $U^{*} T$ on $H \ominus M$ is the part of $|T|$ on this reducing subspace, and we
can conclude as before that

$$
\|T-U\|=\left\|U^{*} T-1\right\|=\max \{1+\alpha,\|T\|-1\}=u(T) .
$$

This completes the proof of Theorem 1.4.
Theorem 1.4 implies the following result, which applies in particular to weighted shifts and compact operators.
1.7. Theorem. If Tis an operator such that $m_{e}(T)$ is a cluster point of eigenvalues of $|T|$, then T has a unitary approximant if and only if ind $(T)=0$ or $u(T)>1$.

Proof. If $u(T)>1$ and ind $(T) \neq 0$, then Theorem 1.4 (iii) (c) applied to T (or else T^{*}) gives a unitary approximant; if ind $(T)=0$, then 1.4 (i) gives an approximant. The one remaining case is covered by 1.4 (ii).
1.8. Example. The compact operator shift ($1,1 / 2,1 / 3, \ldots, 1 / n, \ldots$) has index -1 and is at distance 1 from the unitary operators by Theorem 1.3 (ii). Hence, by Theorem 1.4 (ii), it fails to have a unitary approximant.
1.9. Example. If S is the (unweighted) unilateral shift and 0 is the zero operator on H, then the operator $S \oplus 0$ on $H \oplus H$ does not have a unitary approximant that is in the von Neumann algebra it generates. Proof: By Theorem 1.3 (i), $S \oplus 0$ is at distance 1 from the unitary operators, and, by Theorem 1.4 (i), it has an approximant. The von Neumann algebra generated by $S \oplus 0$ and the identity on $H \oplus H$ is $\{T \oplus \zeta: T$ in $B(H)$ and ζ a complex number $\}$, and the unitary operators in this algebra are $\left\{U \oplus \zeta_{1}: U\right.$ a unitary operator in $B(H)$ and $\left.\left|\zeta_{1}\right|=1\right\}$. It follows from [7, Problem 119] that $\left\|(S \oplus 0)-\left(U \oplus \zeta_{1}\right)\right\|=2$; hence the algebra fails to contain a unitary approximant of $S \oplus 0$.
1.10. Remark. Theorem 1.4 does not describe all operators that have unitary approximants. For example, if S is the (unweighted) unilateral shift and $0<x<1$, then the operator $S+x$ has index -1 [2, Theorem 7.26], fails to satisfy (a), (b), or (c) of 1.4 (iii) and has the identity as a unitary approximant. A similar anyalysis works for the operator $S^{2}+x$ and fails for the operator $S(S+x)$; the existence of a unitary approximant for $S(S+x)$ is apparently not known.
2. Essentially unitary operators. We shall use the following theorem to prove two results on approximation by essentially unitary operators (i.e. operators whose image in $C(H)$ is a unitary element).
2.1. Theorem. If T is any operator and W is a maximal partial isometry such that ind $(W) \neq$ ind (T), then $\|W-T\|_{e} \geqq 1+m_{e}(T)$.

Proof. It is sufficient to prove this result only for ind $(T) \leqq 0$, since in this case $m_{e}(T) \geqq m_{e}\left(T^{*}\right)$. Hence we assume ind $(T) \leqq 0$.

If $m_{e}(T)=0$, then $m_{e}\left(T^{*}\right)=0$; since $\pi(W)$ or $\pi\left(W^{*}\right)$ is an isometry in $C(H)$, this implies $\|\pi(W)-\pi(T)\| \geqq 1$. Thus we can and do assume $m_{e}(T)>0$.

With these two assumptions, the proof is divided into four cases depending on whether T or W is Fredholm. Write $\mathcal{O}=\left\{\zeta:|\zeta|<m_{e}(T)\right\}$.

Case (i). If both T and W are Fredholm, then $\pi(W)$ is a unitary element in $C(H)$ and $\|W-T\|_{e}=\|\pi(W)-\pi(T)\|=\left\|1-\pi\left(T W^{*}\right)\right\|$.

