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Normal dilations and operator approximations 

R. H. BOULDIN and D. D. ROGERS 

§ 1. Preliminaries 

This paper continues the research presented in [2]; the earlier results are refined 
and extended in several directions. Consideration is given to best approximation 
by self-adjoint operators as well as by non-negative operators. A best approximation 
from the first set is a "self-adjoint approximant" and from the second set is a 
"positive approximant". For elementary facts about positive approximants the 
reader is directed to [8] and [5] ; for self-adjoint approximants, check [8] and [6]. 
A general reference for terms not explained is [9]. 

For a given operator each set of approximants is convex; the main results of 
this paper identify broad classes of operators for which each of these sets of approxi-
mants is infinite-dimensional. (For a discussion of the dimension of a convex set 
see [16, p. 7].) Moreover, the constructive proofs of these results develop concrete 
techniques for obtaining approximants for a given operator. 

In [8] HALMOS showed that for any (bounded linear) operator A=B+iC 
{B=B*, C=C*) a positive approximant is 5+(<52-C2)1/2 where ô=ô(A) is the 
distance from A to the non-negative operators; this positive approximant, denoted 
P0, is referred to as the "Halmos positive approximant". Halmos also showed that 
B is a self-adjoint approximant for A, or equivalently the distance from A to the 
self-adjoint operators is ||C||. 

The work in this paper exploits a fundamental relation between an operator 
T and various normal dilations of T. Before establishing this relation we recall 
the following two lemmas which state some previously known facts in a form appro-
priate to this work. These facts are proved in [12] and [10], respectively. 
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1.1. Lemma. If N is a normal element of a C*-algebra and if A is any element, 
then 

where h(Mu M2)=sup (dist (mly M2): m1(iM1}. 

1.2. Lemma. For any normal operator N the following formula holds'. 

\\N-pA(N)\\ = K<N)'A) 
where PA(N) is a best approximation for N from the normal operators with spectrum 
in the nonempty closed set A, denoted JV(A). 

The notation of the preceding lemmas is continued in the next theorem. 

1.3. Theorem. Assume A is a closed convex subset of the real line. If T is an 
operator on H with normal dilation N on Kz>H such that o(N)<zo(T), then 

\\T-PAT)\\ = h{a(T), A) = h(o(N), A) = ¡iV-i^AOU. 

Furthermore, provided Q is the orthogonal projection of K onto H, QPA(N)Q\H 
is a best approximation for T from 

Proof. It follows from the hypothesis and the two preceding lemmas that 

Dtf-^WII = h(e(N), A) s h(o(T), A) s Hr-P^m 
Because QLQ\H belongs to JV(A) on H for any L^Ji(A) on K, the following in-
equality holds 

\\T-PA(T)\\ =§ \\T-QPa(N)Q\\ = \\Q){N-Pa(N)Q\\ ^ \\N-Pa(N)W-

The inequalities prove the theorem. 
We use Theorem 1.3 in each of the next four sections. In sections § 2 and § 3 

it is assumed that Tis subnormal with minimal normal extension N, and in sections 
§ 4 and § 5 it is assumed that T is a Toeplitz operator with N the corresponding 
Laurent operator. It should be noted that other general hypotheses guarantee 
that a{N)c.a(T) — for example, if a(T) is a spectral set for T—, then such a normal 
dilation N exists. 

§ 2. Positive approximants of a subnormal operator 

In the next theorem and throughout the remainder of this section the symbol 
T will denote a subnormal operator defined on H and the symbol N will denote 
a normal operator defined on K that is the minimal normal extension of T. Also, 
N equals B+iC where B and C are self-adjoint operators. 
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2.1. Theorem. For any subnormal operator T onehas\\T-PA(T)\\=\\N-PA(N)\\ 
where N is the minimal normal extension of T and A is a nonempty, closed, convex 
subset of the real line. Moreover, the compression of any PA(N) to H is a best approxi-
mation for T from jV(A). 

