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On an extension of semigroups

M. B. SZENDREI

1. Since the appearance of N. R. REILLY’s paper [13] in 1966 a number of
structure theorems has been proved for regular semigroups. In the paper [13] it is
proved that a semigroup is a Z-simple regular w-semigroup if and only if it is iso-
morphic to a Bruck semigroup over a group ([12]). This result was generalized by
B. P. KoCin ([4]) and W. D. Munn ([9]) by showing that a semigroup is a simple
regular w-semigroup if and only if it is a Bruck semigroup over a finite chain of
groups. The structure of a 0-@-simple orthodox semigroup the subsemigroup of
idempotents of which is isomorphic to the direct product of a descending w-chain
and a rectangular 0-band whose non-zero idempotents form a subsemigroup, has
been described by G. LALLEMENT and M. PETRICH in [6].

In order to generalize these constructions we define the concept of the (0-) exten-
sion of a semigroup X by a semigroup S. The sets of nonzero elements of S and
2 will be denoted by S, and X, their zero elements by o and w, respectively. Let
S® be the subset of SyX S, consisting of all those pairs (s, ¢) of elements for which
st€ Sy. Let C be a cancellative monoid. Its identity element will be denoted by 1.
Let £, g: S~ C be a pair of functions with the following properties:

(1) fr,sfrs,t =fr,s:,
(2) gr,sfrs,t =fs,tgr,st’
3) 8rs,t = 8s,18r,st

whenever rst€S,. Moreover, let a homomorphism x of C into the endomorphism
monoid of Z be given.

Definition. Define a multiplication on-the set Sy;X 2,U0 by

(st,0(f,,001(gs, ) if st€S, and o(f;,%)1(g,MEZ,
0 otherwise, '
(5,6)0 = 0(s,6) = 0.0 = 0.

(s,0)(t,7) = {
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The groupoid obtained in this way is a semigroup, denoted by F°(S, Z, C, f, g, %)
and called a O-extension of X by S over C.

If none of S and X has zero elements then &S, Z, C, £, g, %)\0 is a semigroup.
This will be denoted by &(S, X, C, f, g, ) and called the extension of X by S
over C.

For example, the Bruck semigroup #(Z, 7) over the monoid X is the extension
& (B, Z, N° f*, g%, %) of X by the bicyclic semigroup B, where N° is the additive
monoid of nonnegative integers, Bz N°XN°® with the multiplication defined by

(m’ n) (P’ q) = (m +p_mln (n, p)’ h +q—mm (l‘l, P)),
f* g*: BXB-+N° are defined as follows:

f(*m,n),(p,q) = p—mln (n’ p)’ g(’ll‘n,n),(p,q) = n—min (n: P),

and x is the homomorphism of N° into the monoid of endomorphisms of X mapping
k into 7*. Note that the functions f* and g* have the properties (1)—(3).

It is clear that it suffices to investigate the properties of the semigroup
FYS, Z, C,f, g, ») because the properties of #(S, X, C.f, g, %) can be deduced
from those of (S, Z, C, f, g, ).

Define an equivalence relation € on %S, ¥, C, f, g, ) such that 040 and
(r, ©)%(s, 0) if and only if r=s. The relation ¥ is a O-congruence in the sense that
if (r,0)%(s,0) and (r’, 0" )4(s’,0¢") then (r, 0)(r", @")=0, (s, 6)(s’,6")=0 imply
(r, (", )% (s, 0)(s", o).

The pair of functions £, g: S&—C is said to be trivial if S f=SPg=1. In this
case LS, 2, C, f, g, ») is the O-direct product of S and Z. Note that the semi-
direct product of ¥ by S introduced by K. KrRoHN and J. RHODES in [5] can be con-
sidered to be an extension of X by S over the free monoid F§ generated by
the set S where f, g: SX S F§ are defined as follows: (SX S)g=1 while f depends
on its second variable only and is a homomorphism.

The constructions used in [15] and [16] by R. J. WARNE to describe the structure
of 2-simple and simple regular I-semigroups, are extensions of a group and of
a finite chain of groups, respectively, by the extended bicyclic semigroup if and
only if they have trivial distinguished elements. Construction I applied in [1] and
[2] by J. E. AuLT and M. PETRICH to give the structure of O-simple w-regular semi-
groups, is a O-extension of a finite chain of groups by the 0-Z-simple w-regular
semigroup with trivial s#-equivalence if and only if the maximal idempotents
belong to the same Z-class.