Assertion. The set \mathcal{O} is included in a bounded component of $\varrho_{e}\left(T W^{*}\right)$.
Proof. Because $\pi(T)$ is invertible and $\pi(W)$ is a unitary element, it follows that $m_{e}(T)=m_{e}\left(T^{*}\right)=m_{e}\left(T W^{*}\right)=m_{e}\left(W T^{*}\right)$. Hence if $|\zeta|<m_{e}(T)$, then both $\pi\left(T W^{*}-\zeta\right)$ and $\pi\left(W T^{*}-\bar{\zeta}\right)$ are bounded below by $m_{e}(T)-|\zeta|>0$; this implies $\pi\left(T W^{*}-\zeta\right)$ is invertible, i.e. \mathcal{O} is included in $\varrho_{e}\left(T W^{*}\right)$. Note that ind $\left(T W^{*}\right) \neq 0$ by the additivity of the index for Fredholm operators. Since the index is constant on components of $\varrho_{e}\left(T W^{*}\right)$ and is zero on the unbounded component, it follows that \mathcal{O} is included in a bounded component. This assertion implies that $r_{e}\left(1-T W^{*}\right) \geqq$ $\geqq 1+m_{e}(T)$; hence $\|W-T\|_{e} \geqq 1+m_{e}(T)$.

In each of the three remaining cases we prove that \mathcal{O} is included in $\sigma_{e}\left(T W^{*}\right)$ because the index is $-\aleph_{0}$ in \mathcal{O}.

Case (ii). If T is Fredholm and W is not Fredholm, then either $\operatorname{dim} \operatorname{ker} W^{*}=$ $=\aleph_{0}$ or $\operatorname{dim} \operatorname{ker} W=\aleph_{0}$.

Assume dim ker $W=\aleph_{0}$. Then W^{*} is an isometry and hence $\|\pi(W)-\pi(T)\| \geqq$ $\geqq\left\|1-\pi\left(T W^{*}\right)\right\|$. Note that $m_{e}\left(T W^{*}\right) \geqq m_{e}(T)$ since $W T^{*} T W^{*}$ is unitarily equivalent to the compression of $T^{*} T$ to the range of W^{*}. Thus Theorem 1.1 implies that if ζ is in \mathcal{O}, then ind $\left(T W^{*}-\zeta\right)=$ ind $\left(T W^{*}\right)$.

Assertion. ind $\left(T W^{*}\right)=-\aleph_{0}$.
Proof. dim ker $T W^{*}<\aleph_{0}$ since W^{*} is an isometry and $\operatorname{dim} \operatorname{ker} T<\aleph_{0}$. The fact that dim ker $W T^{*}=\aleph_{0}$ follows since the kernel of W has dimension \aleph_{0} and the range of T^{*} is a closed subspace of finite co-dimension (since T^{*} is Fredholm); the intersection of any two such closed subspaces has dimension \aleph_{0}. This proves the assertion.

Since ind $\left(T W^{*}-\zeta\right)=-\aleph_{0}$ for each ζ in \mathcal{O}, it follows that $\pi\left(T W^{*}-\zeta\right)$ is not invertible; hence \mathcal{O} is included in $\sigma_{e}\left(T W^{*}\right)$. This implies $r_{e}\left(1-T W^{*}\right) \geqq$ $\geqq 1+m_{e}(T)$, and hence $\left\|W-T_{e}\right\| \geqq 1+m_{e}(T)$.

If $\operatorname{dim} \operatorname{ker} W^{*}=\aleph_{0}$, then $\|W-T\|_{e} \geqq 1+m_{e}(T)$ follows by symmetry since the proof above used only that T^{*} is Fredholm and that $m_{e}(T)=m_{e}\left(T^{*}\right)$, but not the hypothesis ind $(T) \leqq 0$.

Case (iii). If T fails to be Fredholm and W is Fredholm, then $\operatorname{dim} \operatorname{ker} T^{*}=\aleph_{0}$ (because if ker T^{*} is finite-dimensional, then the assumptions ind $(T) \leqq 0$ and $m_{e}(T)>0$ imply T is Fredholm). Hence ind $\left(T W^{*}\right)=-\aleph_{0}$ since $\operatorname{dim} \operatorname{ker} T W^{*} \leqq$
$\leqq \operatorname{dim} \operatorname{ker} T+\operatorname{dim} \operatorname{ker} W^{*}<\aleph_{0}$ and $\operatorname{dim} \operatorname{ker} W T^{*}=\aleph_{0}$. Note that $m_{e}\left(T W^{*}\right)=$ $=m_{e}(T)$ since $\pi\left(W^{*}\right)$ is a unitary element of $C(H)$. Again, Theorem 1.1 implies that ind $\left(T W^{*}-\zeta\right)=-\aleph_{0}$ for ζ in \mathcal{O}, and consequently $\mathcal{O} \subset \sigma_{e}\left(T W^{*}\right)$. Thus $\|W-T\|_{e}=\left\|1-T W^{*}\right\|_{e} \geqq r_{e}\left(1-T W^{*}\right) \geqq 1+m_{e}(T)$.

