
Acta Sci. Math.. 39 (1977), 205—231 

Tensor operations on characteristic functions 
of C0 contractions 

H. BERCOVICI and D. VOICULESCU 

By the results of [14], [15] and [1] every contraction T of class C0 acting on 
a separable Hilbert space is quasi-similar to a unique Jordan operator. If T has 
finite defect indices then its Jordan model also shares this property and B. SZ.-NAGY 
and C. FOIA§ proved in [14] that the determinant of the characteristic function of 
T and of the Jordan model coincide in this case. 

Also in the case of finite defect indices, from the work of E. A. NORDGREN 
and B. MOORE ([10] and [8]; cf. also [16]) it is known that the inner functions appear-
ing in the Jordan model of T can be computed from the minors of the determinant 
of the characteristic function of T. 

It is an immediate problem to find characterizations for the inner functions 
in the Jordan model of a general C0 contraction, and to look for special charac-
terizations in the case of weak contractions of class C0 ([13], chapter VIII) when 
the characteristic function has a determinant. 

Also, the determinant being a representation of the unitary group on a finite-
dimensional space, more generally we may perform on the characteristic function 
of a contraction tensor operations of the type associated to irreducible representa-
tions of unitary groups, and ask about the properties of the operators having 
these functions as characteristic functions. 

In the first part of this paper we consider tensor operations corresponding 
to irreducible representations of unitary groups applied to characteristic functions 
of operators of class C„, the main result being that these operations preserve the 
quasisimilarity of the associated operators, provided the given operators have 
equal defect indices. This assertion is also adapted for the case of unequal defect 
indices, using impure characteristic functions. 

As a corollary we characterize the inner functions in the Jordan model of 
a C0 contraction by means of the smallest scalar inner multiples of the exterior 
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powers of the characteristic function. We also obtain estimates for the defect ope-
rator of a C0 contraction in terms of the Jordan model. 

In the second part of the paper we construct higher order algebraic adjoints 
of the characteristic function of a weak contraction. This enables us, using the 
results of the first part, to extend the above mentioned result of E. A. Nordgren 
and B. Moore to the case of weak contractions of class C0. 

We also prove that the determinant of the characteristic function of such a 
contraction is an inner function. 

Using the results of the first part concerning defect operators, we prove that 
a C0 contraction is a weak contraction, if and only if its Jordan model is a weak 
contraction. This extends a result of L. E. ISAEV [5] on dissipative operators, which 
via Cayley transform (see [13] ch. IX) shows that a C0 contraction with Jordan 
model S(ma), ma().)=exp(—a(\ +)-)j(\ — A)) (a>0), is a weak contraction. 

Parti 

§ 1. Notation and preliminaries 

1. We shall consider separable (finite or infinite dimensional) Hilbert spaces 
over the complex field C. 

We shall denote by ft, ... Hilbert spaces; ( . , . ) will denote the scalar product 
in any such space. If 3) is a subspace of § we denote by P^ the orthogonal projection 
of § onto 9) and by or §©?) the orthogonal complement of 5). (M)~ denotes 
the norm-closure of the subset M c § . If {Yx}x(A is a family of subsets of V Yx 

will denote the closed linear span of (J Ya. XV Y will denote the closed linear 

span of X\j Y. 
If § and ft are Hilbert spaces we shall denote by § ® ft their tensor product, 

which is also a Hilbert space. Recall that 

(1-1) (f®g,f'®g') = ( f , n ( g , g ' ) for / , g € S , / ' g W . 
§®n will denote the tensor product $<8>ij®... <8>§ (n times). 
We denote by (§, ft) the linear space of all linear bounded operators 

X: § - f t , Se(§)=if(§, §). If S is any subset of •£?(§), (5) ' denotes the commutant 
of S. •?/(§) denotes the group of unitary operators on 

If the operator r„ ( r )6^(§®") is determined by 

(1.2) r„(T) (h^hz® ... <8>h„) = Th1®Th2® ••• ®Thn, (1 ^ j ^ n ) . 

The map r„ is multiplicative, commutes with the *-operation and restricted 
to is a unitary representation. 
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2. Let us recall that H°° is the Banach algebra of bounded analytic functions 
in the unit disc / )={z£C| | z |< 1}. We denote by HT° the set of inner functions in 
Hthat is m £ / / ~ if and only if m has (<#-)almost everywhere radial limits m(ek) 
of modulus one. We shall abuse notation sometimes, writing m=m' for two inner 
functions such that m/m' is a constant (of modulus one). 

If {/a}aex is a family of //"-functions, not all 0, we denote by A fa the greatest 
aZA 

common inner divisor of the functions fx. 
Consider also the Hardy space H 2 and, for a Hilbert space the vector-valued 

Hardy space H2(§>) which can be identified with §<g>//2. 
If reJ2?(fj) and S£&(H 2 ) we shall consider T<g>S as an operator on / / 2(§) . 

For /6 / /°°(§) , g€//°°(ft) we shall denote (somewhat ambiguously) by f®g the 
element of / / 2 ( § (g>ft) defined by 

(1.3) ( / ® g ) ( z ) = / ( z ) ® g ( z ) , z£D. 

For any two Hilbert spaces ft the operator-valued Hardy space (§, ft)) 
is the set of all bounded, ft)-valued analytic functions in the unit disc. 

A function ft)) is contractive if | | 0 ( z ) | | s l , z£D. Any function 
ft)) may be considered as an element of ¿?(//2(§), / /2(ft)) that com-

mutes with scalar //"-multiplications. 
We say that two functions 

© ^ / / " ( . s m , « , ) ) 0 = 1,2) 

coincide if there are unitary operators U: §>i-"-§2> fti—ft2 such that 02(1) U= 
= V01(X)ioi alU(E D. 

A function 0i//°°(j5?(§, ft)) is inner if it is isometric as an element of 
i?(/ /2(§), //2(ft)). 0 is * -inner if the function 0 ~ defined by 

(1.4) 0~(z ) = 0(z)*, z£D 

is inner. 0 is two-sided inner if it is simultaneously inner and *-inner. We denote 
by Hr(j£f(£, ft)) the set of two-sided inner functions in //"(,£?(§, ft)). 

For any @£H"(Se{$)) we denote by T„(0) the element of //"(¿?(§®n)) 
defined by 

(1.5) (r„(0))(z) = r n (0 (z ) ) , z£D. 

If 0 €//"(.£?(§)) then r„(0)6//~(j5?(S®n))-

3. For any 0 C / / " ( i f (§ ) ) we define 5 ( 0 ) as the operator acting on 

(1.6) § ( 0 ) = / / 2 (§ ) e 0 / / 2 ( S ) 
and defined by 
(1.7) (,S(0)*«)(Z) = 2-1(M(Z)-«(O)), Z€D, U£§(0) . 
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If 0 is pure then it coincides with the characteristic function of S(0) and in 
this case dim 5 equals the defect indices of S(0) [13]. Recall that, for a contraction 

i f (ft), the defect operators are DT = (I-T*Tf'\ DT*=(1— TT*)V2 and the 
defect indices b r , br* are the ranks of DT and DT„, respectively. 

Let nT denote the multiplicity of T, i.e. the least cardinal of cyclic sets for T. 
We shall need the lifting of commutants theorem of [13] in the following form. 
If <9'<Efli-(jS?(S0) and JS?(§(0)> §(©')) satisfy the relation 

S(0')X = XS(0) 

then there is an $,')) such that 

(1.8) A0H*(%) c 0'H2(&) and 

(1.9) Xh = P6mAh, 

The operator A'is one-to-one if and only if, for h£H2($y), 

(1.10) h£0H2(Z>) <=> Ahe0'H2(&), 

and has dense range if and only if 

(1.11) AH*{$) V 0'H\$>') = №(§')• 

Let us recall that X is called a quasi-affinity if it is one-to-one and has dense range. 
The operator S(0) is of class C0 if and only if 0 has a scalar multiple, that is, if 

(1.12) 0H*(%)z>mH2№ 

for some m^H". The minimal function of T= S(0) is then the greatest common 
inner divisor mT of the functions m satisfying (1.12) [13]. 