The aim of this paper is to investigate the properties of (0-) extensions. In sec-
tion 2 we deal with functions f, g: S& - C satisfying (1)—(3). The main result of
this section is Theorem 2.3 characterizing these functions when S has an identity
element and C is a monoid embeddable in a group. In Theorem 2.4 a necessary
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and sufficient condition is given for f and g enabling us to extend their definitions
to S°. Finally, applying Theorem 2.3, we describe the structure of those 0-Z-simple
semigroups with identity which admit £, g of a special type. In section 3 we prove
criteria for (S, Z, C. f, g, #) to be regular or inverse. We investigate Green’s
relations, ideals and homomorphisms of O-extensions. We introduce a concept
of equivalent O-extensions and give conditions for O-extensions to be equivalent.
These results are essentially independent of the results of section 2. Theorem 2.3 is
needed only in Theorems 3.9 and 3.11. :

For brevity, if we consider functions f, g: S —~C or a 0-extension (S, Z, C,
/> & %) we always assume conditions (1)—(3) to be satisfied. We shall write lower
case Roman letters for the elements of S, in particular e for its identity element, and
lower case Greek letters to denote the elements of Z, in particular ¢ to denote its
identity element. ,

S, together with the multiplication in S restricted to .S, is a partial semigroup.
By a right [left] ideal of S, we mean a non-empty subset R [L] of S, with the property
that € R [I€ L] implies rs€ R [sl€ L] for any element s of S, whenever the product
is defined. Analogously, a homomorphism of S, into a semigroup 7' is a mapping
¢: Sy~ T such that for all elements s, ¢ in S, we have (s¢t)¢ =s¢ - tg provided st is
defined. :

For convenience, we use the expressions “if s=0" and “if s=0” also in the
case when S has no zero element. If this is the case then s=o is false, 50 is true
for every s in S.

The results and notations of [3] will be used without any comments.

2. In this section we investigate the properties of functions f, g: S®—~C
satisfying conditions (1)—(3).

Lemma 2.1. If x, s are elements of S, such that sx=s, then f; =1, and if
xs=s, then g, =1.

Proof. Assume that sx=s. Applying conditions (1) and (2) we get

fs,sfsz,x=fs,s and gs,sfsz,xzfs,xgs,s'.

Since C is a cancellative monoid, f;. , =1 follows from the first equality and f; =1
from the second one. The second half of the lemma follows by duality.

Lemma 2.2. Let 5,5, t,t" be elements of S, such that s¥s’, t#t" and sto.
Then we have '

(1) fs,t‘%fs,t' and gs,tggs’,t;
(ii) if the group of units of C is trivial, then f; ,=f, , and g;,,=gs,,,,.
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Proof. Suppose t¢’. Then there exist #, v in S such that ru=¢" and t'v=t.
Clearly, st’#0. Condition (1) implies the following equalities:

fs,t' =fs,tu =fs,tfst,u’ fst,uu =fst,ufstu,v'

For stuv=st Lemma 2.1 shows that f;, ,=1. Hence f;, , has an inverse in C,
which implies that f; ,2f, .. If the group of units of C is trivial, then the second
equality implies that f, ,=1 and the first one that f ,=f,,. Moreover, if s>s’,
then xs=s’, ys’=s for some x and y in §. We have yxs=s, so it follows from
Lemma 2.1 that g, ;=1. (3) implies

gyx,s = gx,sgy,xs’

which gives g,.;=1. Analogously, one can show that g, . =1. By condition (2)
we have
gx,s.fs',t’ =fs,t’gx,st’a

that is, f;, . =f, =/, The proof for g is similar.

In what follows we assume that C can be embedded in a group. It is well known
that if this is the case then C can beembedded in the group of right quotients which
will be denoted by C*. Let us identify C with its image under this embedding.
If two functions y;, %s: So—C are given, let y,/xs: So—C* be the mapping defined
by sy/xe=sx1(sx2)~!. The next theorem characterizes the functions f, g: S&—~C
by functions of one variable provided S has an identity element.

Theorem 2.3. (i) Let S be an arbitrary semigroup and yy, xs: Sy—~C two func-
tions such that Ry={s€ Sy|sy, €1} is a right ideal in Sy, L;={s€ Sy|sy.€1} is a left
ideal in S, for every right ideal I of C, moreover, the mapping @=y/xs: So—~C*
is a@ homomorphism. Then the functions f, g: S —C defined by

%) Jor=()T 6D and g = ()7 (s xe
satisfy conditions (1)—(3).