Case (iv). If both T and W fail to be Fredholm, then $\operatorname{dim} \operatorname{ker} T^{*}=\aleph_{0}$ (for the same reasons as in Case (iii)) and dim ker $W=\aleph_{0}$ (since ind (W) $\neq \operatorname{ind}(T)$). Thus ind $\left(T W^{*}\right)=-\aleph_{0}$ since $\operatorname{dim} \operatorname{ker} T W^{*} \leqq \operatorname{dim}$ ker $T<\aleph_{0}$ (since W^{*} is an isometry and ind $(T) \leqq 0)$ and dim ker $W T^{*}=\aleph_{0}$. Furthermore, $m_{e}\left(T W^{*}\right) \geqq m_{e}(T)$ since $W T^{*} T W^{*}$ is unitarily equivalent to the compression of $T^{*} T$ to the range of W^{*}. Again, Theorem 1.1 implies that $\mathcal{O} \subset \sigma_{e}\left(T W^{*}\right)$. Hence $\|W-T\|_{e} \geqq\left\|1-T W^{*}\right\|_{e} \geqq$ $\geqq r_{e}\left(1-T W^{*}\right) \geqq 1+m_{e}(T)$. This completes the proof of Theorem 2.1.
2.2 Corollary [12]. If T_{1} and T_{2} are isometries such that $\left\|T_{1}-T_{2}\right\|<2$, then $\operatorname{dim} \operatorname{ker}\left(T_{1}^{*}\right)=\operatorname{dim} \operatorname{ker}\left(T_{2}^{*}\right)$.

Proof. For any isometry T, $\operatorname{dim} \operatorname{ker}\left(T^{*}\right)=-\operatorname{ind}(T)$ since $\operatorname{ker}(T)=\{0\}$, and $m_{e}(T)=1$ since $T^{*} T=1$. Thus if $\operatorname{dim} \operatorname{ker}\left(T_{1}^{*}\right) \neq \operatorname{dim} \operatorname{ker}\left(T_{2}^{*}\right)$, then Theorem 2.1 asserts $\left\|T_{1}-T_{2}\right\| \geqq\left\|T_{1}-T_{2}\right\|_{2} \geqq 2$; this proves the corollary.

The next theorem follows from Theorem 2.1 and the results of Section 1.
2.3 Theorem. The set $\{U+K: U$ a unitary operator and K a compact operator\} is a proximinal subset of $B(H)$. For T in $B(H)$, write $v(T)$ for the distance from T to this set; there are two cases:
(i) If ind $(T)=0$, then $v(T)=\max \left\{\|T\|_{e}-1,1-m_{e}(T)\right\}$
(ii) If ind $(T)<0$, then $v(T)=\max \left\{\|T\|_{e}-1,1+m_{e}(T)\right\}$.
(The case ind $(T)>0$ follows from (ii) by considering the adjoint of T).
Proof. We prove the distance assertion and show that each distance is attained, which proves the proximinality assertion.

To prove (i), Let U be a unitary operator such that $T=U|T|$; let K_{1} be the compact operator $E\left[0, m_{e}(T)\right) \cdot\left(|T|-m_{e}(T)\right)+E\left(\|T\|_{e},\|T\|\right] \cdot\left(|T|-\|T\|_{e}\right)$, where $E(\cdot)$ is the spectral measure of $|T|$. Then $\left\|T-U-U K_{1}\right\|=\left\||T|-1-K_{1}\right\|=\||T|-1\|_{e}$, and it is easy to see that this number is equal to $\max \left\{\|T\|_{e}-1,1-m_{e}(T)\right\}$. That this maximum is a lower bound for $v(T)$ is easy to see by using the triangle inequality. This proves (i).

