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Vecteurs cycliques et commutativité des commutants. II 

BÉLA SZ.-NAGY et CIPRIAN FOIAÇ 

1. Dans la Note I (Acta Sci. Math., 32 (1971), 177—183) on a démontré que 
pour toute contraction complètement non-unitaire T dans l'espace de Hilbert 
de classe C. ls la condition 

(i») T* admet un vecteur cyclique 
entraîne que 

(i) T admet un vecteur cyclique, 
(ii) le commutant {T}' est commutatif. 
Dans la Note présente on va compléter ce résultat comme il suit : 

Théorème. Pour une contraction T de classe C01, telle que I—TT* est de trace 
finie, la condition (i+) entraîne même que {T}' est constitué des fonctions de T, notamment 

(iii) {T}'={u(Ty.uiH~}. 

Tout comme dans la Note I, la démonstration sera basée sur des éléments de la 
théorie des dilatations. 

2. Pour une contraction quelconque T de l'espace désignons par U la dilata-
tion unitaire minimum de T, opérant dans un espace ft(z>§), et par U+ la dilatation 
isométrique minimum de T, opérant dans l'espace 

(1) = v 
nso 

Soit R la partie unitaire de U+, opérant dans l'espace 

« = n C / i f t + ( c « + ) . n£0 
L'opérateur X=PK(§-9î) et son adjoint X*=PS)\'<R (<R-§) vérifient alors 

les relations (cf. Note I) 

(2) XT*n = R*nX, T"X* = X*Rn (n = 0,1,...). 

Il s'ensuit que R*X§>^M, d'où 
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Soit 5R' l'espace de la partie unitaire de l'isométrie l?0=.R|(9î©Ari>). On a 
R0 RW=W, t /+9t ' = 9T, d'où il s'ensuit que 9T réduit U+ aussi. Or on a 

Comme la dilatation U+ est minimum cela entraîne 9T={0}. Ainsi dans la condition 

(a) <R0 = S R e ^ è ^ {0} 

l'opérateur R0 est une translation unilatérale non banale (c'est-à-dire de multiplicité 
s 1). Toujours dans la condition (a), posons 

mo 
Rt est évidemment une translation bilatérale: prolongement unitaire minimum de la 
translation unilatérale R0. 

Faisons aussi l'hypothèse : 

(b) T* admet un vecteur cyclique, soit h. 

On déduit alors de (2) et (1) que 

(3) P^ = Px V T*nh = V R*"r où r = Pnh, 
0 0 

<4). = PKSt+ = V = V U^P^ = V = V RJr. 
msO mso mSO } — « 

Supposons de plus que 

(c) T est complètement non-unitaire. 

Dans ce cas U et par conséquent R ont leurs mesures spectrales Ev et ER=EU |9î 
absolûment continues. Comme, d'autre part, dans nos hypothèses R contient une 
translation bilatérale non banale, nous concluons en particulier que la fonction 
(Et

R r, r) est absolûment continue et que 

(5) «(0 = r) > 0 p.p. 

Vu que pour j, k entiers quelconques on a 
2it 

(Rjr, Rkr) = J £>'(•»-*)'<* (t)dt, 
o 

la correspondance 
2 CjRjr ~ Z • YW) 
j j 

(pour des sommes finies) est isométrique; en vertu de (4) et (5) elle s'étend par con-
tinuité à un opérateur unitaire 

T : 9t -*• L\0,2n). 
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R se transforme par x en l'opérateur de multiplication par e" dans L2(0,27r). On 
conclut que R est une translation bilatérale simple dans SR. 

Comme Rx est aussi une translation bilatérale, restriction de R à 5Rlf on a né-
cessairement 9^=9?, R^R; cf. [H], Proposition 1.2.1. Ainsi, R0 est une translation 
unilatérale simple dans 9?0 et R est une extension unitaire minimum de 

Cela étant, envisageons, toujours dans les hypothèses (a)—(c), un A£{T}'. 
On y peut attacher un B £ {£/+}' tel que 

(6) AP¿ = PSB, \\B\\ = MU, 
et on a £9?<=9Î, C = J B | $ R < = { * } ' ; cf. Note I, (17). Par (6) on a 

(7) AX* = X*C, XA* = C*X, d'où C5R0c9îo-

En posant C0 = C|9?0 on aura C0€{-R0}'. Comme R0 est une translation unilatérale 
simple, cela entraîne qu'il existe uÇ_H°° tel que 