A Jordan operator is an operator S(0) determined by a function of the form 

m, 0 
W o 

0 = 

where m^HT' and mj+1 divides mj for each j. We shall denote it also by S(M), 
M= {mj}"=1. By the results of [14], [15], [1] every C0 contraction acting on a separable 
Hilbert space is quasisimilar to a unique Jordan model S{M). 

4. For a finite group G we shall denote by C*(G) the C*-algebra of 6 [2], 
and by G the set of all (equivalence classes) of irreducible unitary representations 
of G. The elements of C*(G) will be written in the form 2! ca S where cg€C, so that 

»EG 
for any unitary representation n of G the associated representation of C*(G) is 
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given by 
n ( Z c » g ) = 2 cgrt(g). g€G giG 

Let <S„ be the group of permutations of the set {1,2, ...,«}. The group <S„_1 

will be identified with the subgroup of <S„ consisting of those permutations of <Z„ 
that leave n fixed and C*(<»„_!) will be considered as a sub-algebra of C*(S„). 

<3„ is known to be in one-to-one correspondence with signatures r = ( i 1 s . . . Si„)> 
n 

tj non-negative integers, £ tj=n, and the corresponding minimal central projections 

px of C*(<5„) are given by the central Young symmetrizers [18], [6], [9]. It is known [17], 
Ch. V, § 18, that an irreducible representation of signature 
restricted to ®„_x contains the irreducible representation of signature T'=(t^ ^ f2' ^ . . . 

if and only if 

(1.13) tx S t[ ^ h ^ ti ^... S i„_x £ C l ^ t„ 

(this will be written T'-<T) and that the multiplicity of T' is one in this case. 
Consider now a Hilbert space ft. On ft®" there is a unitary representation 

n„ of £>„ given by 

(1 .14) Tt„{&)(k1<Si...<Sikn) = ka-im<8)...®ka-iM, cr£<5„. 

By one of the basic results of HERMANN WEYL ([18], [6], see also [11], [7] for the 
adaptation to the case when dim ft is infinite) we have 

(1 .15) (R„(^(ft)))' = (R„(^(ft)))' - Tt„(C*(&„)). 

The irreducible representations of ®(ft) which will be considered are also 
labelled by signatures, so we shall first make a convention. A signature will be 
a decreasing sequence •••) of nonnegative integers, of finite or infinite 
length !.(%)• By ¿(T) we shall denote the number of nonzero elements among the 

/(t) 
t/s and |T| will stand for 2! tj-

j=i 
Thus for instance the set <5„ is in a one-to-one correspondence with those 

signatures R for which ¿(T) = | T | = « . TWO signatures T=( / 1 ^ / 2 —•••) and %' = 
= ( / 1 ' ^ I 2 ' a r e essentially equivalent if ¿ ( T ) = I ( T ' ) and tj = tj for j= 1, 2, . . . , I(r). 

For a signature t with Z(t)=dimft, there corresponds an irreducible 
representation gz of <25f(ft) on a Hilbert space ft1 (these are the irreducible represen-
tations of "positive" signatures; cf. [18], [6] for the case dim ft<°° and [11] for the 
extension to the case dim ft=oo). 

The representation gz can be defined as follows: consider f , the signature of 
length |t| essentially equivalent to t , and let q~x be any minimal projection in C*(G|l() 
such that Then qz is defined as the restriction of to 7t|t|(^{)ft0ltl. Clearly 
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Qx extends to a multiplicative homomorphism of the multiplicative semigroup 
if (ft) which is holomorphic. Also clearly the restriction of r | t | to 7T|t|(/'t)ft®|t| 

is a finite multiple of qx. 
Another classical fact we need is that for T with Z(R)= |T| —n we have nJip^^Q 

if and only if ¿(r)Sdim ft. 

§ 2. Tensor operations on operator-valued functions 

Let ft be a Hilbert space. For any fceft we shall consider the map Tk: ft®"— 
- f t® ( n + 1 ) defined by 

(2.1) ^ ( f c j O M - ® ^ = fei<Si...<8»fen®A:. 

Clearly Tk is proportional to an isometry and 

(2.2) Tt(k1®...®kn+i) = (kn+1,k)k1®...®kn. 

Lemma 2.1. Consider two signatures T ' - < T , L{T') = \X'\ =n, /(T) = |T| =« +1 
such that i ( r ) sd im ft. Then we have: 

(2.3) v rc„Gv№„+1G>r) ft®<"+1> = «„Ov)*®". 
Icgfl 

Proof . Let us denote by 5 the space on the left hand side of (2.3). Then g is 
7rn(S„)-invariant and (ft))-invariant. 

Indeed, for <7£<3„ we have 

rcn(PtO^*rc„+i(>TK+i(<x) = nn(o)nn(px,)T£ nn+1(px), 

sincepx-,px commute with C*(S„) and Tknn{a)=n„+1{a)Tk. Also, 

© 5 = n K e r K + 1 (Vx) Tk nn Ov)] k£St 
and for any £/£<^(ft) we have 

r„(U) Ker[nn+1(px)Tkn„(px,)] = Ker [nn+x(pt)TVkn„(pt.)] 

so that ft®"e 5 is invariant for r„(^(ft)) and hence so is g. 
Therefore Ps€(nH(C*(®B))u/,

1I(,»(ft)))' and P ^ n n { p x ) . Hence by Hermann 
Weyl's theorem and because of the minimality of px. in the center of C*(S„) either 
Pg=0 or =7r„(/v). So it will be sufficient to prove that g ^ {0}. 

Observe that n„(px')Tknn+1(j)x) = TkTt„+1(px.px). On the other hand, px is the 
central support of px.px in C*(®„+1) as explained in the next paragraph. Thus, 
from nn+1(px)?£0 we infer nn+1(px.px)^0. Now P) Ker T* = {0} so we can find 

k£K 
£€f t such that T*n„+1{px.px)^ 0. 
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If G is an irreducible representation of the finite-dimensional C*-algebra A, 
there is a minimal central projection p of A such that ker £>=(1 —P)A. Let A1CA2 

be finite dimensional C*-algebras with Qi irreducible representations 
of AT, and PI the corresponding minimal central projection of AI (/=1,2). Then 
q2\A1 contains qx if and only if PiP^^O- Indeed, if e^l-^i contains Qt we 
obviously have ker ( e ^ J c k e r £>1; so that P i P ^ O (since px (£ ker q^. Conversely, 
if PIPZ^O the two-sided ideal J= {x£AX; PIP2X=0} of A1 contains ker G1 and 
PIIJ. Since G1 is irreducible and AX is finite-dimensional, ker Q1 is a maximal 
ideal of A1} so that / = k e r g v It follows that ker (g2Mi)c:ker GX and this in turn 
implies that g2Mi contains 

This completes the proof. 