Proof . Recall a(T) differs from o(N) only by filling in some holes (see 
[9, Problems 157, 158]). Thus, the above theorem is a special case of Theorem 1.3. 

A curious consequence of the preceding theorem is that the norm of the ima-
ginary part of the subnormal operator T, denoted ||im T ||, equals the norm of the 
imaginary part of the minimal normal extension, denoted ||im TV ¡|. The first norm is 
the distance \\T— PR(r) | | and the second norm is the distance ||7V—PR(JV)||. 

Let T be a subnormal operator on H. There is a subspace H1 which reduces 
T to a normal operator and is maximal with respect to this property. Moreover, 
the orthogonal complement of HU denoted includes no subspace M invariant 
under T such that T\M is normal. (See Proposition 1.1 of [1], for example.) Thus, 
T is the direct sum of a normal operator and a completely nonnormal operator. 
Since positive approximants of a normal operator are studied extensively in [3], 
attention is now concentrated on completely nonnormal subnormal operators. 

Let r denote that set of z such that the distance from z to [0, is exactly 
8(T) and rez does not exceed | | r | | . 

2.2. Lemma. Let T be a completely nonnormal subnormal operator. Then 
T has infinitely many distinct approximate eigenvalues, say {zl5 z2, ...}, such that 
{z1,z2, ...} does not intersect T. 

Proof . If a(T) were contained in f , then it would follow that T is normal 
(see [15, Corollary 2] or [11, Theorem 1]). Thus, o(T) and the topological boundary 
of <x(T), denoted bdry a(T), contains some z„ such that z 0 $ r . If z0 were isolated 
from its complement in o(T), then it would follow that z0 is an eigenvalue for T and 
the corresponding eigenspace reduces T to a normal operator (see [14, Theorem 2 
and Lemma 6]). Thus, z0 must be an accumulation point for o(T) and it follows that 
bdry a{T) contains an infinite number of points off the contour f . Since bdry <7(7") 
consists of approximate eigenvalues, the lemma is proved. 

In the next lemma and throughout the remainder of this section the symbol 
P0 will denote the Halmos positive approximant of the normal operator N=B+iC; 
thus, P0 is B+(82—C2)1/2. It should not be confused with the Halmos positive 
approximant for the subnormal operator T. 

2.3. Lemma. Let E(-) denote the spectral measure for the normal operator 
N and let K0 denote the subspace {PqK)~ D ((82-C2)K)~. 

(i) The subspaces K0 and E(rc)K are equal. 

3 



236 R. H. Bouldin and D. D. Rogers 

(ii) If D is a compact set not intersecting T, then E(D)K reduces (<52—C2) and 
P0 to invertible operators. 

Proof . The first statement follows from Lemma 2.1 of [4]. 
It follows from Lemma 1.2 that |(rez)_+i(imz)|s5(A0 for every z in a(N) 

where denotes the maximum of {—x,0). Since D and T are both compact, there 
is a positive distance between them. It follows that there is a positive number y such 
that |(re z)_ +i'(im z)\^5 — y for every z in the intersection of D and o(N). Con-
sequently the sets (<52-(im z)2: zeDC\o(N)} and {rez+(<52-(imz)2)1/2: z£Df)c(N)} 
are bounded away from zero, and these sets are the spectra of ¿2—C2 and P0 restricted 
to E(D)K, respectively. 

2.4. Theorem. Let T be a completely nonnormal subnormal operator defined 
on H with minimal normal extension N defined on K. Then the real dimension of the 
convex set 3P(T) of positive approximants of T, denoted dim ^(T) , is infinite. 

Proof . Let zx and z2 be approximate eigenvalues of T off the contour J \ 
Let a.j and /?,• be real numbers such that Zj=<Xj+ifij and let {en, ej2, ...} be a nor-
malized approximate eigenvector for T corresponding to z}. Because H is invariant 
under N, Zj is an approximate eigenvalue for N and {en, eJ2, ...} is a corresponding 
approximate eigenvector for N. 