C0 = u(R0), d'où C|9Î0 = k(*)|*O 
Puisque R permute à C et à u(R), et que 

M= Y 
nso 

il vient: 
( 8 ) C = u(R), 

Par (7) et (8), et par la relation 7 7 > S = J P s Î / + entre T et U+ il s'ensuit: 

AX* = X*u(R]) = Ps«(f/+)|«R = u(T)P% 1«, ( ^ -M( r ) )P s | 9{ = 0. 
Lorsque T£ C. l5 on a ker /^ [§ = {0} (cf. [H], Prop. II.3.1) et par conséquent 
( ^ « 1 0 ) * = ^ ! » a ses valeurs denses dans §>, donc dans ce cas 

(9) A — u(T) = 0, A=u(T). 
On a donc démontré le suivant 

Le m me 1. Pour toute contraction T dans de classe C.1( vérifiant les condi-
tions (a)—(c), et pour tout A£{T}' on a la représentation (9), avec un u£H°°. 

R e m a r q u e . On aboutit au même résultat si, au lieu de la condition (c), on 
suppose seulement que la partie unitaire de T ait sa mesure spectrale absolument 
continue. 

3. Afin d'élucider la condition (a) rappelons que pour une contraction T quel-
conque dans 5 on a les décompositions 

ft+=£©M+(£) et = M + ( £ J © 9 1 

où £ = (U-T)Ç), £* = (J^UT*)^- cf. [H], Chap. I. 
Il s'ensuit l'équivalence : 

= {Q+ : M+ (£) - M+ (£*) est injectif}, 
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où Q+ désigne la projection orthogonale de M + (£) à M+ Dans la représentation 
de Fourier de Q+ (cf. [H], Chap. VI) la dernière condition veut dire que l'opérateur 

0 : H*(2) - #2(£J 

de multiplication par la fonction caractéristique 0 (A) de T est injectif. 
Ainsi, la condition (a) est équivalente à la suivante : 

(a*) il existe h£H2(2,), M O , tel que 0h=0. 

Lemme 2. La condition (a*) est vérifiée en particulier dans le cas où T£C01 et 
/ - TT* est de trace finie. 

D é m o n s t r a t i o n . Soit 

(10) ( / - I T * ) A = 2fn(h,(pn)Vn (A€ô) 
n=l 

la représentation spectrale de I—TT* suivant un système orthonormal {<pn} de 
vecteurs propres, où /i1^/i2ë.. .=>0.1) Puisque T£C01 ( c C J , on a T*(pn?i0 et 
par conséquent ¿t„< 1. Les vecteurs 

(11) *„ = (1 - l i n T m T*cp n 

forment eux aussi un système orthonormal et on a 

(12) % = ( l - / 0 - 1 / 2 7 > „ . 

De plus, on déduit de (11) et (12) 

(13) ( J - r T W . = (1 -pn)~v\l-T*T)T*q>tt = (l-nn)-1/2T*(I-TT*)<p„ = 

= (1 - tin)-1/^nT*<Pn = 

Considérons les sous-espaces SK„ de Î>T(= ( t -T*T)$> ) et 9Ji+n de DT , (= (I-TT*)§>) 
engendrés par les vecteurs i /^, . . . , i]/„ et <px, ..., cp„, selon les cas. Notons que par (10) 

on a î ) r *= V <Pn> tandis que (13) assure seulement que 9JÎ=V !K e s t 1111 sous-espace 
i i 

de X>r. Soient P„ et P les projections orthogonale sde Î>T sur 5DÎ„ et 95?, selon les cas, 
et soit P+n la projection orthogonale de î>r* sur 9)î+n. 

On a donc 
(14) et ( n - c o ) . 

Cela étant, considérons la fonction caractéristique de 7" dans sa forme canonique 
{D r , T>T*, 0t().)}, cf. [H], Sec. VI. 1.1. Soit d„(A) le déterminant de la matrice 

M„a) = K-(A)]U=1 „ OÙ mtj(k) = (0T(Wj, q>,). 