Lemma 2.2. Consider two signatures T ' ^ T , Z ( R ' ) = | R ' | = N , Z(T) = |T |=W+1 , 
such that ¿(r)sdim 9K and let 0(LH"°{<£{9Cj). For any we have: 

(2.4) ( ( ^ P . ' № N N + 1 ( P R ) ) ® I N > ) R N + 1 ( 0 ) H * ( ^ N + 1 ) ) C Z 

Proof . Clearly both terms of (2.4) are invariant with respect to multiplication 
operators by scalar //"-functions. Hence it is easily seen that it will be enough 
to prove that a function of the form 

z - nn(px,)T*nn+i{px) ®... ® 0(z)kn+1) 
is in 

{nn(pz,)®IH*)r„(0)H*(S<n-

Writing pT= 2! coa the assertion becomes obvious from the following compu-

tation: 
«,,GV№,,+I(PT) ® - ® @(z)kn+1) = 

= nm(Pf)7? 2 ca(0(z)ka-im®Q(z)K-i(n+1)) = 
»e®n+i 

= 2 ca{0{z)kc-Hn^,k)nn<j?t)rn{0{z)){ka-im®...®ka-xw): 

Let us now consider 0€//°°(^f(ft)) and let r be a signature with | r |< °° and 
Z(r)=dimft. Consider also f, the signature of length |T| essentially equivalent 
to T. We define an inner function dT(0) by 

(2.5) d<(0) = A {m€//r |m// 2 ( f tO c (0 I(0)/ /2(f tO)"} 

(by convention we put A 0 = 0, 0 -the empty set). 
Remark that in case 0 is an inner function, Qz(&) is still an inner function and 

d\0) is the minimal function of S(gx(0)) in case £>t(@) has a scalar multiple and 
zero otherwise. In case T is of the form (1,1, ..., 1,0, ...) with j nonzero terms, 
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that is, qx is the representation in antisymmetric tensors of degree j, we shall use the 
notation dj{&) for dz{0). 

Since the restriction of to 7t|r|(/7j)ft0|r| is a multiple of g t , we have 

(2.6) d\0) = A{m6frr|mfr«(ji,t,(ft)jl»W) c 

c ( r | t | ( 0 ) i P ( 7 T M ( p ? ) f t ® l < l ) ) - } . 

For the next lemma let i', T be signatures with \t'\=n, | i | = « + l (n finite), 
¿(t')=l(r)=dim ft and such that denoting by f' and f the signatures of length n, 
N +1, essentially equivalent to T', T, respectively, we have 

L e m m a 2.3. For 0 in #~( i? ( f t ) ) and %', T as above, d*(0) divides d\0). 

P r o o f . Consider such that 

m ^ ( 7 t n + 1 ( ^ î ) f t ® ( « + 1 ) ) c ( r n + 1 ( 0 ) i / 2 ( 7 r n + 1 ( p E ) f t 0 ( " + D ) ) - . 

It follows from Lemma 2.2. that 

m( V ( K O < 8 > / f l S ) ^ 2 (« n + 1 ) ) - c 
tea 

c {(nn(pr)®lH*)rn(0)H\Wj)- = (rn(0)H*(nn(pr)W))-

and hence by Lemma 2.1 

m/P(7rn(pr)ft®") c (rn(0)H*(Kn(pr)R®»))-

so that by (2.6) d* divides m. Q.E.D. 
Let us also record the following simple fact for further use. 

R e m a r k 2.4. Let Xt, 9), (i'= 1, 2) be Hilbert spaces, t,-, ?)()), 
9)2)), £(z)=A1(z)®A2(z) (ZÇD) and suppose F Ç { A f l X ^ ) ~ fl 

f l / / - (?) , ) . Then we have f 1 ®f^(BH 2 (X 1 ®X 2 ) ) ' . Indeed, consider h^iH^&d 
such that 

lim WAth^—fiW = 0 in H ' m . 
00 

Then in 

we have lim / i | m ) ) - / i ®A 2 h^ \ \ = 0 
n-«-co 

and 
lim \\fi®h-f1®A2him)\\ = Q m-*-oo 

which is the desired result. 
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For the following theorem consider 0eH°°(£C(R)), 0'€#~(jSP(ft ')) and 
suppose there are A£H°°(£e(R, ft')). ft)) such that the following 
set of relations holds 

(2.7) 
A0H\S<) c ( 0 7 / 2 ( f t ' ) ) " , 

B0'H2(&') c ( < 9 # 2 ( f t ) ) - , 

BAH2 (ft) V 0H2 (ft) = H2 (ft). 

T h e o r e m 2.5. Let 0, 0', A, B be as before and suppose (2.7) holds. Let further 
x, T' be essentially equivalent signatures with /(T) = dim ft, ¿(r ')=dim ft', |T[< 
and i(T)=i(T')Smin (dim ft, dim ft'). Then d\0) divides dl'(0'). 

Proof . If dt'(0')=0, the assertion of the theorem is obvious, so assume 
dx'(0')=m£H™. Let f denote the signature of length « = | r | that is essentially 
equivalent to T. 

Consider / i , / 2 , . . . , /„£/7 °°(ft), g l , g2, g„Çff~(R) and 
(2.8) s = (nn(j>i)®IH*)((BAf1+0g1)®...®(BAfn+0gn)). 

Using (2.7) it is easily seen that the elements s form a total subset of H2(7tn(p,)ft®"), 
so that it will be sufficient to prove that 

(2.9) ms£{rn(0)H2(ir„^)ft®«))-. 

Now, s is a finite sum of elements of the form 

(2.10) r = ((n„(pi)nn(a))®IH2)(BAfi®...®BAf;®0g'1®...®0g'„_J) 

where 0 ^ j ^ n , <5„ a n d / / , g'. are some of the f and g. Thus to prove (2.9) it will 
be enough to show that 

(2.11) mr € (r„ ( 0 ) H2 {nn (pi)ft®n)) ~ • 

Because 2 P y
= l and <Sj is considered as a subgroup of S„ (J=n), we have 

yiêj 
2 and PïPy^0 if and only if the restriction of the representation of 

yiSj 
signature T to <Zj contains the representation of signature y. So, PfPy^O if and 
only if there are yk£ Qk (j<k<n) such that 
(2.12) y<yJ+i<-<yn-i<*-

Hence denoting by y the signature of length dim ft' that is essentially equivalent 
to y, using Lemma 2.3 several times we conclude that dr'(0') divides dT'(0')=m. 

Now we have: 
mr = 

= KiPi)"-^)®/«') 2 (m(TZj(py)®IB*)(BAf;®...®BAf;))®(0gi®...®0g'n_j). 
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To end the proof it will be sufficient to show that 

m(n}(j>y)<g> 7Ha)(BAfi<8>...<8>BAfj) is in ( r , (0)# 2 («®'0)" , 

because then using Remark 2.4 we will have that mr is in 

which is the desired result. 
Now further m{iij{py)®IHt){Afl®... ®Afj) is in dy (0')H2(nj(py)S\'0J), since 

i f ' (0 ' ) divides m, and hence is in (rj(0')H2(nj(py)${ ,@j))-<z(rj(e')H2{S< ,@J))-. 
Thus it will be sufficient to prove that 

(rj(B)rj(&')H2(&'®j))- c (rj(&)H2(S{®J))~ 
in order that 

m (7ij(py) ® /„.) {.BAfi ®BAf'j) 6 ( r , (0) 

To this end remark that the elements of the form B0,h1®...®B0'hJ with /¡^//"(SV) 
are total in (rJ(B)rj(0')H2(9.,e'j))- and 

BG'h1®...®BG'hj£(rj(0)H*(№'j)-

because fo (2.7) and Remark 2.4. Q.E.D. 

§ 3. Applications to quasi-similar C0 operators 

The following Proposition is an easy application of Theorem 2.5. 

P r o p o s i t i o n 3.1. Let 0 6 / / ¡ " ( I F ( f t ) ) , 0 ' £ # ; ° ( I F ( f t ' ) ) and let T, T' be essen-
tially equivalent signatures with L(x) = dim ft, ¿(T') = d imf t ' and ¿(T)=I(T')^ 
^min (dim ft, dim ft'). If S{0) and S(0 ' ) are quasi-similar, we have 

(3.1) d\0) = ^ ( 0 ' ) . 