Let D be a compact set not intersecting T and containing {zlt z2} in its interior. 
Define i by the equation 

2T = inf {re z+(<52-(im z)2)1/2, (<52-(im z)2)1'2: z£D f} a(N)} 

and note that the proof of (ii) of Lemma 2.3 implies that T is positive. The functional 
calculus for N readily shows thatlim {||/}t—eJk\\ : k= 1, 2,. . .} is zero, where fJk— 
=E(D)ejk for j=\, 2. It follows that lim {\\(I-Q)fjk\\:k=\, 2, ...} is zero, where 
Q is the orthogonal projection of K onto H. Replace the original sequences with 
subsequences if necessary so that {/m,/^} is linearly independent for each n. 

By definition the operator A(G; n) is zero on {E{D)K)L, on K{n)=span { f l t t , f ^ 
it is the matrix 

a 
and on E(D)KQK(N) it is 11. It will be shown that P0—A(Q\ n) is a positive approxi-
mant of N for g in an interval (0, go) for all n sufficiently large. If (N—P0)\E(D)K 
is written as a matrix relative to K(n)®{E(D)KQK(n)), then the nondiagonal 
entries converge to zero in operator norm by the choice of zx and z2. Thus, it suffices 
to show that both [ |(W-P0-M(e; «))|£(D)*etf(n)ll and | | ( iV-P0-M(e; »))|^(»)|| 
are strictly less than g for appropriate g and n. The first inequality follows from (ii) 
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of Lemma 2.3 and the choice of T, and the second inequality is proved in the next 
paragraph. 

Define R(n) to be (N—P0)\K(n) minus the diagonal operator with entries 
-(<52-/S?)1/2 + tfi. _ (¿2 +/&>, respectively, and note that (N-P0+ 
+ A (g; n))\K{n) equals 

fT-(<52-ßly'*+iß1 0 ^ (0 q 
{ 0 x-(5*-ß l)l/2+ijS2. J + C eo)+R{n)• 

By the choice of r, the norm of the first operator is strictly less than <5 and the norms 
of the remaining two operators can be made arbitrarily small by the choice of g 
and n, respectively. Thus, P0—A(g; n) is a positive approximant of N. 

Let m be any positive integer; a distinguished set of m positive approximants 
for N will be constructed. Let {zj,..., zm+1} be a set of m + \ distinct approximate 
eigenvalues of T. For each pair {z1; zj), the preceding construction results in a positive 
approximant P0—A(g; n;j) for j—2, ...,m +1. 

By Theorem 2.1, Q(P0—A(g; n;j))\H is a positive approximant for T, where 
Q is the orthogonal projection of K onto H. Recall from the second paragraph 
of this proof that lim {\ifjk~ejk\\ '• k=l, 2, ...} is zero for j= 1,..., w + 1. It follows 
that {Qfjx, Qfji,...} is an approximate eigenvector for T corresponding to z} for 
7 = 1 , ...,m-f 1. The linear independence of {Qfln, ..., Qfm+1„} for all n sufficiently 
large is clear. In order to show that the dimension of 0>(T) is at least m it suffices 
to show the linear independence of 

{QA(g; n; 2)\H,..., QA(g; n; m + l)\H}; 

thus, consider the matrix of QA(g; n;j)\H compressed to span {Qfln,..., Qfm+ln} 
relative to {Qfln, ..., Qfm+ln). Make an appropriate choice for g, and note that it is 
determined by zlt z2, ..., zm+1, r. Because each entry in the matrix for QA(g; n;j)\H 
relative to {Qfu,..., Qfm+\„} converges to the corresponding entry in the matrix 
of the compression of A(g; n;j) relative to {/ ln , ...,/m+i„} as n — oo, it is not difficult 
to show that the first set of matrices are linearly independent for appropriately 
large n. 

