On the spectrum of contractions of class $C .1$

G. ECKSTEIN

1. In this paper we shall consider (bounded) operators in complex separable Hilbert spaces. We shall use notations from [8], and \mathbf{Z} will denote the integers, \mathbf{N} the natural numbers, \mathbf{C} the field of complex numbers. We denote the open unit disc by D, the unit circle by C, and the annulus $\{\lambda \in \mathbf{C}: 1 / 2 \leqq|\lambda| \leqq 1\}$ by K. For a contraction $T \in \mathscr{L}(\mathfrak{W})$ we denote by $\sigma(T)$ its spectrum, by $\sigma_{p}(T)$ its point spectrum, $D_{T}=\left(I-T^{*} T\right)^{1 / 2}$ denotes the defect operator, $\mathfrak{D}_{T}=\overline{D_{T} \mathfrak{G}}$ the defect space, and $\mathfrak{D}_{T}=\operatorname{dim} \mathfrak{D}_{T}$ the defect number of T.
B. Sz.-NAGY and C. Folaş call the contraction T of class $C_{\cdot 1}$ if $T^{* n} x \rightarrow 0$ for all $x \in \mathfrak{H}, x \neq 0$ (see [8], Ch. II. Section 4). In [8] Ch. VII, 6.3, or [8], Th. 2* they prove that if $T \in C_{._{1}}$ and $\delta_{T^{*}}$ is finite then $\sigma(T)=\bar{D}$ or $\sigma(T) \subseteq C$. Moreover, in the first case, $\sigma_{p}(T) \supseteqq D$ and $T \notin C_{11}$, while in the second, $T \in C_{11}$. In the case ${D_{T^{*}}=\infty}$ it is posible that $T \in C_{11}$ and $\sigma(T)=\bar{D}$ (see [8], Ch. VI, Section 4).

This raises the following questions:
a) If $T \in C_{01}$, does it follow that $\sigma(T) \cap D \neq \emptyset$?
b) If $T \in C_{01}$ and $\sigma(T) \cap D \neq \emptyset$, then does it follow that $\sigma_{p}(T) \neq \emptyset$?
c) If $T \in C_{\cdot 1}$, does it follow that $\sigma(T)=\bar{D}$ or $\sigma(T) \subseteq C$?
d) If $T \in C_{\cdot 1}$ and $\sigma_{\mathrm{p}}(T) \cap D \neq \emptyset$, does it follow that $\sigma_{\mathrm{p}}(T) \supset D$?
e) If $T \in C \cdot 1$ and $1 \notin \sigma(T)$, does it follow that $\sigma(T) \subset C$?

Gilfeather [2] gave a negative answer to a) and b). Using weighted shifts he proved that
a) there is an operator $T \in C_{01}$ with $\sigma(T)=C$, and
b) there is an operator $T \in C_{01}$ with $\sigma(T)=\bar{D}$ and $\sigma_{p}(T)=\emptyset$.

The aim of this note is to give a negative answer to c) and d).
2. Theorem 1. There exists $T \in C_{01}$ with $\sigma(T)=K$.

Received June 23, 1973.

Proof. Let \mathfrak{G} be a space with orthonormal basis $\left\{\varphi_{n}\right\}_{n \in Z}$ and let T be the weighted shift in $\mathfrak{5}$ defined by
$T \varphi_{n}=w_{n} \varphi_{n+1} \quad(n \in \mathbf{Z})$ where $w_{n}=1$ for $n \leqq 0$ and $1 / 2$ for $n>0$.
T is a contraction $\left(\|T\|=\sup \left|w_{n}\right|=1\right.$, see [4]). It is of class C_{01} since $\prod_{n>0} w_{n}$ diverges and $\prod_{n<0} w_{n}$ converges (see [2]). The spectrum of T is K, since

$$
1 / 2=\lim _{n \rightarrow \infty} \inf _{k \in \mathbb{Z}}\left\{\left(w_{k} w_{k+1} \ldots w_{k+n-1}\right)^{1 / n}\right\}, \quad 1=\lim _{n \rightarrow \infty} \sup _{k \in \mathbb{Z}}\left\{\left(w_{k} w_{k+1} \ldots w_{k+n-1}\right)^{1 / n}\right\}
$$