To prove (ii), let S be an isometry such that $T=S(T)$. We shall obtain a lower bound for $v(T)$ and prove it is attained. Since $|T|$ is the sum [2, Exercise 5.17] of a diagonal operator and a compact operator, there exists a compact operator K_{2} such that $|T|-K_{2} \geqq 0, \sigma\left(|T|-K_{2}\right) \subset\left[m_{e}(T),\|T\|_{e}\right]$ and $m_{e}(T)$ is an eigenvalue of $|T|-K_{2}$ of multiplicity \aleph_{0}. Then $\left\|S\left(|T|-K_{2}\right)\right\|=\|T\|_{e}$ and $m\left(S\left(|T|-K_{2}\right)\right)=$ $=m_{e}\left(S\left(|T|-K_{2}\right)\right)=m_{e}(T)$.

If $m_{e}(T)>0$, then T is semi-Fredholm and ind $\left(T-S K_{2}\right)=$ ind $(T)<0$.

Theorem 1.3 (ii) and Theorem 1.4 (iii) (b) then imply that there is a unitary operator U_{0} such that $\left\|T-S K_{2}-U_{0}\right\|=u\left(T-S K_{2}\right)=\max \left\{\|T\|_{e}-1,1+m_{e}(T)\right\}$.

That this maximum is a lower bound for $v(T)$ is easy to see: $v(T) \geqq\|T\|_{e}-1$ by the triangle inequality, and $v(T) \geqq 1+m_{e}(T)$ from Theorem 2.1. Thus $U_{0}+S K_{2}$ is an approximant of T and $v(T)=\max \left\{\|T\|_{e}-1,1+m_{e}(T)\right\}$ if $m_{e}(T)>0$.

If $m_{e}(T)=0$, then $\operatorname{dim} \operatorname{ker}\left(T-S K_{2}\right)=\operatorname{dim} \operatorname{ker}\left(T-S K_{2}\right)^{*}=\aleph_{0} \quad$ and hence ind $\left(T-S K_{2}\right)=0$. Theorem 1.3 (i) and Theorem 1.4 (i) imply that there is a unitary operator U_{0} such that $\left\|T-S K_{2}-U_{0}\right\|=u\left(T-S K_{2}\right)=\max \left\{\|T\|_{e}-1,1\right\} \quad$ (since $\left.m_{e}\left(T-S K_{2}\right)=0\right)$.

That this maximum is a lower bound for $v(T)$ is again easy to see. Hence $U_{0}+S K_{2}$ is an approximant of T, and $v(T)=\max \left\{\|T\|_{e}-1,1\right\}=\max \left\{\|T\|_{e}-1\right.$, $\left.1+m_{e}(T)\right\}$. This completes the proof of Theorem 2.3.

The set of compact perturbations of unitary operators is precisely the set of essentially unitary operators of index zero [1], and the previous theorem shows that this is a proximinal subset of $B(H)$. The next theorem shows that the same is true of the set of all essentially unitary operators.
2.4. Theorem. The set $\{W$ in $B(H): \pi(W)$ a unitary element of $C(H)\}$ is a proximinal subset of $B(H)$. For T in $B(H)$, write $u_{e}(T)$ for the distance from T to this set; there are two cases:
(i) If ind (T) is finite, then $u_{e}(T)=\max \left\{\|T\|_{e}-1,1-m_{e}(T)\right\}$
(ii) If ind $(T)=-\aleph_{0}$, then $u_{e}(T)=\max \left\{\|T\|_{e}-1,1+m_{e}(T)\right\}$.
(The case ind $(T)=+\aleph_{0}$ follows from (ii) by considering the adjoint of T).
Proof. (i) If the index of T is finite, then T can be written $T=W|T|$ with W a maximal partial isometry such that ind $(W)=\operatorname{ind}(T)$; then $\pi(W)$ is a unitary element in $C(H)$. Let K_{1} be the compact operator in the proof of Theorem 2.3 (i). Then $W+W K_{1}$ is an essentially unitary operator, and by the definition of K_{1}, $\left\|T-W-W K_{1}\right\| \leqq\||T|-1\|_{e}=\max \left\{\|T\|_{e}-1,1-m_{e}(T)\right\}$; that this maximum is a lower bound for $u_{e}(T)$ is easy to see. This proves part (i).

To prove (ii), note that Theorem 2.1 implies $\|T-W\| \geqq 1+m_{e}(T)$ for every essentially unitary operator W, and clearly $\|T-W\| \geqq\|T\|_{e}-1$. By Theorem 2.3 (ii) there exists a unitary operator U and a compact operator K such that $\|T-U-K\|=$ $=v(T)=\max \left\{\|T\|_{e}-1,1+m_{e}(T)\right\}$. Hence $U+K$ is also an essentially unitary approximant of T, and $u_{e}(T)=\max \left\{\|T\|_{e}-1,1+m_{e}(T)\right\}$. This proves Theorem 2.4.