(ii) If S has an identity element e then for all f, g: S$ —C with properties (1)—(3)
there exists a unique pair of functions ¥y, Xs: So—C with ey, =ex,=1 such that (5)
holds. They are

(6) $X1 =fe,s and $Y2 = &s,e-
Furthermore, these functions satisfy the conditions required in (i).

Proof. Since the facts that R,, . is a right ideal and L, . is a left ideal of S,
ensure f, ,€C and g; ,€C for every (s, 1)€ S, (i) can be checked by simple calcu-
lation.

In proving (ii) suppose S has an identity e and ey;=ey,=1. Then (5) implies (6).
Because of (i), it is sufficient to show that (5) holds and the conditions required in (i)
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are satisfied by the functions y,, . defined by (6). Clearly, (5) is an immediate con-
sequence of (1) and (3). On the other hand, (2) and st#o¢ imply

™ fon8oi =852 feur-.
Applying (5) and (6), this yields

(St)h((S’)/(z) b= sy (sxe) Tr e () 7Y

that is, that x;/x, is a homomorphism. Finally, if I is a right ideal of C and s¢R,,
then (st) yy=sx1f;,.€1 for every ¢ provided that st>¢0. Hence R; is a right ideal.
Dually, L; is a left ideal.

We have seen that the pair of functions f, g can be simply characterized if
S has an identity element. Now it is natural to raise the problem of finding conditions
under which the definition of f and g can be extended to S°. Before treating this
question we introduce some notations.

Let S be a semigroup. Denote the right and left annihilator ideals of S by
Z, and Z,, respectively. If S does not contain a zero element, then Z,=Z;= 0.
Further, h: S ~C* will denote the mapping defined by h,,=f; g;; provided
f,8: SP—~C are defined and CEC*.

Theorem 2.4. Suppose the semigroup S has the properties that Z,=Z, (which
will be denoted by Z) and for any elements s, s, t,t" in S, the relations st, st’, s't0
imply s't’ #0. Let f, g: S® —C be given, where C is a monoid embeddable in a group.
The definition of f, g can be extended to S° if and only if

(a) for each element q in S\Z

J,= ﬂt (ChyiNCYh, N C
st,:t'];éo

is not empty, and for arbitrary p, q, s, t€ S\Z
) b, hyih, hsi=1

P:q4°"S:q

provided st, pt, pq, sq#=o.

Remark. The definition of £, g can be extended to §¢ if we require (a) and
(b) to hold only for the elements p and ¢ of some subsets P and Q of S\ Z, respec-
tively, where P and Q have the following property: For each s, t, ¢’ not contained
in Z we have sq=o0 for some ¢ in Q and pt, pt’ 0 for some p in P.

Proof. If fand g are defined on S then, applying the foregoing results, we have

he, hpithp,ahig = (85 fo,) (85,0 (85 e fe.d) (fea8s,e) =1
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for every p, q, 5, t in S\ Z with st, pt, pqg, sq#o0. Furthermore, if g¢ S\ Z, then there
€xists an element s such that sg2o0. If st>o, t_hen we have

fe.q 8s,e s q =8, ehs thp,lhp q =fe.th;7,]ihp,q =fe.ths_,tlhs,q*

Hence f, ,€J,, and the proof of necessity is complete. |
As for sufficiency we prove the stronger statement formulated in the Remark.
Suppose that (a) and (b) hold for some subsets P and Q of S\Z. We define a rela-
tion ~ on S by writing s~s’ if and only if s=s" or ¢s and ts">40 for some ¢ in S.
‘Clearly, this relation is reflexive and symmetric. If s~5" and s'~s”, then fs, ts’,
t's’,t's"#o0 for some ¢t and ¢’ in S. But then t’s>o0, that is, s~s”. Hence ~ is an
:equivalence relation. We restrict this relation to Q and choose an element ¢° from
cach equivalence class of Q and an element ¢y from J,. If g~¢° and g5<¢°then,
by the definition of P, we have pg®, pg o for some p in P. Now we define ¢, by the
equality c,=cyph, soh, 4. Since cpo€J, and C is cancellative, there exists a unique
-element ¢ in C such that cp=chyLh, » and ch;,}l = qoh;,}l.,E C. Clearly, c=c, and
hence ¢,€C. Let s be an element of S\Z such that sg°<o. Since pgq, pg°+o,

we have sq:<0 and (b) implies A hoh,, oy 2 =h; 5. Thus we have

p,a'%s,q 540"