Proof . Let X and Y be two quasi-affinities such that S(0')X-XS(0) and 
S(0)Y=YS(0'). From the lifting theorem (see (1.8—11)) it follows that we can 
find ^e / /°° ( i f ( f t , ft')) and 5 € # ~ ( i f ( f t ' , ft)) such that 

(3-2) Z = i > s ( e . ^ | § ( 0 ) , y = P S ( e ) 5 | § ( 0 ' ) , 

(3.3) A0H2(${) c 0 '# 2 ( f t ' ) , j30'ff2(R') <= 0 # 2 ( f t ) 

and 

(3.4) ABH2(${') V 07/2(SV) - H2(R'), BAH2{$<) V 0H2(S\) = # 2 ( f t ) 
so that the assumptions of Theorem 2.5 are satisfied. It follows that dz(0) divides 
dz\0') and d*{&') divides d\0) and this proves (3.1). Q.E.D. 
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Let T be any operator unitarily equivalent to some S(0) with a pure 
0 € H~(£?{Si)). It is easy to see that the functions d\0) and dj(0) depend only on 
Tand not on the particular function 0 , so we shall denote them by d\T) and dj(T), 
respectively. 

Co ro l l a ry 3.2. If T and T' are two quasisimilar C0 operators and b r =b 7 . , 
then d\T)=d\T') for each r with ¿ ( r )=b r . 

Proof . T and T' are unitarily equivalent to S(0) and S(0'), respectively, 
where 0'€#~(j§P(ft')) with dim ft=dim ft'=br. The corollary 
obviously follows from Proposition 3.1. Q.E.D. 

Consider now a C0 operator T with Jordan model S=S(m1)@S(m2)@... . 
If b s < b r we shall put m} = \ for b s«=/'sb r . So we have 

(3.5) S = © S(mj). 
j=i 

Coro l l a ry 3.3. For any C0 operator T and any signature t = (i1^i2S...), 
| t |<°°, ¿(x)=b r , we have 

(3.6) d1(T) = m,
1*m,f,...,m!r, n = ¿(T). 

Proof . We have only to apply Proposition 3.1 to 0 coinciding with the charac-
teristic function of T and to 

0 ' = diag (/«!, m2, . . . )€i/~(if(ft ' )) with dim ft' = b r . 

Since t = (i1fei2s. . .) represents the highest weight to the representation qx 

(see [18], [6] to the finite-dimensional and [1] for the infinite-dimensional case) 
it is immediate that: 

dl{0') = m\\ ...,m'n". Q.E.D. 

Coro l l a ry 3.4. For any C0 operator T, the functions m} appearing in the Jordan 
model can be computed as 

(3.7) rtij = dj(T)/dJ„1(T), 1 where d0(T) = l. 

Proof . The preceding Corollary gives for T;=(l, ..., 1, 0, ...) (with j nonzero 
terms) 

dj(T) = d*j(T) = mx ... mj, j Si b r 

so relation (3.7) becomes obvious. Q.E.D. 
Since the quasisimilarity class of a C0 operator is determined by the Jordan 

model, Corollary 3.4 shows that a C0 operator T is determined up to quasisimilarity 
by the least inner multiples of the exterior powers of any function coinciding with 
the characteristic function of T. This enables us to prove the following theorem. 
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T h e o r e m 3.5. Let 0£Hr(g(R)), be such that d/0)^O . 
and dim ft=dim ft'. If S(0) and 5 ( 0 ' ) are quasisimilar then S(qX(0)) and S(gX(0')) 
are quasisimilar for each signature x such that L (T) = dim ft, |T|< °O. 

Proof . By Corollary 3.4 we have only to show that dj{fix{0))=d/Qx(0')) 
for each / 'sdim ft*. Let Xj = (l, 1, ..., 1, 0,.. .) (with j nonzero terms), ¿(T,) = dim ftT. 

The representation QXJOQX of ^ ( f t ) is a subrepresentation of the representation 
of ^ ( f t ) on ft®j|t| and hence a finite direct sum of representations QX., with L{t') = 
=dim ft, |T'|<O°: 

(3.8) = 
t-

From (3.8) it follows then that 

etXe,(0)) = ® eA&), eZJ{e,(&')) = ® eA&l 

and hence d/fix{0)) is the least inner common multiple of the d^(0) and dj{gx{0r)) 
the least inner common multiple of the d^iQ'). Since dz\0)—dz\0r) by Proposition 
3.1, we infer that dj{Qx(0))=d/Qx{0')). Q.E.D. 

§ 4. Defect operators of C0 contractions 

For an operator A^JC(it) and a closed subspace SJicft we consider 

yM,9H]= inf \\Ak\\, y/A) = sup 
U*U-1 codim 2J!=j —1 

As is known from the minimax principle, y/A) (1 Sj '^dim ft) are eigenvalues 
of (A*A)V2 in increasing order. In case dim ft< °° all eigenvalues of (A*A)1/2 repeated 
according to their multiplicity appear in the sequence of the y/A). In case dim ft = 
y/A) is the least eigenvalue of (A*A)1/2, discrete eigenvalues smaller than the least 
essential eigenvalue appear in increasing order repeated according to their multipli-
city and the sequence becomes stationary if the least essential eigenvalue of (A*A)1/2 

is reached. 
For the next two lemmas, Xj denotes the signature 

T ,=(1 , . . . , 1 ,0 . . . ) , ¿(T;) = dimft, ¿(t J)=j. 

Lemma 4.1. Let A and Xj be as above. Then we have: 

(4.1) yi(Q*M)) = y1(A)y2(A)...yj(A). 

Proof . Remark first that applying QXJ to the polar decomposition of A we get 
the polar decomposition of QXj(A), SO we can suppose A is positive. Moreover, in 
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view of the minimax definition of y}, we have \yJ{À) — yj{B)\^\\A—B\\, and thus 
by continuity it will be sufficient to consider the case when A £ 0 has finite spectrum. 

In this case, gtJ being the representation in antisymmetric tensors of degree 
j, QtJ(A) has finite spectrum, the eigenvalues being products ?.1..J.J- of eigenvalues 
of A, a given eigenvalue appearing in such a product at most a number of times equal 
to its multiplicity. Clearly yi(A)...yj(A) is then the least eigenvalue of grj(A). 

Q.E.D. 

Lemma 4.2. Let T bea C„ operator, let 0 €#"(.£?(&)) coincide with the charac-
teristic function of T and let {m^llj be inner functions for the Jordan model of T with 
nij = 1 for nT~^j=bT. Then we have 

(4.2) 7l(0(A))...yy(0(A)) s \m1(X)...mj(X)\ 

where 1 and AÇD. 

Proof . In view of Corollary 3.3, mx...mj is the least inner multiple of pTj(0)£ 
£Hr(se(SÇj)). Hence there is a contractive function such that 

Q ( A ) < ? T J ( E ( A ) ) = M 1 { X ) . . . M J { X ) I N Z J . 

Since ||Q(A)||^1 this clearly implies 

Vi(<?t,(©(A))) — I mi(X)...mj{X)\ 
and by Lemma 4.1 

S Vi(0(A))•••yJ(0(A)), 

which gives the desired inequality. Q.E.D. 

P r o p o s i t i o n 4.3. Let T be a C0 operator acting on §> and {m})J=1 inner func-
tions for the Jordan model of T, with mj=l in case nT<j. 

a) If ¿ ( 1 - K ( 0 ) | ) < o = , then tr ( / - r * T ) < ~ . 
j'=i 

b) If lim |Wj(0)| = 1, then I-T*T is compact. 

