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On the spectrum of contractions of class C.i 

G. ECKSTEIN 

1. In this paper we shall consider (bounded) operators in complex separable 
Hilbert spaces. We shall use notations from [8], and Z will denote the integers, 
N the natural numbers, C the field of complex numbers. We denote the open unit 
disc by D, the unit circle by C, and the annulus {l£C: l / 2 s | A | s l } by K. For 
a contraction TD£F(§) we denote by A(T) its spectrum, by <RP(T) its point spectrum, 
DT = (J—T*T)V2 denotes the defect operator, X>T=DT§> the defect space, and 
b r =dim T>T the defect number of T. 

B. SZ.-NAGYand C. FOIA§ call the contraction T of class C.x if T*nx+*0 for 
all J t 6 x ^ O (see [8], Ch. II. Section 4). In [8] Ch. VII, 6.3, or [8], Th. 2* they prove 
that if T£C.! and 8Tt is finite then a(T)=D or a(T) c C. Moreover, in the first 
case, crp(r)3Z) and T<{ Cu, while in the second, T£Cn. In the case bj*—°° it 
is posible that T€CU and a(T)=D (see [8], Ch. VI, Section 4). 

This raises the following questions: 
a) If r€C01, does it follow that or(r) 01)^0? 
b) If r€C 0 1 and A(T)F]D^&, then does it follow that a p ( T ) ^ 1 
c) If T£C.LT does it follow that A(T)=D or A(T)^ C7 
d) If TCC-i and (tP(T)C\D^0, does it follow that aP(T)^D1 
e) If ^ C . i and 1 <{<j{T), does it follow that i r (7)cC? 

GILFEATHER [2] gave a negative answer to a) and b). Using weighted shifts 
he proved that 

a) there is an operator T£ C01 with A(T) = C, and 
b) there is an operator T£C01 with a(T) = D and op(T) = <3. 

The aim of this note is to give a negative answer to c) and d). 

2. Theorem 1. There exists T£C01 with a(T)=K. 
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Proof . Let § be a space with orthonormal basis {<?„}„€Z and let T be the 
weighted shift in § defined by 

T(p„ = w„(pn+1 («6Z) where w„ = 1 for n s O and 1/2 for n > 0. 

T is a contraction (||T[| =sup |wB| = l, see [4]). It is of class C01 since JJ wn diverges 
n > 0 

and J] wn converges (see [2]). The spectrum of T is K, since 
n<0 

1/2 = lim inf {(wkwk+1...wk+n.j) l /n}, 1 = lim sup ... wfe+n_1)l/n} 

(see [3], [6] and [4]). 
We shall see now that the alternative of problem c) does not occur even if T(i C u . 

Theorem 2. There exists an operator T£Cn with a(T)—K. 

Proof . Let § be a space with orthonormal basis {<?(;}(,-,jjgNxz a n < i let 
TeL(§) be defined by 

T(pu = wij(pij+1 ( I ' €N, j£Z), 
where 

w,v = 1 for K[0 , i ] and 1/2 for j€[0,i]. 
n-1 

One can verify that T£ Cu and 0$ o(T). Taking h„= 2 n~V*<Pnkwe have ||hn\\ = 1 
and||Th„—(1/2)AJ = ¡ ( ^ ^ « - ^ „ „ - ( l / ^ - ^ o l ! =(2n)-1/2^0; hence 1/2 ia(T). We 
have a(T)^D and o(T)<£C. Consider the unitary operators S, defined by 

^t tymn ~ CXp ( int) (pmn. 

We have 5I"17 ,5(=exp (it) T from which we deduce the circular symmetry of a(T). 
Moreover, by condition T£CU, the spectrum of T has no components far from C 
(since then there would exist a non-trivial subspace §>0 of with TH0<z$>0 and 
o(T\§>0)c:D, so that.T"h0-*0 for A0€£><>)• Since | |7 ,-1 | |=2 and since, by [6], o{T) 
is an annulus, it follows that a(T)=K. 

3. In this section we shall give a class of contractions for which the alternative 
of c) is true. We shall use the functional model introduced by SZ.-NAGY and FOIA§ 
(see [8], Ch. V and VI). For a contraction we have: 

op(T) CiD = {).££>: &T(X) is not injective}, 

o{T)C\D = {X£D:0T(X) is not invertible}, 

where &T(X): TIt—X)T* is the characteristic function 

0T(2) = [-T+1Dt*(I-XT*)-1Dt]\Dt (16 D). 
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Since T maps §>QT)T unitarily on §©£> r* we can here replace 0 r(A) by 

T(X) = -T+XDT*(I-kT*)-1DT. 

Suppose that op(T*)f\D=® and that D T * ( / - / I T ' * ) - 1 J D t is compact for each A £ 7 ) . 

If X0eD\a(T), then T{X0) is invertible, hence it is Fredholm of index 0 (that is R ( A 0 ) § 

is closed and dim Ker R ( A „ ) = d i m Ker R * ( A „ ) < ° ° ) . For l £ D we have 

T(X) = T(?.0) + [T(X)-T(10)]. 

Since T(X)—T(la) is compact, we deduce that T(X) is Fredholm of index 0 (see [1] 
or [5]). But Ker T*(/.) = {0} since ap(T*)C\D=0 hence T(A) is invertible. We have 
proved the following 

P r o p o s i t i o n . IFT££e{$) is a contraction with oP(T*) = <& and if 0 R (A ) -0 r (O) 
is compact for each A € 7 ) then <j{T) — D or c(T)<ZC. 

Remark . The hypothesis of this proposition is fulfilled in particular if T^C.j 
with DT or DTt compact. 

We shall see that even under the hypothesis of the proposition, problem d) has 
a negative answer. 

Theorem.3. There exists an operator T£C.x with 0 r(A)—0 r(O) compact 
and <7p(r) = {0}. 

Proof . Let © be a Hilbert space with orthonormal basis {e„}Bg0, (£1 the subspace 
of (£ generated by {e„}„Si, and let <S6<5?(©) be the operator defined by 

e0 i—O, e„ ( 1 / n ) ( n > 0). 

Let F£if((£) be the compact operator defined by 

Fe0=f=Z1±riek, F(S1 = {0}. 

We have S(&=5(£x=(£ and f$S<£. Consider the analytic contractive function 
{(£, G, 0(1)} defined by 

0(X) = (\\S\\ + \\F\\)-\S+XF). 

As i^l©! = 0, we have 

0H%<£) 3 = SH/i&J = H\<&), 

that is, 0(A) is an outer function. If A£Z>\{0} and 0(A)x=O, then Sx = —/.Fx, 
hence Sx—0 and Fx=0. But from the first equality it follows that x=xe0, and from the 
second that a=0 , hence 0(A) is injective for each A € D\{0}. Constructing the contrac-
tion T (see [8], Ch. VI. 3) we obtain a contraction of class C.j with <rp(T)={0} 
and 0X(A) —0T(O) compact. 
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