-1 __ —
cqhs,q = quhp,qohp,q s' = quhs q0-

Hence c,€J;. Relation (b) ensures that ¢, is- welldefined. Let s, be elements of
.S not contained in Z. Then, on the one hand, there exists an element g in Q such that
sq#o and, on the other hand, there is an element p in P such that pt=o and
hence an element g” such that pg”>o. Let us define f, ,, &s,e tO be the uniquely
determined elements of C such that

fe,l pt g’ = Cy’ and gs,ehs,q=cq'

(b) implies that f, , and g, , are well defined. If z€Z, then f,, and g, , can be
arbitrarily defined. By Theorem 2.3 it suffices to check (5) for the mappings defined
. by (6) and to check (7). Let s, ¢ be elements of .S with st>0. Then pst =0 for some
pin P and pg’#o for some ¢’ in Q. Clearly, ps>20 and we have

foltfoa=hy5h, pvcileahy b h

p,s'tp,q q'"p,q

pst = gp,sfp-:g.fp.stgz;,lst =
= gp,sfps.!g;,st =for-

1In the last two equalities conditions (1) and (2) are applied. Analogously, we have
8i e8st,e =85, if st#o. Finally, if st o, then sg=o for a g in Q and hence pt, pg=o
for some p in P. Applying (b), we have

gs,lfet— hsq _lc hpzhpt - hs;t’

.as was to be proved.
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It is easy to see that for any elements p, g, s, ¢ of S and x, y, u, v of S°
. hs.th;.]ihp,qh;; = hus,tuh;l:’l,tvhxp,thlz\',lqy
provided ustv, xptv, xpqy, usqy=o. One has only to observe that

hs,x =fs,tg;t1 =fs,wfst_.}!fst,ugs—,wft._vl = hs,tvft:.vl
and duaily

hs,t - gu,shus,t'

A subset M of S\ Z, will be called left O-reversible if for any pair s, s~ of elements
of S the existence of elements m in M and ¢ in S with sz, sm, 5't, s’"m>£ o implies the
existence of an element x in ¢S mS such that sx and s"x7%0. It follows by straight-
forward calculation that in this case

hs,x hs_',lt hs’,mhs,m = hs,xhs_’,lx hs’,xhs,x =1
Hence Theorem 2.4 implies the following

Corollary 2.5. Suppose Z=Z,=Z, holds in the semigroup S. Assume, further-
morve, that S has the property that for any elements s, s, t, t’ the relations st, st’, s’t o
imply 8’t" 20 and S contains a left O-reversible subset M such that for every element
s of S not belonging to Z the set M has an element m with sm=o. Then the definition
of f, g: S —~C can be extended to S® if and only if for each element m of M

Jn= (1 (Chz}NC)h,,NC
m,:;nt#o

is not empty.

The assumption of Corollary 2.5 is satisfied for example if S is an inverse semi-
group in which the semilattice of idempotents is an orthogonal sum of semilattices.
M can be chosen to be the set of idempotents. If § has no zero element then in
Theorem 2.4 P and Q can be chosen to be singletons. In this case the assumption
of Corollary 2.5 means that S contains a left reversible element m.

Evidently, condition (a) of Theorem 2.4 is satisfied if C is a group.

The following example shows that there exist functions f, g: S$¥—~C which
cannot be extended to S¢, while considered as functions f, g: S&—~C* they can be
extended. Let S be the extended bicyclic semigroup defined by R. J. WARNE in [14].
We denote the set of integers by I. S is the set I’)X [ equipped with the multiplication

(i, j) (k, 1) = (i+k—min (j, k), I+j~min (j, k)).

Clearly, f, g: SXS—~N° defined by f; ;) «,n=FK—min (j, &), gq, jy, xn=/—min(},k)
satisfy (1)—(3), while Ji, ,, is empty for every (ko, /). On the other hand, § is
an inverse semigroup without zero, hence the definition of f, g can be extended to
S¢ if negative integers are allowed to be used.
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Now we determine all the pairs of functions f] g: FyX Fy—~C which can be
defined on the free semigroup freely generated by its subset X.

Theorem 2.6. Let C be a monoid embeddable in a group and let 3, 7,: Fx—~C
be two functions such that Xyy=Xye=1, R,={s€ Fy|sy,€1} is a right ideal, L,=
={s€ Fy|sxo€1I} is a left ideal of Fy for every right ideal I of C and the mapping
©=jx1/1: satisfies the following condition: for all s=x, ... x,€ Fx\X, where x,€X
(i=1, ..., n), we have .

