Acta Sci. Math., 39 (1977), 169—174.

Vecteurs cycliques et commutativité des commutants. 11

BELA SZ.-NAGY et CIPRIAN FOIAS

1. Dans la Note I (Acta Sci. Math., 32 (1971), 177—183) on a démontré que
pour toute contraction complétement non-unitaire 7 dans Yespace de Hilbert §,
de classe C.,, la condition

(is) T* admet un vecteur cyclique
entraine que '

(i) T admet un vecteur cyclique,

(ii) le commutant {T} est commutatif.

.Dans la Note présente on va compléter ce résultat comie il suit:

Théoréme. Pour une contraction T de classe Cy,, telle que I—TT* est de trace
finie, la condition (i,) entraine méme que {T} est constitué des fonctions de T, notamment

(i) {TY={u(T): ucH}.

Tout comme dans la Note I, la démonstration sera basée sur des éléments de la
théorie des dilatations.

2. Pour une contraction quelconque T de espace $, désignons par U la dilata-
tion unitaire minimum de T, opérant dans un espace R( 5 9), et par U, la dilatation
isométrique minimum de 7, opérant dans 'espace

) KR, =V UH.

n=0
Soit R la partie unitaire de U, , opérant dans I’espace
R=N Ui, (c R+‘)-

n=0
L’opérateur X=Pg|H (H—~R) et son adjoint X*=P|R (R—9H) vérifient alors
les relations (cf. Note I)
) XT* = R*™X, T"X*=X*R" (n=0,1,..).

Il s’ensuit que R*XHCXH, d’'otl RROXH)cROXD.

Recu le 7. avril 1976, en forme revue et augmentée le 1. novembre 1976.
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Soit R’ Pespace de la partie unitaire de I'isométric R,=R|(RSX9). On a
RyR' =R, RR'=R’, U, R =R’, d’ou il s’ensuit que R’ réduit U, aussi. Or on a
RLXS=PgH, R LS.

'Comme la dilatation U, est minimum cela entraine R’ ={0}. Ainsi dans la condition

@) R, = RO XS # {0}

Topérateur R, est une translation unilatérale non banale (c’est-a-dire de multiplicité
=1). Toujours dans la condition (a), posons

=V R™"R,, R,=R|R;;

nz0
R, est évidemment une translation bilatérale: prolongement unitaire minimum de la
translation unilatérale R,.
Faisons aussi I’hypothése:

(b) T* admet un vecteur cyclique, soit 4.

‘On déduit alors de (2) et (1) que .

‘(3) ng = Pg‘ v T*”h == V R*"r Ol‘l r= Pg;h,
n=0 nz0
@ A=PyR, = VOPmU"'55 V UrPg$ = VOR"'PszS) =V Rr
m= m= j==—oc0

Supposons de plus que
© T est complétement non-unitaire.

Dans ce cas U et par conséquent R ont leurs mesures spectrales EV et ER=EY|R
:absoliment continues. Comme, d’autre part, dans nos hypothéses R contient une
translation bilatérale non banale, nous concluons en particulier que la fonction
(ER r, r) est absoliiment continue et que

d
%) : a() = - (B, >0 pp.
Vu que pour j, k entiers quelconques on a

2n
(Rr, R*r) = f U=ty () dt,
. 0

la correspondance
2 ¢ Rir— 3 c;el-Yu(f)
J J

(pour des sommes finies) est isométrique; en vertu de (4) et (5) elle s’étend par con-
tinuité & un opérateur unitaire
7: R - L¥(0,2n).
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R se transforme par t en Popérateur de multiplication par e* dans L2(0,2m). On
conclut que R est une translation bilatérale simple dans R. _

Comme R, est aussi une translation bilatérale, restriction de R & R;, on a né-
cessairement R, =N, R,=R; ¢f. [H], Proposition L.2.1. Ainsi, R, est une translation
unilatérale simple dans R, et R est une extension unitaire minimum de R,.