Proof , a) The assumptions are that the Jordan model S=S(m})®S(m2)®... 

is a weak contraction ([13] ch. VIII) since tr (I-S*S)= ¿ ( l - | m / 0 ) | 2 ) ^ 
j=i CO 

= 2 2 (1— |Wj(0)[)< As usual for weak contractions there will be no loss of gene-
j=i 

rality to assume that m/O) (one uses a conformai automorphism of the unit disc as 
oo 

in [13] ch. VIII). Thus the infinite product JI\mj(0)\ converges to some c>0. Hence 
J-i 

by Lemma 4.2 for 0 the characteristic function of T, we infer that 

n 7/0(0)) >0. 
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Since in case b r = ° ° this implies lim y7(0(O))=l, it follows that 

t r ^ - 0 ( 0 ) * 0(0)) = 2 (i-?y(0(O))2) 
1 3j=5t>T 

and 
2 ( l - y ; ( 0 ( O ) ) 2 ) < ~ 

since 
N 7^(0(0)) > 0. But / I t - 0 ( 0 ) * 0(0) = D\\T>T, isjst>T 

so that t r ( I—T*T)<°° . 
b) The proof is quite similar to that of a), so we can be brief in details. Again 

we may suppose T is invertible and hence w ; (0)^0. Then lim |w/0)| = 1 gives 

lim Im^O) ... m /(0)|1/j = 1. j-CO 

Using Lemma 4.2 this implies 

l i m ( y i ( 0 ( O ) ) . . . y , ( 0 ( O ) ) ) 1 / j ' = l j —oo 

so that lim ( 0 (0)) = 1 which gives that I—T*Tis compact. 
Q.E.D. 

R e m a r k 4.4. As we shall see in § 8 the converse of 4.3 a) is also true. For 
4.3 b) the converse is in general false. An example can be constructed as follows. 

Let /i be a finite non-negative measure on [0, 2N], singular with respect to 
Lebesgue measure and without atoms. Consider the inner functions 

f 2y/" ei>+; 1 
m;,„(;.) = exp - J ——dn(t)\, 1 S j S i l 

L 27iO'-i)/n e J 
and the operators 

T= © ( © S(m ; , n) l S = S(m l f l) © S(mltl) © .... 
n = l Vj = l / 

Then Sis the Jordan model ofT,I—T*Tis compact and [/«x,i(0)|, |wM(0)|, ... tends 
to K x ^ l ^ l . 

P r o p o s i t i o n 4.5. Let T be a C0 operator, let {mj}J=1 be inner functions for 
the Jordan model of T (w, = l incase ¡iT<j) and let 0dH"(i?(5V)) coincide with the 
characteristic function ofT. Suppose moreover m/0)^0 and w^N is such that |mn(0)|< 
< lim |wy(0)|. Then the following conditions are equivalent: 

(i) K ( 0 ) ... w„(0)| = y1(0(O)) ... 7,(0(0)), 
(ii) T is unitarily equivalent to TX(&T2, where t>Tl—n and Tu T2 are quasisimilar 

to and respectively to S(mn+1)®S(mn+2)® ••• • 
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Proof . (i)=»(ii). The condition Otî|m„(0)|<lim |m/0)| implies that y„(0(O)) J-+ oo 
is less than the least essential eigenvalue of (0(O)*0(O))1/2, for otherwise we would 
have 7„(0(O))=:7„+1(0(O))=... which in view of Lemma 4.2 would imply ]im |m(0) |ë j-*- oo 
ëy„(0(O)) and hence |wn(O)|<yn(0(O)) which when combined with (i) would give 
|/Mi(0) ... w„_1(O)|>>'1(0(O)) ... y„_i(0(O)), contradicting Lemma 4.2. Thus replacing 
0 by some equivalent inner operator-valued function in #~( i f ( f t ) ) we may assume 
there is an orthonormal set {el5 ..., e„} in ft such that 0(O)ej=y j(0(O))ej for 1 ^j^n. 
Consider f=n„(pZn)(ei©••• Then 

f? tn(0(O))/= Vi(0(O)) ... y„(0(O))/ 

and since pz =(nl)~1 2 e(<7)°' («(c) is the sign of the permutation a), we have 0. 

But QQZn(0)=m1...mJs(cn for some contractive Q, and we infer ||fl(0)/|| = | |/ | | 
so that £2(A)/=/i/ for some constant N, M = l. This in turn implies GLN(0 (?.))/= 
=p.~1ml(X) ... m„(X)f for all A£D. In view of the known properties of pZn this last 
equality implies that ®=Ce1+.. .+Ce„ is invariant for 0(A) for all AçZ). Since 
0 is two-sided inner we infer that S is a reducing subspace for 0(A), XÇ.D. Hence 
0 = 0 1 © 0 2 where 0i=0 |93, 0 2 = 0 | f t e ® . 

Thus we define r i = 5 ( 0 i ) for i = l , 2 and clearly T isunitarily equivalent to 
7i©!T2 and bT l=«. Remark also that QZn(0J coincides with m1...mn. Let >S(wi)©---
...®S(m'n) and S(mi') © S (ml) ©... be the Jordan models of and T2 (we do not 
exclude the possibility that some m'} or m'j be 1). Then we have : 

n 
(4.3) mi ... m„ = mi... m'n = V mi ... m'km'i ... 

k=0 
(use for instance Proposition 3.1 with t=t„). From 4.3 we infer that mi... m'n_xm[ 
divides m'x...m'n and hence m[ divides m'n. Thus 5(/n^)© ... ffi S(m'n) ffi S (ml) © 
@S(m'^}@ ... is the Jordan model of and hence m'j=mj,ml=mn+k 

(l^jSn, k=1, 2, ...). This ends the proof of (i)=>-(ii). 
(ii)=>-(i). Let 0i , 0 2 coincide with the characteristic functions of Tlt T2. Then 

e j e i ) coincides with m1... mn so that ?i(0i(O))... yn(0i(O))=y1(rn(01(O))) = 
= |w1(0)... mn(0)\ (use Proposition 3.1 for instance and then Lemma 4.1). Now 
clearly y/0i(O))ay/0(O)) and hence yx(0(O)) ... y„(0(O))^ 1^(0)... m„(0)| which 
in view of Lemma 4.2 gives yi(0(O)) ... y„(0(O)) = ¡m^O) ... m„(0)|. 

Q.E.D 

Remark 4.6. If T is a contraction and 0 is its characteristic function then 
y;(0(O)) = yj(T). Thus, let T be a C0 contraction with Jordan model 5(wx)© 
®S(m2)® ... such that mx(0)^0 and Jim|m;(0)| = 1. Proposition 4.5 shows that 
the Jordan model of T can be characterized within the class ST of contractions, 

2 
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which are quasisimilar with T by its extremal properties. Indeed, define 2Tn recur-
rently, by ST^er and 2 r B ^ = { r ^ y n + / T ' ) = m i j n ^ { S ) } . Then the only 

eo 
member up to unitary equivalence of p| ^ is the Jordan model of T. 

n = 0 

Part II 

§ 5. Preliminaries 

1. We begin with a short review of the properties of infinite determinants 
(see [4], ch. IV, § 1), in order to discuss (in the next section) minors of such deter-
minants. 

Let ft be a complex separable Hilbert space and ^i(ft) the ideal of nuclear 
operators, endowed with the trace-norm 

(5.1) I!*«! = tr |X|, \X\ = (x*xy* (X<E^(ft)). 

Consider Z € / + # i ( f t ) and let be the eigenvalues of X (repeated 
according to their multiplicities). We have 

y=i 
and it follows that the infinite product defining the determinant 

(5.2) de t {X) = f [ l j ( X ) 

converges absolutely. Moreover, det ( /+ Y) as a function of Y£ ^ ( f t ) is analytic 
(in particular continuous on the Bariach space ^i(ft)). This follows from [4], 
Ch. IV, Corollary 1.1 and property 8° on p. 207, combined with Proposition 2 on 
p. 11 of [3]. 

Also for {e;}™=1 an orthonormal basis of ft and Xdl+ t f /S t ) , we have 

(5.3) de t (X) = Hm det [(Xe,, JSN 

(cf. [4], property 2° on p. 203). 
Furthermore, for X, Z ' S Z + ^ i i f t ) we have (cf. the proof of property 7° on 

p. 206 of [4]): 

(5.4) det (XX') = det ( X ) det (X'). 

In view of (5.2) the following assertions are easily seen to be true: a) if X£l+ 
+ #i(ft) is unitary then |det(X)| = l ; b) if Xe i+V/S t ) is a contraction then 
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|det 001 — 1; c) / + # ! ( # ) is invertible if and only if det ( X ^ O ; d) the deter-
minant is invariant under similarities. 