) ¢ = (%1, X) P (X2 X3) @ ... (Xn=1 %) P
Then f,g: FyX Fxy—~C defined by
9 Jor =G 601 &= (D1 e

have the properties (1)—(3). Conversely, for any f, g: Fx X Fx—C satisfying (1)—(3)
there exists a unique pair of functions ¥, x»: Fy—C with the above properties. These
Sfunctions are defined on Fx\X by

(10) - Sil :fxp X2...Xp? 322 = gxl...x“_l,x,,

where Xxq, ..., X,€X and s=x, ... x,,.

Proof. Since Ry ( is a right ideal and L,; ¢ is a left ideal of Fy, we have
fi,c and g, €C for all 5,¢ in Fx. The first statement of the theorem can be
verified by calculation.

Now let f, g be given with properties (1}—(3). Relations (9) ensure that the only
functions y;, ¥, With Xy, = Xy,=1 are the ones defined by (10). All we need to prove
is that these functions have the required properties. (9) is implied immediately by
(1) and (3). If I is a right ideal of C, s€Ry, t€ Fy, then (st)yy=s%,f, €1, that is,
R; is a right ideal of Fy. Dually, L; is a left ideal of Fy. Let x;, ..., x,€ X, where
n=3. Applying (9) and (10), relation (2) implies that

-1 — -1 f ~1
fxl,xz...x,.gxl i Xp-1:%Xn _’fxl,x2gx1,x2 xz,xg...x,.gxz...x,‘_l,xna

that is, we have
CANPSY EYCRSLICNEENT )

By induction on n one can show that (8) holds, which completes the proof.
Now it is easy to construct a pair of functions on a free semigroup such that its
_definition cannot be extended to the free monoid generated by the same set. Let
X be the two-element set {x, y}, C the cancellative monoid of non-negative integers
with the usual addition. Define y, in the following way: let x2z; =%y, =0, (xp) 7, =
=(yx)=1and (xy...x) 11 =0 x) M1+ - +(X,_1%) 1 if #=3 and x,, ..., x,€ {x, ¥}
Let y, be identically 0. Obviously, these functions have the required properties
enabling us to define f, g: Fy X Fx—~C by (5). However, h, ,—h, ,+h, ,—h, . =—2.
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In what follows we prove a structure theorem for 0-@-simple semigroups
with identity on which a nontrivial pair of functions f, g: S —~N? is defined where
N° denotes the additive semigroup of nonnegative integers. The operation in N
will be denoted by +. Clearly, N%* is the infinite cyclic group.

Lemma 2.7. Let the semigroup S have an identity e and two elements a, b such
that ba=e. If f, ,=n (n€N°), then for all nonnegative integers k and m

Se,akpm = kn,  Zaxpm, . = mn.
Proof. Since ha=e, we have b*a*=e for all k in N° Hence a*.%e and b*Re.
This implies by Lemmas 2.2 (i) and 2.1 that
fow=Ffoe=0 and gu.=g,.=0.
Using the homomorphism ¢ defined in Theorem 2.3 we have

fe,a" =fe,a"_ga",e =akp = k(a(p) = k(fe,a._ga,e) = kfe,a = kn
On the other hand, we have

0=ep=(ba)¢ =bp+ap =—g,c+feu
whence g, .=n. In the same way as above one can prove that g,. ,=kn. Since
for all k,m in N°® we have a*#a*b™ £b™, Lemma 2.2 (ii) ensures that f, jm=
=fo,a=kn and g ym ,=gym ,~mn.
An immediate consequence of this lemma is

Corollary 2.8. The functions f, g: BXB—~N° definable on the bicyclic semi-
-group B are exactly the constant multiples of f* and g* (see §1.).

Let S be a semigroup with identity ¢ and zero element 0 on which a nontrivial
pair of functions f, g: S& N0 is given. Let

_{SESOIfes l} G - {SESOIgs,e }

for all 7 in N°. {F|i€¢ N°} and {Gli€ N°} are partitions of S,. The equivalence rela-
tions induced by them will be denoted by & and ¥, respectively. Let X' =F N,
Clearly, its equivalence classes are the sets K; ;=F;G;.

