On the spectrum of contractions of class C_{-1}

G. ECKSTEIN

- 1. In this paper we shall consider (bounded) operators in complex separable Hilbert spaces. We shall use notations from [8], and \mathbb{Z} will denote the integers, \mathbb{N} the natural numbers, \mathbb{C} the field of complex numbers. We denote the open unit disc by D, the unit circle by C, and the annulus $\{\lambda \in \mathbb{C} : 1/2 \le |\lambda| \le 1\}$ by K. For a contraction $T \in \mathcal{L}(\mathfrak{H})$ we denote by $\sigma(T)$ its spectrum, by $\sigma_p(T)$ its point spectrum, $D_T = (I T^*T)^{1/2}$ denotes the defect operator, $\mathfrak{D}_T = \overline{D_T \mathfrak{H}}$ the defect space, and $\mathfrak{D}_T = \dim \mathfrak{D}_T$ the defect number of T.
- B. Sz.-Nagy and C. Foias call the contraction T of class $C_{\cdot 1}$ if $T^{*n}x \mapsto 0$ for all $x \in \mathfrak{H}$, $x \neq 0$ (see [8], Ch. II. Section 4). In [8] Ch. VII, 6.3, or [8], Th. 2^* they prove that if $T \in C_{\cdot 1}$ and δ_{T^*} is finite then $\sigma(T) = \overline{D}$ or $\sigma(T) \subseteq C$. Moreover, in the first case, $\sigma_p(T) \supseteq D$ and $T \notin C_{11}$, while in the second, $T \in C_{11}$. In the case $\mathfrak{d}_{T^*} = \infty$ it is possible that $T \in C_{11}$ and $\sigma(T) = \overline{D}$ (see [8], Ch. VI, Section 4).

This raises the following questions:

- a) If $T \in C_{01}$, does it follow that $\sigma(T) \cap D \neq \emptyset$?
- b) If $T \in C_{01}$ and $\sigma(T) \cap D \neq \emptyset$, then does it follow that $\sigma_n(T) \neq \emptyset$?
- c) If $T \in C_{1}$, does it follow that $\sigma(T) = \overline{D}$ or $\sigma(T) \subseteq C$?
- d) If $T \in C_{-1}$ and $\sigma_p(T) \cap D \neq \emptyset$, does it follow that $\sigma_p(T) \supset D$?
- e) If $T \in C_{1}$ and $1 \notin \sigma(T)$, does it follow that $\sigma(T) \subset C$?

GILFEATHER [2] gave a negative answer to a) and b). Using weighted shifts he proved that

- a) there is an operator $T \in C_{01}$ with $\sigma(T) = C$, and
- b) there is an operator $T \in C_{01}$ with $\sigma(T) = \overline{D}$ and $\sigma_p(T) = \emptyset$.

The aim of this note is to give a negative answer to c) and d).

2. Theorem 1. There exists $T \in C_{01}$ with $\sigma(T) = K$.

Received June 23, 1973.

252 G. Eckstein

Proof. Let \mathfrak{H} be a space with orthonormal basis $\{\varphi_n\}_{n\in\mathbb{Z}}$ and let T be the weighted shift in \mathfrak{H} defined by

 $T\varphi_n = w_n \varphi_{n+1}$ $(n \in \mathbb{Z})$ where $w_n = 1$ for $n \le 0$ and 1/2 for n > 0. T is a contraction ($||T|| = \sup |w_n| = 1$, see [4]). It is of class C_{01} since $\prod_{n > 0} w_n$ diverges and $\prod_{n \le 0} w_n$ converges (see [2]). The spectrum of T is K, since

$$1/2 = \lim_{n \to \infty} \inf_{k \in \mathbb{Z}} \{ (w_k w_{k+1} \dots w_{k+n-1})^{1/n} \}, \quad 1 = \lim_{n \to \infty} \sup_{k \in \mathbb{Z}} \{ (w_k w_{k+1} \dots w_{k+n-1})^{1/n} \}$$
(see [3], [6] and [4]).

We shall see now that the alternative of problem c) does not occur even if $T \in C_{11}$.

Theorem 2. There exists an operator $T \in C_{11}$ with $\sigma(T) = K$.