2. For any Hilbert space ft we shall indicate by " -»" the weak convergence 
in ft and in i f(f t ) . In order to avoid antilinear mappings we shall consider the dual 
space ftd. If T6i?(ft), the dual operator is denoted by Td (Td € S£(ftd)). (ftd)d can be 
identified in the usual way with ft. 

3. For any Hilbert space ft and nSOwe shall denote by ftAn the w-th exterior 
power of ft. For « = 0 this is just the complex field C and in general ftA" coincides 
with ft1" for T„=(1, 1, 1,..., 1, 0, ...), / ( tn)=dim ft, dxn)=n (cf. § 1.4). ftA" is gener-
ated by vectors of the form 

(5.5) feM^A-Afc^in!)-172 2 e(a)Km®-®Kw, ( l ^ j ^ n ) , 
o€®„ 

where e(o) is the sign of the permutation a. 
The factor («!)~1/2 has been chosen so that H^A ... Aen\\ = 1 for any ortho-

normal system {elt e2,..., e„}. 
For n, m two positive integers there is a bilinear map 

A: ftAnXftAm — ftA(m+") 

such that {k1Ak2A...Akn)A(kn+1A...Ak„+m)=k1A...Akn+m. For each A££C($t) 
we shall denote EVN(A) as Aa", SO that 

(5.6) AA"(k1A...Ak„) = Ak1A...A Akn. 

Let ft now be a Hilbert space of finite dimension n. If {e1; ..., en} is an ortho-
normal basis of ft, we can define a bilinear form 

B: ftA* X ftA("-*> - C 
by the formula 

(5.7) B(h,g) = (hAg,e1A...Ae„). 

Choosing in ftAj the usual orthonormal basis 

{eilA...Aelj\l ^ i'j < i2 ij ^ n} 

it is easy to see that the mapping 

(5.8) C : f t A ( " - « - ( f t A * ) d 

given by C(g)Qi)=B(h, g) for g€f t A ( n - t ) , /z€ftA* is a linear isometry. If A££C(R) 
we have 

(5.9) B(AAkh, AA("-*>g) = det (A) B(h, g) 

2* 
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because 4 A "=de t 04)/ялп. Let us define 

(5.10) F= с л л ( " - « с - 1 е ^ ( ( я л ' ! ) 0 
and 

(5.11) AAdk = FdZSe(S<Ak). 
We have B(AAdkh, g) = C(g)(AAikh) = (F(Cfe))) (A) = (C04A<""*>g)) (Л) = 

— B(h, AA(n~k)g) and since С is isometric, 

(5.12) |Ил<»-«|| = ||F|| = \\AAik\\. 

Also, as В is nondegenerate we have 

(5.13) ДАЛЬДМС — det (/4)/ял(£ • 

It is obvious by the definition of AAik that 

(5.14) (АгА^АЛк = AAdkAfdk, Alt А2€<?(Я), 

and it can be shown that 

(5.15) (A*)Adk = (AAdk)*. 

Moreover, for invertible A we infer from (5.13) that 
(5.16) АЛКАЛ"К = ЙЕ1(А)/ЯЛК 

and by continuity it follows that (5.16) always holds. 
F ° r {/1./2. •••г/к} a n orthonormal system in ft we shall show that 

(5.17) (AAdk(f1A,../\fk),f1A...Afk) = det ( P + ( J - P)A(I-P)) 

where P denotes the orthogonal projection onto the linear span of { / i , / 2 , ...,/*}. 
Completing the system {/ l 5 . . . , / J to an orthonormal basis {/i, ...,/„}, we have 

(AAdk(f1A.:Afk),fiA...Afk)= . 
= < ( ^ c / " i А . . . Л Л ) ) A A + i A . . . A / „ , Л Л . . . A / „ ) = 

= B(AAdk(f1A...Afk),fk+1A...Af„).(f1A...Afn,e1A...Aen)-1 = 

= B{h A... Afk, A-^-k>(fk+1 A... A/„)) • <Д A... Af„, A... A O " 1 = 

= <Л A • • • АЛ Л A«-*>(fk+1 A... A/„), Л A . . . A/„) = 

= ((P+A(I-Pj)A»(f1A...Afn),f1A...Afn) = 

= d e t ( P - M ( / - P ) ) = det (P+(I-P)A(I-P)). 

Formulas (5.14), (5.16), (5.17) show that AAdk does not depend on the particular 
choice of the orthonormal basis {ex, ..., e„}. 

Let us now suppose that A is a positive operator with eigenvalues 
and the corresponding eigenvectors / i , / 2 , •••,/„• Then AA(n~k) is positive with 
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eigenvalues 
K K ••• c (! = h < '2 in-k = wi-

lt follows that 

= IM<*<-*> | | = ^ . . . ( 1 + - 1 1 ) ( 1 + |A2 - 1 1 ) . . . ( 1 + |A„ 1 M 

g exp fl^-1|) exp (|A2-11)... exp (|A„_ft-11) S exp (T r | ^ - / | ) . 

Now for any r€JS?(ft), we have 

| | r * T - / | | 1 ^ ( l + | | r - / | | 1 ) 2 - l and | | ( T * r ) ^ > - / | | 1 S | | r * r - / | | 1 

as can be seen by comparing the eigenvalues of these operators. Therefore, 

In particular, for the polar decomposition T=UA of T (A = \T\ = (T*T)V2) 
it follows that: 

(5.18) \\TAdk\\ = \\AAikUAik\\ \\AAdk\\ S exp (Tr | ^ - / | ) S 

s e x p i a + l i r - i l l ! ) 2 - ! ) . 

§ 6. Infinite dimensional adjoints and minors 

Let us now consider ft an infinite dimensional Hilbert space and A^.£C(R) 
so that rank (/—A) < 

From the preceding considerations we easily infer the 
existence of an operator ^Ad*iJSf(ftAt) satisfying (6.1) AAdkAAk = AAkjAdk _ det (A)/^; 

(6.2) (AAdk(f1f\...Afk),f1/\...Afk) = det (P+ (I-P)A(I-Pj), 

for P the orthogonal projection onto the linear span of the orthonormal system 
{A> •••>./*}> 

(6.3) == exp ((l + M - 7 1 1 ^ - 1 ) . 

Also for Alt ^42£JS?(ft) with rank (I— Aj)<°°, j=l, 2, we have 

(6.4) (A1AJAdk = AfkA(dk. 

Let A£&(Si) now be such that I-A^^SK) and let A„ be such that 
rank (I-A„)<°° and lim ||>4-^B | |1=0. 

1J-+ 00 

Using the fact that the function 

^ ( f y l X ^ det(I+X) 
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is continuous, it follows from (6.2—3) that the sequence AAdk converges weakly. 
The limit, which will be denoted by AAdk, satisfies (6.2—3). Because AAk converges 
to AAk in norm and det (An)— det (A) we also obtain property (6.1) for AAdk. Using 
now (6.2—3) it follows that: 

(6.5) A,A„a+^i(ft) and M . - ^ - O imply AAdk - AAdk. 

Property (6.4) for Au A^I+^^Si) follows from (6.1), provided Alt Az are invertible, 
and can be extended using (6.5) to the case when only Ax is invertible. Using (6.5) 
once again it follows that (6.4) holds in the general case. 

We have shown in § 5.1 that the function K-»det ( /+ Y) is analytic on the Banach 
space ^i(ft). Using (6.2—3) we infer that for rj£ ftA* the mapping 

C3X^((I+X+XY)Adkt;, n) 

is analytic when X, Y£ ^ ( f t ) . 
From this fact and from (6.3), using [3], Proposition 2 it follows that 

for Ç,r]£RAk is analytic. 
This again implies the following stronger fact: thé mapping 

(6.6) ViipL^X-* (I+X)Adk£3'(&Ak) 

is analytic (in particular continuous with respect to the norm topologies). 
Let us also remark that for any contraction A^I+'é^Sï) the adjoints AAdk 

are contractions. This is obvious if d i m f t = « < ° ° (since in this case \\AAdk\\ — 
= ||.4A(n-*)||) a n c j follows in the general case by a simple limit argument. 