(see [3], [6] and [4]).
We shall see now that the alternative of problem c) does not occur even if $T \in C_{11}$.
Theorem 2. There exists an operator $T \in C_{11}$ with $\sigma(T)=K$.
Proof. Let \mathfrak{S} be a space with orthonormal basis $\left\{\varphi_{i j}\right\}_{(i, j) \in \mathbf{N} \times \mathbf{Z}}$ and let $T \in L(\mathfrak{H})$ be defined by

$$
T \varphi_{i j}=w_{i j} \varphi_{i, j+1} \quad(i \in \mathbf{N}, j \in \mathbf{Z})
$$

where

$$
w_{i j}=1 \quad \text { for } j \notin[0, i] \text { and } 1 / 2 \text { for } j \in[0, i] .
$$

One can verify that $T \in C_{11}$ and $0 ₫ \sigma(T)$. Taking $h_{n}=\sum_{k=0}^{n-1} n^{-1 / 2} \varphi_{n k} \in \mathfrak{G}$ we have $\left\|h_{n}\right\|=1$ and $\left\|\mathrm{Th}_{n}-(1 / 2) h_{n}\right\|=\left\|(1 / 2) n^{-1 / 2} \varphi_{n n}-(1 / 2) n^{-1 / 2} \varphi_{n 0}\right\|=(2 n)^{-1 / 2} \rightarrow 0$; hence $1 / 2 \in \sigma(T)$. We have $\sigma(T) \neq \bar{D}$ and $\sigma(T) \nsubseteq C$. Consider the unitary operators $S_{t} \in \mathscr{L}(\mathfrak{H})$ defined by

$$
S_{t} \varphi_{m n}=\exp (-\mathrm{int}) \varphi_{m n}
$$

We have $S_{t}^{-1} T S_{t}=\exp$ (it) T from which we deduce the circular symmetry of $\sigma(T)$. Moreover, by condition $T \in C_{11}$, the spectrum of T has no components far from C (since then there would exist a non-trivial subspace \mathfrak{S}_{0} of \mathfrak{G}, with $T H_{0} \subset \mathfrak{H}_{0}$ and $\sigma\left(T \mid \mathfrak{S}_{0}\right) \subset D$, so that. $T^{n} h_{0} \rightarrow 0$ for $\left.h_{0} \in \mathfrak{S}_{0}\right)$. Since $\left\|T^{-1}\right\|=2$ and since, by [6], $\sigma(T)$ is an annulus, it follows that $\sigma(T)=K$.
3. In this section we shall give a class of contractions for which the alternative of c) is true. We shall use the functional model introduced by Sz.-NAGY and FoIAş (see [8], Ch. V and VI). For a contraction $T \in \mathscr{L}(\mathfrak{H})$ we have:

$$
\begin{aligned}
& \sigma_{p}(T) \cap D=\left\{\lambda \in D: \Theta_{T}(\lambda)\right. \\
&\text { is not injective }\} \\
& \sigma(T) \cap D=\left\{\lambda \in D: \Theta_{T}(\lambda)\right. \\
&\text { is not invertible }\}
\end{aligned}
$$

where $\Theta_{T}(\lambda): \mathfrak{D}_{T} \rightarrow \mathfrak{D}_{T^{*}}$ is the characteristic function

$$
\Theta_{T}(\lambda)=\left[-T+\lambda D_{T^{*}}\left(I-\lambda T^{*}\right)^{-1} D_{T}\right] \mid \mathfrak{D}_{T} \quad(\lambda \in D)
$$

Since T maps $\mathfrak{S} \ominus \mathfrak{D}_{T}$ unitarily on $\mathfrak{G} \ominus \mathfrak{D}_{T^{*}}$ we can here replace $\Theta_{T}(\lambda)$ by

$$
T(\lambda)=-T+\lambda D_{T^{*}}\left(I-\lambda T^{*}\right)^{-1} D_{T} .
$$

Suppose that $\sigma_{p}\left(T^{*}\right) \cap D=\emptyset$ and that $D_{T^{*}}\left(I-\lambda T^{*}\right)^{-1} D_{T}$ is compact for each $\lambda \in D$. If $\lambda_{0} \in D \backslash \sigma(T)$, then $T\left(\lambda_{0}\right)$ is invertible, hence it is Fredholm of index 0 (that is $T\left(\lambda_{0}\right) \mathfrak{5}$ is closed and $\left.\operatorname{dim} \operatorname{Ker} T\left(\lambda_{0}\right)=\operatorname{dim} \operatorname{Ker} T^{*}\left(\lambda_{0}\right)<\infty\right)$. For $\lambda \in D$ we have

$$
T(\lambda)=T\left(\lambda_{0}\right)+\left[T(\lambda)-T\left(\lambda_{0}\right)\right] .
$$

Since $T(\lambda)-T\left(\lambda_{0}\right)$ is compact, we deduce that $T(\lambda)$ is Fredholm of index 0 (see [1] or [5]). But Ker $T^{*}(\lambda)=\{0\}$ since $\sigma_{p}\left(T^{*}\right) \cap D=\emptyset$ hence $T(\lambda)$ is invertible. We have proved the following

Proposition. If $T \in \mathscr{L}(\mathfrak{H})$ is a contraction with $\sigma_{p}\left(T^{*}\right)=\emptyset$ and if $\Theta_{T}(\lambda)-\Theta_{T}(0)$ is compact for each $\lambda \in D$ then $\sigma(T)=\bar{D}$ or $\sigma(T) \subset C$.