In fact, choose n so large that each entry in the matrix of the compression of 
QA(g; n;j)\H differs from the corresponding entry of the matrix of A(g; n\j) by 
less than glm. Denote those matrices by M1;..., Mm and assume that c1,...,cm 

are real constants such that 

0 = c 1 M 1 +. . .+c m M m . 

By considering each entry in the first row, one obtains m equations of similar form, 

3» 
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and each equation implies an inequation of the form 

m 
\CJ\Q (

e
/m) Z hi k = 1 

Adding up these inequalities results in a contradiction, which proves the theorem. 
Recall the standard decomposition of a subnormal operator that was discussed 

prior to Lemma 2.2. If T is the orthogonal direct sum TX®T2, then it is clear that 
S(T) is the maximum of {¿(J\), <5(7y}. Consequently, unless <5(7\) equals ő(T2) 
there is much arbitrariness in the approximation of T. For example, if &(T2) exceeds 
¿(7\), then (P1—A)(BP2 is a positive approximant for T, where P2 is any positive 
approxinunt for T2, P± is any positive approximant for Tx and A is any nonnegative 
operator dominated by Px and having norm dominated by <5(T2) — S(T1). 

It should be noted that the construction carried out for the minimal normal 
extension N in the proof of Theorem 2.4 proves the following corollary. 

2.5. Corol la ry . If the spectrum of the normal operator N has an accumulation 
point not on the contour f consisting of all z with distance to [0, exactly equal to 
6(N), then the dimension of 3P(N) is infinite. 

A convex set, for example a disc in the plane, may have uncountably many 
extreme points, and the only implication about the dimension of the convex set is 
that it exceeds one. On the other hand, conclusions about the dimension of a convex 
set have immediate nontrivial implications about the number of extreme points. 

2.6. Corol la ry . If T is a completely nonnormal subnormal operator, then IP(T) 
has an infinite number of extreme points. 

A consequence of some results of T. SEKIGUCHI in [13] is that S?(T) has un-
countably many extreme points. 

§ 3. Self-adjoint approximants of a subnormal operator 

Recall that E( •) denotes the spectral measure of the normal operator N=B+iC 
with B=B*, C—C*, defined on the Hilbert space K. 

3.1. Lemma. If D is a compact set not intersecting the set I = { z ; ( i m z ) 2 = 
= ||C|i2, |z|s||JV||}, then E(D)K reduces ( | |C| |2-C2)1 /2 to an invertible operator. 

Proof . Clearly |imz| does not exceed ||C|| for any z in A(N). Since D and 
I are both compact, there is a positive distance between them. It follows that there 
is a positive number v such that |im z|^ | |C| | — y for every z in the intersection of 
D and o(N). Consequently the set {(||C||2-(im z)2)1/2: z£Di) <J(N)} is bounded away 
from zero, and this set is the spectrum of (| |C||2- C2)1/a restricted to E(D)K. 
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Since self-adjoint approximants of a normal operator are studied in [6] and [10], 
attention is now concentrated on completely nonnormal subnormal operators. 

3.2. Theorem. Let T be a completely nonnormal subnormal operator defined 
on H with minimal normal extension N defined on K. Then the real dimension of the 
convex set £f(T) of self-adjoint approximants of T, denoted dim ¿f(T), is infinite. 

Proof . This proof uses the same techniques as the proof of Theorem 2.4 with 
a few modifications which will be indicated. Choose {zl5 z2} as in the earlier proof 
and let D be a compact set not intersecting I and containing {z1; z2} in its interior. 
Define T by the equation 

2% = inf{(||C||2—(imz)2)l/2: z€Z)fl <r(iV)} 

and note that the proof of Lemma 3.1 implies that T is positive. Proceed with the 
construction in the proof of Theorem 2.4. 