Proof. Let \mathfrak{H} be a space with orthonormal basis $\{\varphi_{ij}\}_{(i,j)\in\mathbb{N}\times\mathbb{Z}}$ and let $T\in L(\mathfrak{H})$ be defined by

$$T\varphi_{ij} = w_{ij}\varphi_{i,j+1} \quad (i \in \mathbb{N}, j \in \mathbb{Z}),$$

where

$$w_{ij} = 1$$
 for $j \in [0, i]$ and $1/2$ for $j \in [0, i]$.

One can verify that $T \in C_{11}$ and $0 \notin \sigma(T)$. Taking $h_n = \sum_{k=0}^{n-1} n^{-1/2} \varphi_{nk} \in \mathfrak{H}$ we have $||h_n|| = 1$ and $||Th_n - (1/2)h_n|| = ||(1/2)n^{-1/2}\varphi_{nn} - (1/2)n^{-1/2}\varphi_{n0}|| = (2n)^{-1/2} \to 0$; hence $1/2 \in \sigma(T)$. We have $\sigma(T) \neq \overline{D}$ and $\sigma(T) \oplus C$. Consider the unitary operators $S_t \in \mathcal{L}(\mathfrak{H})$ defined by

$$S_t \varphi_{mn} = \exp(-int)\varphi_{mn}$$
.

We have $S_t^{-1}TS_t = \exp$ (it) T from which we deduce the circular symmetry of $\sigma(T)$. Moreover, by condition $T \in C_{11}$, the spectrum of T has no components far from C (since then there would exist a non-trivial subspace \mathfrak{S}_0 of \mathfrak{S} , with $TH_0 \subset \mathfrak{S}_0$ and $\sigma(T|\mathfrak{S}_0) \subset D$, so that $T^nh_0 \to 0$ for $h_0 \in \mathfrak{S}_0$). Since $||T^{-1}|| = 2$ and since, by [6], $\sigma(T)$ is an annulus, it follows that $\sigma(T) = K$.

3. In this section we shall give a class of contractions for which the alternative of c) is true. We shall use the functional model introduced by Sz.-NAGY and FOIAŞ (see [8], Ch. V and VI). For a contraction $T \in \mathcal{L}(\mathfrak{H})$ we have:

$$\sigma_p(T) \cap D = \{\lambda \in D : \Theta_T(\lambda) \text{ is not injective}\},$$

$$\sigma(T) \cap D = \{\lambda \in D : \Theta_T(\lambda) \text{ is not invertible}\},$$

where $\Theta_T(\lambda)$: $\mathfrak{D}_T \to \mathfrak{D}_{T^*}$ is the characteristic function

$$\Theta_T(\lambda) = [-T + \lambda D_{T^*} (I - \lambda T^*)^{-1} D_T] |\mathfrak{D}_T \quad (\lambda \in D).$$

Since T maps $\mathfrak{H} \ominus \mathfrak{D}_T$ unitarily on $\mathfrak{H} \ominus \mathfrak{D}_{T^*}$ we can here replace $\Theta_T(\lambda)$ by

$$T(\lambda) = -T + \lambda D_{T^*} (I - \lambda T^*)^{-1} D_T.$$

Suppose that $\sigma_p(T^*) \cap D = \emptyset$ and that $D_{T^*}(I - \lambda T^*)^{-1}D_T$ is compact for each $\lambda \in D$. If $\lambda_0 \in D \setminus \sigma(T)$, then $T(\lambda_0)$ is invertible, hence it is Fredholm of index 0 (that is $T(\lambda_0)$ 5 is closed and dim Ker $T(\lambda_0) = \dim \operatorname{Ker} T^*(\lambda_0) < \infty$). For $\lambda \in D$ we have

$$T(\lambda) = T(\lambda_0) + [T(\lambda) - T(\lambda_0)].$$

Since $T(\lambda) - T(\lambda_0)$ is compact, we deduce that $T(\lambda)$ is Fredholm of index 0 (see [1] or [5]). But Ker $T^*(\lambda) = \{0\}$ since $\sigma_p(T^*) \cap D = \emptyset$ hence $T(\lambda)$ is invertible. We have proved the following

Proposition. If $T \in \mathcal{L}(\mathfrak{H})$ is a contraction with $\sigma_p(T^*) = \emptyset$ and if $\Theta_T(\lambda) - \Theta_T(0)$ is compact for each $\lambda \in D$ then $\sigma(T) = \overline{D}$ or $\sigma(T) \subset C$.