Remark. The hypothesis of this proposition is fulfilled in particular if $T \in C_{\boldsymbol{C}_{1}}$ with D_{T} or $D_{T^{*}}$ compact.

We shall see that even under the hypothesis of the proposition, problem d) has a negative answer.

Theorem.3. There exists an operator $T \in C_{._{1}}$ with $\Theta_{T}(\lambda)-\Theta_{T}(0)$ compact and $\sigma_{p}(T)=\{0\}$.

Proof. Let \mathfrak{E} be a Hilbert space with orthonormal basis $\left\{e_{n}\right\}_{n \geq 0}, \mathfrak{E}_{1}$ the subspace of \mathfrak{E} generated by $\left\{e_{n}\right\}_{n \geq 1}$, and let $S \in \mathscr{L}(\mathbb{E})$ be the operator defined by

$$
e_{0} \mapsto 0, \quad e_{n} \mapsto(1 / n) e_{n-1} \quad(n>0) .
$$

Let $F \in \mathscr{L}(\mathfrak{E})$ be the compact operator defined by

$$
F e_{0}=f=\sum_{k=1}^{\infty} \frac{1}{k+1} e_{k}, \quad F \mathfrak{E}_{1}=\{0\} .
$$

We have $\overline{S \mathscr{E}}=\overline{S \mathfrak{E}_{1}}=\mathbb{E}$ and $f \leftleftarrows S \mathscr{E}$. Consider the analytic contractive function $\{\mathfrak{E}, \mathfrak{E}, \Theta(\lambda)\}$ defined by

$$
\Theta(\lambda)=(\|S\|+\|F\|)^{-1}(S+\lambda F) .
$$

As $F \mid \mathfrak{G}_{1}=0$, we have

$$
\overline{\Theta H^{2}(\mathcal{E})} \supset \overline{\Theta H^{2}\left(\mathfrak{F}_{\mathcal{I}}\right)}=\overline{S H^{2}\left(\mathfrak{E}_{\mathfrak{Y}}\right)}=H^{2}(\mathfrak{F}),
$$

that is, $\Theta(\lambda)$ is an outer function. If $\lambda \in D \backslash\{0\}$ and $\Theta(\lambda) x=0$, then $S x=-\lambda F x$, hence $S x=0$ and $F x=0$. But from the first equality it follows that $x=\alpha e_{0}$, and from the second that $\alpha=0$, hence $\Theta(\lambda)$ is injective for each $\lambda \in D \backslash\{0\}$. Constructing the contraction \mathbf{T} (see [8], Ch. VI. 3) we obtain a contraction of class $C_{.1}$ with $\sigma_{p}(\mathbf{T})=\{0\}$ and $\Theta_{\mathbf{T}}(\lambda)-\Theta_{\mathbf{T}}(0)$ compact.

References

[1] S. Berberian, The Weyl spectrum of an operator, Indiana Math. J., 20 (1970), 529-544.
[2] F. Gilfeather, Weighted bilateral shifts of class C ${ }_{01}$, Acta Sci. Math., 32 (1971), 251-254.
[3] R. Gellar, Operators commuting with a weighted shift, Proc. Amer. Math. Soc., 23 (1969), 538-545.
[4] P. Halmos, A Hilbert Space Problem Book, Van Nostrand (Princeton, 1967).
[5] R. Palais, Seminar on Atiyah-Singer theorem, Princeton University Press (Princeton, 1965).
[6] S. Ridge, Approximate point spectrum of a weighted shift, Transactions Amer. Math. Soc., 147 (1970), 349-356.
[7] B. Sz.-Nagy-C. Foiaş, Sur les contractions de l'espace de Hilbert. IX, Acta Sci. Math., 25 (1964), 283-316, Corrections et compléments, ibidem, 26 (1965), 193-196.
[8] B. Sz.-Nagy-C. Folaş, Analyse harmonique des opérateurs de l'espace de Hilbert (Paris-Budapest, 1967).

UNIVERSITY OF TIMIŞOARA
BUL. V. PARVAN 4.
TIMIŞOARA, ROMANIA