It will be shown that B0—A(g;n) is a self-adjoint approximant of N for g in 
an interval (0, g0) for all n sufficiently large where henceforth, B0 denotes B+ 
+ (|[C||2-C2)1/2. (Recall that Theorem 1 of [6] shows that B0 dominates every self-
adjoint approximant of N and Proposition 2 of [6] shows that B0 is a self-adjoint 
approximant.) As in the earlier proof, it suffices to show that \\(N—B0+A(g; w))| 
\E(D)KQK(n)\\ and n))|i«:(«)|| are strictly less than ||C|| for app-
ropriate Q and n. The first inequality follows from the choice of T and Lemma 
3.1, and the second inequality in the next paragraph. 

Define R(n) to be (N-B0)\K(n) minus the diagonal operator with entries 
-(l|C||2-/32)1/2 + ift, -(||C||2-;S2)1/2-Mj?2 respectively. The remainder of the proof 
of this theorem proceeds by conspicuous analogy to the proof of Theorem 2.4. 
The resulting self-adjoint approximants of Tare Q(Ba—A(g; n;j))\H. 

Recall the discussion immediately subsequent to Theorem 2.4. Analogously, 
unless ||im Till equals ||im T2\\ there is much arbitrariness in the self-adjoint approx-
imation of T=T1®T2. For example, if ||im 7\[| exceeds |]im T2\\ and Rj is a self-
adjoint approximant for 7}, with j= 1, 2, then Rx © (R2—A) is a self-adjoint approxi-
mant for T provided A is any self-adjoint operator whose norm is dominated by 
||im TJHI im r2l|. 

The discussion prior to Corollary 2.5 and the discussion prior to Corollary 2.6 
indicate the methods used to prove the next two results. 

3.3. Corol la ry . If the spectrum of the normal operator N—B+iC has an accu-
mulation point not contained in the set E consisting of all z with distance to (—<*=, 
equal to ||C||, then the dimension of £f(N) is infinite. 

3.4. Corol la ry . If T is a completely nonnormal subnormal operator, then £f(T) 
has an infinite number of extreme points. 
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§ 4. Positive approximates of Toeplitz operators 

N o t a t i o n . For 5=S(T), let I'={z in C: dist (z, [0, <»))=r5}. Let n denote 
Lebesgue measure on the unit circle A, normalized so that p.(A) = l. For p=2 or 

oo, we denote by LP(A) the usual Lebesgue spaces. If cp is in LT(A), then the defini-
tions of the Laurent operator L^ and Toeplitz operator T9 are as in [9]. By [9, Problem 
196] 

From Theorem 1.3 it follows that 5(Tq>)=8(L<p)=h (ess range cp, [0, «>)) for all 
<p in LT{A). We examine next the dimension of the convex set [^(7^)] of 
positive approximants of Laurent [Toeplitz] operators. 

4.1. Theorem. Let cp be in LT(A). 
(i) If n((p-\rj)<l, then both 0>(LV) and are infinite-dimensional. 

(ii) If ¿i(<p_1(r)) = 1, then L9 has a unique positive approximant; Tv has a unique 
positive approximant if and only if im cp is constant. 

Proof , (i) Notice <5(7)>0 in this case. Thus f is nondegenerate and the spectra 
of Lp and 7 ; lie inside T. Define the sets Fk={C: dist(£, [0, °o))s5(l-l/A;)}. 
Because ^((¡j_1(r))< 1, there exists fc^l such that /i(<p_1(F4))>0. Fix such a k and 

oo 
write (p~1(Fk)= IJ SJ, where {SJ} is a pairwise disjoint collection of measurable 

j=i 
sets, each having non-zero measure. Define non-negative functions p(j) in L°°(A) by 

Of . = f(re<p(2))+ z in SJ 
p U ) { - z ) 1 re <p(z)+((52—(im <p(z))2)1/2 otherwise 

for j= 1 ,2 , . . . . It is straightforward to verify that \\LpU)—LJI =<5. Hence each 
Lp(J) is a positive approximant of L9, and TP(J) is a positive approximant of 

We next show that both 3P{L9) and ^(T^) are infinite-dimensional by proving 
that 

iLP(J)~Lrev + W-Ctmv)*)1*'-] =1 ,2 , . . . } 

is linearly independent; this also shows that 

{Tp(j)~Trev + W-timv)*)1* '-j = 1 )2 , . . . } 

is linearly independent since [9, Problem 196] Toeplitz operators and Laurent oper-
ators defined by the same function in L°°(A) have the same norm. 