We are now going to define the minors of an infinite determinant. Let 9JI and 
91 be two closed subspaces of ft, Pm and Pn the corresponding projections, and 
suppose there is a unitary operator {/ ( jZ+^if t ) such that t/9K=9(l. Then for 
AO+%>i(ft) the minor of det (A) corresponding to the triple (5DI, 5R, U) is 

(6.7) det(£//V4|9l). 

The definition makes sense because it is easily seen that t/Z\0i,4|9(lÇ/3î+'£,
1(9lî). 

In case 9t (and hence 9JI also) is of finite codimension in ft, we shall say that 
det (Wgjj^lSR) is a minor of corank dim 9ft-1-. 

Let det (UPwA\il) be a minor of corank k of A. Then, by (6.2) 

(6.8) det ( i/Pjoi ̂  19Î) = det (/»¡„CMi3,,,+(/-/>„)) = 

= ((UA)Adk{eih...f\ek),e1f\...Nek) 

for {elt ...,ek} an orthonormal basis of ftQ9l. Thus the minors of corank k of 
A coincide with some matrix elements of (UA)Adk=AÂdkUAdk. 
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§ 7. Determinants of contractive analytic functions 

Let 0 € H°°(if (ft)) be a contractive function (here ft denotes as usual a separable 
Hilbert space). Let us suppose that /—0(A) is nuclear for A£Z> and let {<?„} î be an 
orthonormal basis of ft. The functions 

dn(A) = det [<0(AM, e ,>] l s i , ; s n = det (/>„0(A)/>n+(l-/>„)) 

(here P„ denotes the orthogonal projection onto the linear span of {ex, ..., e„}) 
are analytic, 

(7.1) K(A)| s i , 

and 

(7.2) lim d„(A) = det (0(A)). 
oo 

From (7.1) and (7.2) we infer, by the Vitali—Montel theorem, that det (0(A)) is 
an analytic function. A similar argument shows that the functions A—(0(X))Aik are 
analytic and contractive (cf. § 6) and that 

(7.3) 0 A k0Adk = 0Aik0Ak = det (0)/*a* 

In particular, if 0(A) is invertible for some AgD, it follows that 0 has a scalar 
multiple (cf. [13], ch. V, § 6). 

In case ffli, 91 are subspaces of ft of finite codimension and U£ l+ W/R) is 
a unitary operator such that I/9Ji=9i, the function A—det(WSD10(A)|9i) is analytic 
and of modulus S1. We call such a function a minor of 0 of corank dim 9Jtx. 

Let us denote by 5,(0) the greatest common inner divisor of the minors of 
corank r of 0 (r=0, 1,2,...). For r=0, ¿„(0) coincides with the inner factor of 
det(0(A)). From (6.8) it follows that <5r(0) coincides with the greatest common 
inner divisor of the matrix elements of 0A d r . 

Lemma 7.1. c5,+1(0) divides <5r(0) for each r. 

Proof . We have to prove that <5r+1(0) divides each minor of corank r of 0 . 
Clearly it suffices to prove that <5i(0) divides det (0) or, equivalently, 

det (0) / f 2 ( f t ) c ¿X(0)H2(9C). 

But this easily follows from the relation 00Adl=det (0 ) / s . Indeed, 0AdlH\9C)c: 
<r<51(0)//2(ft) and, since 0 is analytic, 

det (0)# 2 ( f t ) = 00AdlH2(&) c 0 8 / 0 ) c 8/0)H2(St). 

Lemma7.2. The greatest common inner divisor of the functions 5/0) (J =1, 2,.. .) 
is 1. 
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Proof . Let us denote by m the greatest common inner divisor of the family 
{¿/@)}r and let iej)7= 1» b e a n orthonormal basis of ft. Since 0AdrH2(SiAr)ci 
cmi / 2 ( f t A ' ) for each r, we have 

|m(0)| £ |(@(0)Adr(e1 A e2 A... A er), ex A e2 A... A e,)| = 
= | det ((/— Pr) 0 (0) (/— P r )+P r ) |, 

wherePr denotes as usual the orthogonal projection onto the linear span of {elt..., er}. 
We infer 

|m(0)| is lim sup |det ((/— Pr) 0(0) (/—Pr)+Pr)\ = 1 
r-*-oo 

and the lemma follows. 
Let us also note the relations 

(7.4) Sj(0~) = dj(©)~ 0 = 1,2,...) 

which hold for each function 0 of the type considered in this section. 

§ 8. Weak contractions 

Let us recall that a contraction T acting on a Hilbert space § is a weak contrac-
tion if its spectrum does not cover the unit disk D and I—T*Tis a nuclear operator. 
Tis a weak contraction if and only if T* is a weak contraction. 

If a weak contraction T is of class C0q (that is T"—0 and T * n - 0 strongly 
as «-*«>), then T is of class C0 and acts on a necessarily separable space. The proof 
of this fact goes as follows (cf. [13], Ch. VIII, § 1). 

If we put 

(8.1) TK = ( T - U ) ( I - X T ) - \ 

we have 
(8.2) I-TTT, = XL(I—T*T)XLI, XX = ( l - |A| 

So T is a weak contraction if and only if TX is a. weak contraction. Moreover, 
we have (TX )_X=T . Therefore we may suppose without loss of generality that T is 
invertible. Let {NJ}" (n==K0) be the eigenvalues of (J-T*T)\T>T, T>T=((I-T*T)H)-
(multiple eigenvalues repeated according to their multiplicities). We have n j ^ 1 
because ker T= {0}. 

Let {<pj)l be an orthonormal basis of X>T such that (I—T*T)(pj=Hj(pj. It is 
easy to verify that the system { i w h e r e ^ = (1 —fij)~1/2T(pj, is an orthonormal 
basis of Dr* and that we have also T*\pj=(l — ¡i^cpj. 

Let us denote by U the unitary operator determined by 
(8.3) U: D r - X>T», Uq>j = - i j f j . 
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Then the operator (U+T)T> r is nuclear. Indeed, 

(U+T)h= ¿ ( ( l - ^ - ) 1 / 2 - l )(h,q>j№j, 
i=i 

and from the relations 

lim i i- i ( l - ( 1 - ¡ i f 1 2 ) = 1/2, J ^ < -
. r j-1 we infer 

j=i 
Furthermore, if © ^ H ^ ^ i U j ^ y * ) ) is the characteristic function of 

T, U—@T(X) is nuclear for X£D. Indeed, 

U-0T(X) = (U+T)\'St-XDt*(I-XT*)-1Dt\'£)t (DT = (I-T*T)l/i) 

and since DT and DT* are Hilbert—Schmidt operators because T is a weak contrac-
tion, X D ^ I - X T * ) - ^ is nuclear. Thus the function (&($>Tj) defined 
by Q(X)—U*0j(X) coincides with 0T and I—0(X) is nuclear for XdD. 

Let us put 

(8.4) dT(X) = det(0(A)), Sj(T) = Sj(0), 0=0 ,1 ,2 , . . . ) . 

We have dT(0)= f[ ( l - i i / V O and from (7.3) (with &=1) it follows that 
J=I 

dT is a scalar multiple of 0. As in [13], Theorem VI. 5.2 we obtain 

Lemma 8.1. Each weak contraction T of class C00 is a C0 contraction and its 
minimal function coincides with <50(T)/<51(7'). 