Cela étant, envisageons, toujours dans les hypothéses (a)—(c), un A€{T}".
On y peut attacher un B¢ {U,} tel que

© APg = PgB, |B| = |Al,
etona BRCR, C=B|Re{RY; ¢f. Note I, (17). Par (6) on a
) AX* = X*C, XA*=C*X, dou C*YHCXH, CR,CR,.

En posant Cy=C|R, on aura C,€{R,}. Comme R, est une translation unilatérale
simple, cela entraine qu’il existe u€ H= tel que
C, = u(Ry), dou - C|R, = u(R)|R,
Puisque R permute & C et & u(R), et que
R=V R Ry

. n=0
il vient:

® C=u(R),
Par (7) et (8), et par la relation TPg=P, U, entre T et U, il sensuit:

AX* = X*u(R) = Pgu(U,)|R = u(T)Pg|R, (4—u(T))Pg|R =0.
Lorsque T€C.,, on a kerPy|H={0} (¢f [H], Prop. IL3.1) et par conséquent
(Pgl9)*=Pg|R a ses valeurs denses dans $, donc dans ce cas
9 A—u(T) =0, A=u(T).

On a donc démontré le suivant

- Lemme 1. Pour toute contraction T dans 9, de classe C.,, vérifiant les condi-
tions (a)—(c), et pour tout A€{TY on a la représentation (9), avec un uc H*.

Remarque. On aboutit au méme résultat si, au lieu de la condition (c), on
suppose seulement que la partie unitaire de T ait sa mesure spectrale absolument
continue.

3. Afin d’élucider la condition (a) rappelons que pour une contraction 7 quel-
conque dans $ on a les décompositions
K, =9OM, (8) et K, =M, (2)0R
oi 2=(U-T)$, &, =(I-UT"$; ¢f. [H], Chap. L
1l s’ensuit I’équivalence:

{(Pa$ = R} o {Q.: M, (8 - M, (L,) est injectif},
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ou Q. désigne la projection orthogonale de M, (£) a M, (£,). Dans la représentation
de Fourier de Q, (cf. [H], Chap. VI) la derniére condition veut dire que I'opérateur

O :H*(L)~ H*(L)
de multiplication par la fonction caractéristique @ (1) de T est injectif.
Ainsi, la condition (a) est équivalente a la suivante:
(@* il existe h€¢H?*(2), h=0, tel que Oh=0.

Lemme 2. La condition (a*) est vérifiée en particulier dans le cas ot T€Cy, et
I—TT* est de trace finie.

Démonstration. Soit

la représentation spectrale de I—TT* suivant un systéme orthonormal {¢,} de
vecteurs propres, oll p;=p,=...>0.1) Puisque T€C, (cC.,), on a T*¢,#0 et
par conséquent u,<1. Les vecteurs

(11) ‘l’n = (1 _'I'ln)“ll2 T*(pn
forment eux aussi un systéme orthonormal et on a
(12) Pp = (1 _“”)—1/2 T‘pn

De plus, on déduit de (11) et (12)
(13) A=T*T, = 1 —p) BI—-T*T)T*, = (1—p,) *T*I-TT" g, =
= (1=p) 21, Ty = tp¥y.

Considérons lessous-espaces M, de D(=(I— T*T) H)et M, ,de Dps(= I~ TT*) H)
engendrés par les vecteurs ¥, ..., Y, et @y, ..., @,, selon les cas. Notons que par (10)

oo

on a D=V ¢,, tandis que (13) assure seulement que M=V y, est un sous-espace
1 1

de Dy. Soient P, et P les projections orthogonale sde D, sur 9, et I, selon les cas,
et soit P,, la projection orthogonale de D« sur M,,.

On a donc
14) - Pyp—>1Iy, et P,>P (n—o)

Cela étant, considérons la fonction caractéristique de T dans sa forme canonique
(D1, D, O1 (D)}, ¢f. [H], Sec. VL1.1. Soit 4,(4) le déterminant de la matrice

M, () = my;A); jer,..n 00 my;(0) = (O:(DY;, ).