Theorem 2.4 together with the following observation shows that the set of unitary elements in $C(H)$ is a proximinal subset in $C(H)$.
2.5. Proposition. If \mathscr{I} is a non-empty subset of $C(H)$ and T is in $B(H)$, then $\operatorname{dist}\left(T, \pi^{-1}(\mathscr{I})\right)=\operatorname{dist}(\pi(T), \mathscr{I})$, and $\pi(T)$ has an \mathscr{I}-approximant if and only if T has a $\pi^{-1}(\mathscr{I})$-approximant.

Proof. The equality of distances is basically a consequence of the definition of the norm in $C(H) \inf \left\{\left\|T-S^{\prime}\right\|: S^{\prime}\right.$ in $\left.\pi^{-1}(\mathscr{I})\right\}=\inf \{\|T-S-K\|: \pi(S)$ in \mathscr{I} and K in $K(H)\}=\inf \{\|\pi(T)-s\|: s$ in $\mathscr{I}\}$.

If $\pi(T)$ has an \mathscr{I}-approximant s, then $s=\pi(S)$ for some S in $B(H)$. Since the set of compact operators (the case $\mathscr{I}=\{0\}$) is proximinal in $B(H)$ ([6], [10]), there exists a compact operator K such that $\|T-S-K\|=\|\pi(T-S)\|$. Then $S+K$ is in $\pi^{-1}(\mathscr{I})$ and

$$
\|T-(S+K)\|=\|\pi(T)-\pi(S)\|=\operatorname{dist}(\pi(T), \mathscr{I})=\operatorname{dist}\left(T, \pi^{-1}(\mathscr{I})\right) .
$$

Conversely, let S be a $\pi^{-1}(\mathscr{I})$-approximant of T. Then $\pi(S)$ is an \mathscr{I}-approximant of $\pi(T)$ since $\operatorname{dist}(\pi(T), \mathscr{I}) \leqq\|\pi(T)-\pi(S)\| \leqq\|T-S\|=\operatorname{dist}\left(T, \pi^{-1}(\mathscr{I})\right)$. This proves the proposition.

If in the above proposition \mathscr{I} is the set of unitary elements in $C(H)$, then Theorem 2.4 shows that the set of unitary elements in $C(H)$ is proximinal.

References

[I] L. Brown, R. G. Douglas, P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of C^{*}-algebras, in Volume 345, Lecture Notes in Mathematics, SpringerVerlag (1973).
[2] R. G. Douglas, Banach algebra techniques in operator theory, Academic Press (1972).
[3] Ky Fan, A. J. Hoffman, Some metric inequalities in the space of matrices, Proc. A. M. S., 6 (1955), 111-116.
[4] P. A. Fillmore, J. G. Stampfli, J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math., 33 (1972), 179-192.
[5] I. C. Gohberg, M. G. Krein, The basic propositions on defect numbers, root numbers and indices of linear operators, in A. M. S. Translations, Series 2, 13 (1960).
[6] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear non-selfadjoint operators, A. M. S. Translations of Math. Monographs, 18 (1969).
[7] P. R. Halmos, A Hilbert space problem book, Van Nostrand (1967).
[8] P. R. Halmos, Positive approximants of operators, Indiana Univ. Math. J., 21 (1971), 951-960.
[9] P. R. Halmos, Spectral approximants of normal operators, Proc. Edinburgh Math. Soc., 19 (1974), 51-58.
[10] R. B. Holmes, B. R. Kripke, Best approximation by compact operators, Indiana Univ. Math. J., 21 (1971), 255-263.
[11] A. S. Householder, Principles of numerical analysis, Dover Publications (1974).
[12] A. Lambert, Equivalence for groups and semigroups of operators, Indiana Univ. Math. J., 24 (1975), 879-885.
[13] D. J. van Riemsdij, Some metric inequalities in the space of bounded linear operators on a separable Hilbert space, Nieuw Arch. Wisk., (3) 20 (1972), 216-230.
[14] F. RiesZ, B. Sz.-NaGY, Functional analysis, Ungar (1971).