If C l , . . . , c„ are real numbers such that J Cj(Lp(j) - Lre(p+(s2_0m<fi)2)1/,)=O, then 

choose r with l ^ r ^ n and apply this linear combination to the characteristic 
function of S r , which is in L\A). This clearly yields a function that is zero off SR, 
and forz in SR it is 

c , ( - ( re 9>(z))_-(5*-(im <p(z)ff*) = 0. 
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For (p(z) in Fk, however, - (re cp(z)) _ - (<52 - (im <p(z))2)1/2 is bounded below in 
absolute value by a strictly positive constant that depends only on k (which is fixed). 
Because /i(Sr) >0, this proves cr=0. 

(ii) If n((p~\r))=l, then the essential range of cp is included in T. Hence 
[5, Theorem 5.6] Lv has a unique positive approximant. 

If im <p is constant, then Tv is normal with spectrum included in T, and so it 
also has [5, Theorem 5.6] a unique positive approximant. 

If im (p is not a constant, then the Halmos positive approximant Tteq> + 
+(<52-(7'im,))2)1/2 and 7;e„+(32_(im„)2)1/2 are two distinct positive approximants 
of Tv. Proof: that both are positive approximants is straightforward to verify. 
If they were equal, then it would follow that <52=(Tim J2+(7^ _(im „w/2)2 . To 
show this is impossible, let ek(z)=zk, k—0, 1, 2, ... be the usual orthonormal basis 
of H2(A); with respect to this basis Toeplitz operators have matrices that are constant 
along each diagonal [9, Problem 194]. Hence there e x i s t s s u c h that {Tim<?ek,eo)?i0 
because Tim(p is self-adjoint and not a scalar. Notice that for a self-adjoint Toeplitz 
operator the fact that the entries in its corresponding matrix are constant along 
diagonals implies that the sum of the squares of each entry in a given column is 
exactly one term plus the same sum for the adjacent column on the left. Thus, 

<52 = (TLvek, e^) + (2_(jm<p,2)i<2e^, ek) = ||7,
im,)efc|l24-||71(i2_(imv)2)1,2eA|l2 

^ \(Tim9ek, e0>|2+||T(it.(lm<pWilieor > 

> <Tfm<pe0, e0) + (7'(2 2_(im((,)2)inCo> eo) = <5, 
a contradiction. 

This proves Theorem 4.1. 
The previous theorem shows that the Halmos approximant of 7^ is distinct 

from the compression to H\A) of the Halmos approximant of L9 (if im (p is not 
a scalar). The former, of course, always dominates the latter [5, Theorem 4.2]. 
The next result gives one more comparison of these two operators. 

4.2. Theorem. If imcp is continuous, then TK<p+(b2—(Tim?,)2)1/2 is a compact 
perturbation of 7;ep+(52_(im9>)¥/2. 

Proof . Let 7i denote the canonical homomorphism [7, p. 127] onto the Calkin 
algebra. By [7, Proposition 7.22], if £ is a continuous function on A, then (T()2—Tp 
is compact, i.e. n((T^f)=n(T^). If £ is also non-negative, then 
and hence n(Til/2) = (n(Ti))1/i. Thus, since n(p1,1) = it(p)1/2 for all ¿>==0, it follows 
that 

n i i P 2 ~ { T i m , p ) 2 Y 2 ) = K < 5 2 - ( r i m „ ) 2 ) ) * / 2 = ( n ( 3 2 ) - n ( T { i m ^ ) Y 2 = 