1) Si I—TT* est de rang fini, les sommes dans (10), et dans ce qui suit, s’étendent 2 un nom-
bre fini de termes.
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Puisque O;(0)=—T|Dy, on a
[d,(O)| = |det [(TY;, @), j=1,...al =

= [det [((1 _”j)1/2(pj9 ¢i)]i,j=1 ..... ol = _]]1(1 —llj)l/2 =aq,
j=
ol
a= J[(1—p)"*>0 parce que 3 p; =tr(I—TT*) <eo.
j=1 j

Définissons les fonctions {Dr, D+, O,(1)} par

(15) 0,(Df = P.Or(A)P, [+ 2' (Lo (f€D);

k=n+1
ces fonctions sont évidemment analythues, contractwes, etona

(16) 0,08 = PaOr()*Pug+ 3 (5 0V (26Dp).

k=n+1
Faisant usage de ce que P, et P, sont des projections orthogonales et convergent
suivant (14), on déduit de (15) et (16) que

an 6,(A)f~Or(DHFf (feDr)
(18) 0,.()*g ~ POr(1)*'g (g€Drs)
lorsque 72 . '
Soit w,(4) 'opérateur de M,,, dans M, dont la matrice [(w,(D@;, ¥i)]ij=1,...n
est I’adjoint algébrique de la matrice M, (1), donc telle que

M,(D)w,(}) = w,(HM,(A) = d,(0)1,

ol I, désigne la matrice unité d’ordre n. En fonctions de 4 (JA| <1) toutes ces matrices
sont analytiques et contractives; ¢f. [H], Sec. V.6.1.
Définissons alors les fonctions {Dg, D, Q,(4)} par

(19 Q,(Ng = 0, (NP g +d(D) 3 (8 o) (86D,

k=n+1

Elles sont aussi analytiques, contractives et on a

(20) QDM pourtoutnet A, |A] < 1.
On déduit de (15) et (19):
@0 0,()Q2,()g=4d, (g (g€Dr).

Faisant usage du théoréme de Vitali—Montel on montre qu’il existe une suite
partielle {n,} d’indices telle que d, ,(A) tend dans |4|<1 vers une fonction analytique
d(i) et @, (l) tend (falblement) vers une fonction analytique {Dr+, Dp, QD))
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on a |[d(D)|=1, |d(0)|=a(=0) et Q(1) est aussi contractive. De plus, (20) entraine

(22) QDN

Enfin, (21) entraine, eu égard a (13) et (17), que

23 Or(VQ2(A)g =d(Ng (g¢Dr),
d’ot, en particulier (posant g=0+(2)f),

(24) OrA(QRA)OrM)f-dN)f) =0 (feDy).

Si la condition (a*) n’est pas vérifiée, (24) entraine
Q(N)Or(A)f=d())f pour tout f€Dr,

ce qui, ensemble avec (23), veut dire que ©;(A) admet le multiple scalaire d(4).
Or, cela est impossible parce que T€Cy,.

Cette contradiction prouve que (a*) est vérifiée et achéve la démonstration du
Lemme 2. Les deux lemmes ensemble entrainent le théoréme énoncé au commence-
ment de cette Note.

Remarque. 1. La condition que I—TT* soit de trace finie est vérifiée en
particulier si I—TT* est de rang dr.<<. Des exemples de contractions T€Cy,
avec T* cyclique est Dr« fini (notamment avec d;+=1) ont été construits dans {1],
Proposition 2. (Prendre les adjoints des opérateurs S(@) qui y sont considérés.)
Ces exemples sont quasi-similaires 4 P'adjoint $* de la translation unilatérale simple S.
Il se peut que toute contraction 7T vérifiant les hypothéses de notre théoréme et
avec T™* cyclique soit quasi-similaire & S (probléme ouvert).

2. Lemme 2 n’est pas en général valable si /— 7TT* est compact, mais de trace
infinie, méme si 2' ;1,,<oo pour un exposant p=1. En effet, dans [2] on construit

des contractions Te Co telles que 2 {P< oo pour un p donné d’avance et que ni

T ni T* n’ont pas de valeurs propres. Par conséquent, @ (1) est alors une injection
pour toute valeur de A et (a*) est impossible.
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