Let us remark that we have a converse: suppose 0£H™(&(9£)) is such that 
0(A)6/+ ^ ( f t ) , A 6 Z>, and de t (0)^O. Since det(0) is then a scalar multiple of 
0 (by (7.3) with k=1), it follows that 0 coincides with the characteristic function 
of an operator T of class C0 and from [13], Ch. IV § I it follows that tr ( I - T * T ) = 
=tr (/— 0(O)*0(O))<«= so that T is a weak contraction. Let us also note that the 
relations 

(8.5) dT* = d'i, 5j{T*) = 8j(T)~ 0 = 0,1, . . . ) 

hold for each weak contraction T. 

P r o p o s i t i o n 8.2. Let T be a weak C0 contraction acting on the Hilbert space ?> 

[T X\ 

T I, §=$i©|>2 be the triangularization associated with the T-invariant 

subspace Then Tx and T2 are weak C0 contractions and we have 

dT = dTldTi, S0(T) = <50(T1)<S0(7,
2). 
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P r o o f . We may suppose without loss of generality that T is invertible, thus 
mT(0)^0. By [13], Proposition III. 6.1, Tx and T2 are C0 operators and mTl, mTt 

are divisors of m. It follows that mTl(0) ^ 0, mn(0) ^ 0 so that Tx and T2 are invertible. 
Moreover, we have 

h-TïTx = P^T-T*T)\§>x, h-T2T* = pSa(/-m!ô2, 

thus Tx and T2 are weak contractions. 
By [13] Theorem VII. 1.1 and Proposition VII.2.1, we can associate with the 

invariant subspace a regular factorization 

(8.6) 0T(X) = 0i{X)0x(X) 

such that the characteristic functions 0TL(X), 6>Ta(A) coincide with the pure parts 
of ©i(A), 02(A), respectively. Then we have 

UJ (8.7) 0,(A) = C / ; [ ^ ( A ) ° 

where U'}, U" are unitary operators and Ij denotes the identity operator on some 
Hilbert space 0 = 1 > 2). Now, from the consideration preceding Lemma 8.1, it 
follows that 1-U°*0T](X) is nuclear and dTj(l)=det(£/?* 0Ty(A)) for some uni-
tary operators £/" (j=l, 2). With the notation 

uj = u; Uf 0 
0 b 

UJ 

we see that I— U*0j(X) is nuclear and 

(8.8) dTj(X) = det (£/*0y(A)). 

Using (8.6) and (8.7) we obtain 

(8.9) U*0T(X) = U*U2U1[U*(U20(X))Ul] (U*0x(X)y 

From this relation it follows that/j,^— U*U2UX is a nuclear operator such that 
det (U*U x U 2 ) exists. Using (8.8-9) and (5.4) we then obtain 

d T ( A) = det (U* UtUJ det (C/a* ((/2* 02(A))C/1) det {U} 0X(A)) = 

= det(U*U2 Ux) det (U* 02(A)) det (U? 0x(X)) = 

= det(U*U2UJdTitt)dTl(X). 

The relation ¿0(T)=(30(7,
1)50(r2) follows by taking the inner factors in the last 

obtained relations. The proposition is proved. 

R e m a r k 8.3. This proposition is a generalization of [13], Lemma IX. 3.1. 
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Lemma 8.4. A Jordan operator S(M), M={wJ}~, is a weak contraction if 
oo oo 

and only if _2"(l — |m/0)|)<°°. In this case we have dS(M)=S0(S(M)) = [J mjy j=i j=i 
where JJ m j means the limit of some converging subsequence of {m1mi...m„}'^=1. 

Proof. For any inner function a m w e have 

(^s (m) — S (m) S(m)*)h = P6(m)(I-UU*)h = (h,c0)Pb(m)c0 = 

= (h, c0) (1 — m(0)m) 

(h£ §>(m)), where U denotes the unilateral shift on H2 and c0 is the constant functions 
c0=1. Thus I— S(m)S(m)* is of rank one and has norm (1 — m(0)m, c0)=1 — |m(0)|2. 

It follows that the trace norm of / - S(M)S(M)* equals J ( l - K - ( 0 ) | 2 ) . We have 
j=i 

only to remark that 

1 - 1 mj(0) | mj(0) \ 2 S 2 (1 - 1 m ; (0 ) | ) . 

oo 
The equality ds (M) = ]J mj obviously follows from the special form of the charac-

j=i 

teristic function of S(M). So it remains only to prove that [J ms is an inner function. 
OO CO 

To see this, let us remark that J ] mj and II,mj have the same outer factor, such that 
j=l j=n 

this outer factor must be 1 because -1 for each A£Z>. The lemma is I I m j C ) j = n 
proved. 

From now on Twill denote a weak C0 contraction acting on §>, 0 € 
will denote a function coinciding with the characteristic function of T and 0(X) €/+ 
+ XiD. We shall also denote by S(M), M={m ;}~, the Jordan model of T. 
From the relation 

QArQAdr = QAirQhr _ d T . / j | A r > s e e (7 3 ) ( 

we infer, because 0 A r is two-sided inner, that 50(T)/Sr(T) is the least inner scalar 
multiple of 0 A r . Thus we have 

(8.10) dr(T) = 50(T)/5r(T). 

Theorem 8.5. A C0 contraction T is a weak contraction if and only if its Jordan 
model S(M), M= {my}", is a weak contraction. 

Proof . That r i s a weak contraction if S(M) is so follows from Proposition 4.3, 
via Lemma 8.4. So let us assume that Tis a weak contraction. Then, by Corollary 3.3. 
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and relation (8.10) it follows that m1m2...mr divides S0(T) for each r. If we suppose 
T is invertible, we have <50(70(0)^0 and from the inequality 

| i f H ( 0 ) . . . m r ( 0 ) | £ P o ( r ) ( 0 ) l 
oo oo 

it follows that the infinite product J J |/w/0)| converges. Therefore ^ (1 — |my(0)|)< oo 
J=I J=i 

and our theorem follows by Lemma 8.4. 
P r o p o s i t i o n 8.6. For each weak C„ contraction T, the determinant function 

dT is an inner function. 

Proof . Let us write the inner-outer decomposition of dT 

(8.11) dT = did0. 

Because d{ is a scalar multiple of 0 A \ there exists a contractive function i2(k)E 
€#°°(.S?(ftA*)) such that 

(8.12) fl(*)0A* = 0AkQ(k) = ¿¡IftM,. 

Then, by (7.3) and (8.12) we have 

0k(doQ^-0Adk) = 0 

so that (0* being inner) 

(8.13) 0Adk = d0QW. 

Let {ei},~! be an orthonormal basis of ft and denote by P„ the orthogonal 
projection onto the linear span of ..., e„}. By (8.13) we have 

(0Adk(eiA...Aek),e1A...Aek) = d0(Q<*>(e1A...Ae^,e1A... Aek) 

and therefore 
|do(0)| £ lim sup| < 0 ( 0 ) ^ " ^ A... A ek), ex A... A ek)\ = 

= lim sup |det ((/— Pk) 0 (0) (/— P k ) + = 1. 

It follows that |(/o(0)| = l so that \d„\ = \. The proposition follows. 
We are now able to prove that the determinant function of a weak C0 contraction 

is a quasi-similarity invariant. 

Theorem 8.7. For each C0 contraction T with Jordan model S{M), M—{mj}", 
we have 

(8.14) mj = S j^TySj iT) - , 

(8.15) dT = dsm = ffntj. 

\ 
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Proof . From (8.10) it follows that 8 J ^ 1 (T) ld j (T)=d/T) ld J ^T) so the rela-
tion (8.14) obviously follows from Corollary 3.4. 

For the second relation let us write (8.10) under the form 
(8.16) dT = 50(T) = mxm2 . . . mn'S„(T) 
(cf. Corollary 3.4). From Lemma 7.2 and Lemma 1 of [12] it follows that dT coincides 
with the least common inner multiple of the family {m1m2...mn}^'=1, which coincides 
with ds(M). 

The theorem follows. 
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