= (n(Tô a-(imp)a))l/2 = n(T(Si_(im9)m). Q.E.D. 
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§ 5. Self-adjoint approximants of Toeplitz operators 

The results of the previous section on positive approximation have analogues 
for self-adjoint approximation. Of course, both the distance from Lv to the self-
adjoint operators on L\A) and the distance from to the self-adjoint operators 
on H\A) are ||im tp\\m [8] for any cp in L°°(A). We now examine the dimension 
of the convex set [¿f(Tv)] of self-adjoint approximants of Laurent [Toeplitz] 
operators. We use from §3 the definition I={z: (im z)2=||im |z|s||(p||„}. 

5.1. Theorem. Let cp be in L°°(A). 
(i) If /i(<p_1(Z)) < 1, then both S^iLy) and are infinite-dimensional. 
(ii) If ¿i(<p-1(r))= 1, then Lv has a unique self-adjoint approximant ; the Toeplitz 

operator 7^ has a unique self-adjoint approximant if and only if im (p is constant. 

Proof , (i) Notice that in this case im (p is not identically zero. For k = 1, 2, 3, ... 
define Fk={C: | imC|^(l-l /^)1 / 2 | | im cp\\J. Because ¡icp~\F^ 1, there exists k^l 

such that /i(<p-1(Ffc))>0. Fixsucha k and write cp~\Fk)= IJ Sj where {5^} isapair-
j=i 

wise disjoint collection of measurable sets of non-zero measure. Define the real-
valued functions s(j) in L°°(A) by 

{re<p(z) z in Sj 

re <p(z)+(||im ( p f - ( i m <p(z))2)1/2 otherwise. 
It is again straightforward to verify that ||LS(J) —Z,p||=||im<plL. Hence each L s a ) 

is a self-adjoint approximant of L9 and each Ts (J) is a self-adjoint approximant of 
We prove that both ^(L^,) and are infinite-dimensional by proving that 

{•i-sij) ^-Te<p + Cliim<pll2 — (im<p)2)l'a ^ j = 1 , 2 , . . . } 

is linearly independent, which also proves that the corresponding Toeplitz operators 
n 

are linearly independent. If -(¡m,.)»)1'»^0' t h e n c h o o s e 

i=1 
r with l S r ^ n and apply this linear combination to the characteristic function of Sr, 
which is in L\A). This yields a function that is zero off Sr and for z in Sr it is 
—c,(||im <plH —(im cp(z))2)1/2. For cp(z) in Fk, however, (||im ç>||L-(im (p)z))2) is 

bounded below by — ||im<p||^, which is independent of r. Because n(Sr) >0, this 
k 

proves c r=0. 
(ii) If /i(ç>-1(r)) = 1, then the essential range of cp is included in Z. Hence [6] 

Lç has a unique self-adjoint approximant. 

If im cp is constant, then T9 is normal with spectrum included in I , so it also 
has a unique self-adjoint approximant. If im <p is not a constant, then TTe<p + 
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+ ( l | i m < p | | L - ( r i m ^ and 
r̂ep-foiimpii;̂ —(imq>)2)1/2 a r e two distinct self-adjoint 

approximants of Tv . The proofs of these last two assertions are entirely analogous 
to those given in Theorem 4.1 and are hence omitted. This completes the proof of 
Theorem 5.1. 

It follows from [6, Theorem 1] that Tre^+(||im <p|lL-(Timv)2yi2 s Tre<p+(Vmq,^_(im!pYi)in. 

The following comparison of these two operators can be proved as in Theorem 4.2. 

5.2. Theorem. If im cp is continuous, then rre9>+(||im <p||L-(7,
im^)2)1/2 is 

a compact perturbation of 

Remark . It is not known whether and must be either zero-
dimensional or infinite-dimensional for each (p in L°*(A). 
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