Remark. The hypothesis of this proposition is fulfilled in particular if $T \in C_{\cdot 1}$ with D_T or D_{T^*} compact.

We shall see that even under the hypothesis of the proposition, problem d) has a negative answer.

Theorem 3. There exists an operator $T \in C_{\cdot 1}$ with $\Theta_T(\lambda) - \Theta_T(0)$ compact and $\sigma_p(T) = \{0\}$.

Proof. Let \mathfrak{E} be a Hilbert space with orthonormal basis $\{e_n\}_{n\geq 0}$, \mathfrak{E}_1 the subspace of \mathfrak{E} generated by $\{e_n\}_{n\geq 1}$, and let $S\in \mathscr{L}(\mathfrak{E})$ be the operator defined by

$$e_0 \mapsto 0$$
, $e_n \mapsto (1/n) e_{n-1}$ $(n > 0)$.

Let $F \in \mathcal{L}(\mathfrak{E})$ be the compact operator defined by

$$Fe_0 = f = \sum_{k=1}^{\infty} \frac{1}{k+1} e_k, \quad F\mathfrak{E}_1 = \{0\}.$$

We have $\overline{S\mathfrak{E}} = \overline{S\mathfrak{E}_1} = \mathfrak{E}$ and $f \notin S\mathfrak{E}$. Consider the analytic contractive function $\{\mathfrak{E}, \mathfrak{E}, \Theta(\lambda)\}$ defined by

$$\Theta(\lambda) = (\|S\| + \|F\|)^{-1}(S + \lambda F).$$

As $F|\mathfrak{E}_1=0$, we have

$$\overline{\Theta H^2(\mathfrak{E})} \supset \overline{\Theta H^2(\mathfrak{E}_1)} = \overline{SH^2(\mathfrak{E}_1)} = H^2(\mathfrak{E}),$$

that is, $\Theta(\lambda)$ is an outer function. If $\lambda \in D \setminus \{0\}$ and $\Theta(\lambda)x=0$, then $Sx=-\lambda Fx$, hence Sx=0 and Fx=0. But from the first equality it follows that $x=\alpha e_0$, and from the second that $\alpha=0$, hence $\Theta(\lambda)$ is injective for each $\lambda \in D \setminus \{0\}$. Constructing the contraction T (see [8], Ch. VI. 3) we obtain a contraction of class $C_{\cdot 1}$ with $\sigma_p(T)=\{0\}$ and $\Theta_T(\lambda)-\Theta_T(0)$ compact.

References

- [1] S. Berberian, The Weyl spectrum of an operator, Indiana Math. J., 20 (1970), 529-544.
- [2] F. GILFEATHER, Weighted bilateral shifts of class Co1, Acta Sci. Math., 32 (1971), 251-254.
- [3] R. Gellar, Operators commuting with a weighted shift, Proc. Amer. Math. Soc., 23 (1969), 538—545.
- [4] P. Halmos, A Hilbert Space Problem Book, Van Nostrand (Princeton, 1967).
- [5] R. PALAIS, Seminar on Atiyah-Singer theorem, Princeton University Press (Princeton, 1965).
- [6] S. RIDGE, Approximate point spectrum of a weighted shift, Transactions Amer. Math. Soc., 147 (1970), 349—356.
- [7] B. Sz.-Nagy—C. Foias, Sur les contractions de l'espace de Hilbert. IX, Acta Sci. Math., 25 (1964), 283—316, Corrections et compléments, ibidem, 26 (1965), 193—196.
- [8] B. Sz.-NAGY—C. FOIAS, Analyse harmonique des opérateurs de l'espace de Hilbert (Paris—Budapest, 1967).

UNIVERSITY OF TIMIŞOARA BUL. V. PÂRVAN 4. TIMIŞOARA, ROMANIA