*) Si I— 7T* est de rang fini, les sommes dans (10), et dans ce qui suit, s'étendent à un nom-
bre fini de termes. 
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Puisque 0 T ( O ) = - r | î ) T , on a 

\dn(0)\ = \tetmj,<pi)]iJ=l n| = 

= Idet [((1 - H j f ' ^ j , ni = / 7 ( 1 -Cj)112 — 
j=i 

où 

a = JJ (1 -nj)1'2 > 0 parce que 2 Hj = tr(/~ T T * ) < 
y=i J 

Définissons les fonctions {® r , Ï>T», 0„(A)} par 

(15) 0„(A) /= (;.)/>„/+ f ( / , <pk)<pk ( / € D r ) ; 
* = n + l 

ces fonctions sont évidemment analytiques, contractives, et on a 

(16) en(irg = pn0T(i)*p^g+ f (g, <Pk)>h (g^r*)-
k = n+l 

Faisant usage de ce que P„ et PJfn sont des projections orthogonales et convergent 
suivant (14), on déduit de (15) et (16) que 

(17) 6>„ (A)/ — ® r(A)Pf (/€£r) 

(18) e A W g - P e A W g ( g ^ r * ) 
lorsque n — °°. 

Soit a>„ (A) l'opérateur de SOÏ+n dans 9JÎ„ dont la matrice [(&>„ (A) <pj, J = 1 „ 
est l'adjoint algébrique de la matrice M„(X), donc telle que 

Mn{l)oin(X) = co„(A)M„(A) = dn().)ln 

où /„ désigne la matrice unité d'ordre n. En fonctions de A (|A| < 1) toutes ces matrices 
sont analytiques et contractives; cf. [H], Sec. V.6.1. 

Définissons alors les fonctions {ï>r*, ® r , On(A)} par 

(19) Qn(X)g = o>n(k)P±ng+dn(l) f (g, cpk)iljk (gf^T*). 

Elles sont aussi analytiques, contractives et on a 

(20) i2„(A)ï>r*c SCR pour tout n et A, |A| < 1. 

On déduit de (15) et (19): 

(21) 0n(X)Q„(X)g = dn(?.)g 

Faisant usage du théorème de Vitali—Montel on montre qu'il existe une suite 
partielle {nt} d'indices telle que d„ (A) tend dans | / | < 1 vers une fonction analytique 
d(X) et Î2„?(A) tend (faiblement) vers une fonction analytique {î)r*, £>r, Î2(A)}; 
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on a |rf(A)|=sl, | î /(0)|^û(>0) et Í2(A) est aussi contractive. De plus, (20) entraîne 

(22) Î2(/)ÎV* c 9JÎ. 

Enfin, (21) entraîne, eu égard à (13) et (17), que 

(23) 0T(X)Q(X)g = d(X)g (g^r*), 

d'où, en particulier (posant g=QT(?.)f), 

(24) 0 r(A)(i2(A)0 r(A)/-rf(A)/) = O (/€3> r). 
Si la condition (a*) n'est pas vérifiée, (24) entraîne 

ff(A)0T(A)/ = d(X)f pour tout / € $ r , 

ce qui, ensemble avec (23), veut dire que 0T(A) admet le multiple scalaire d(À). 
Or, cela est impossible parce que Td C01. 

Cette contradiction prouve que (a*) est vérifiée et achève la démonstration du 
Lemme 2. Les deux lemmes ensemble entraînent le théorème énoncé au commence-
ment de cette Note. 

Remarque . 1. La condition que I—TT* soit de trace finie est vérifiée en 
particulier si I—TT* est de rang br*<°°. Des exemples de contractions TÇ_C01 

avec T* cyclique est bT* fini (notamment avec b r *=l) ont été construits dans [1], 
Proposition 2. (Prendre les adjoints des opérateurs 5 (0 ) qui y sont considérés.) 
Ces exemples sont quasi-similaires à l'adjoint S* de la translation unilatérale simple S. 
Il se peut que toute contraction T vérifiant les hypothèses de notre théorème et 
avec T* cyclique soit quasi-similaire à S (problème ouvert). 

2. Lemme 2 n'est pas en général valable si I— TT* est compact, mais de trace 
infinie, même si 2 tâ^ 00 pour un exposant /»>1. En effet, dans [2] on construit 

n 
des contractions TÇC01 telles que 2 f1^ 00 P o u r u n P donné d'avance et que ni 

n 
T ni T* n'ont pas de valeurs propres. Par conséquent, 0 r(A) est alors une injection 
pour toute valeur de A et (a*) est impossible. 
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