We remark that R, yo=U F; and L yo= Lj G; where R, yo and L, pno

i=k i=k

denote the right and left ideals of S respectively used in Theorem 2.3. Since ¢ defined
in the same theorem is a homomorphism, U K; ;U0 is a subsemigroup of S for

every k in N° Lemma 2.2 (i) implies that RA=F and <9 Hence if S is
0-2-simple, then the following holds: Ar=r[rh=r] for all r in F;[G;], whenever
hk=k[kh=Kk] for all k in K; ;. These facts will be used without reference. To
prove Theorem 2.10 we need :



376 M. Szendrei

Lemma 2.9. Assume that nontrivial functions f,g: S&—~N° are given on a
0-9-simple semigroup S with identity e such that the subsemigroup U K; ;U0 has
an identity element e,. Let e,€K, .. If e;=ab with.ba=e, then a"’b"' is the identity
element of G K, ;U0.

i=mn
. . . (m+1)n-1 . .
Proof. We prove by induction on m that r¢ |J K, implies @"b"r=r.
i=mn
(m+1)n-1

Clearly, this holds for m=0and r€ K, , implies abr=r. Suppose that r¢ | K,

implies @"b™r=r for all m smaller than m’ (m’=1) and r€K,,, , implies t;m:"'glm'r=r.
Now let r€K; o, where m’n<j=(m’+1)n. Since ab is an identity element of iL:Jl K
we have abr=r. Hence br Zr, that is, br€ G,. On the other hand, we have

(br)p = bo+rep = —n+j,
whence bre K.

_ntj,0- By assumption, (@™ ~*b™ ~Y)br=br, that is,

r=abr =aa”1b" " 1br = a™ b™r.
Moreover, if j=(m’+1)n, ie. —n+j=m'n, then br=(a™ b™)br and
r = abr = g™ *1p™ t1p,

This completes the proof of the fact that a™b™ is a left identity element in U K ;Uo0.

i=mn

Dually, it follows that it is also a right identity.

Theorem 2.10. Let a nontrivial pair' of functions f, g: S&—~N° be given on
the 0-@-simple semigroup S with identity e such that the subsemigroup G K, ;U0
. i=1

has an identity element e;. Assume that ¢,€K, ,. Then

(i) the ranges of f and g are the set of multiples of n. :

(i) If, moreover, Kg’ 0o=Ko,0U0 is a subsemigroup of S and e,Ky,,EK, ,,
then S=~ ¥(B, Kg, os N f*, g%, x), where B denotes the bicyclic semigroup and the
endomorphism n=1x preserves e.

Proof. Since e, € F,, the number n is the least positive integer with F, 5 [J.
The semigroup S is 0-2-simple, hence ¢ ZaZe, for some a and since § is regular,
there exists an inverse b of a such that ba=e, ab=e,. Suppose that in contrast to (i),
E,# O for some p, where n{p. Let d be the greatest common divisor of n and p.
Then up—vn=d for some positive integers u, v. Let ¢ be an element of F, such that
e#c. By Lemma 2.7 we have ¢“€K,, ,, and since up=vn, Lemma 2.9 implies
a’b’c’=c". Hence b’c* Zc* Le. However, we have

(b°c) o = v(bp) +u(cp) = —vn+up = d,
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whence it follows that 6°¢"€ K, , with d<n, a contradiction. On the other hand,
a"¢ F,, by Lemma 2.7, which proves (i) for /. Dually, one can show (i) for g.

Turning to (ii), we first show that all the elements of S, can be uniquely re-
presented in the form a*hb™, where h€ K, o. Let s€K, p. Since S is 0-@-simple,,
Green’s lemma ensures that s=a.h’b,, for some g, b,, and 4’ such that eZa, As,
e%b,&Ls and h's#Fe. Applying Lemma 2.9 we obtain

s = a*b*sa™b™ = a*(b*a ) h’(b,,a™) b™.
Since €K, o, the equality a*b*a,=a, holds. Hence b*a,La,, that is, b*q,€G,.
Moreover, (b*a)p = —kn+kn=0, whence b*a,€K,,. The fact that b,a"c¢K,,
can be proved similarly. By assumption K; , is a subsemigroup of S. This implies
that A=(b*a)h’(b,,a") € K§ yand /0 because s><0. We have obtained that s=a*/b™.
To prove uniqueness suppose that we have
a*hb™ = a* b’ b™
for some /1, A" in K, 4. Since
(@hb™ o = (k—m)n, (@K' b™)p = (k'—m')n,
we have k—m=k’—n?, that is, k —k’=m—m’=r. Without loss of generality we can
assume that r is nonnegative. Multiplying the equality above by b*" on the left and .
by @™ on the right it yields @ hb"=h’. Hence h'd’ b’ =h’. Should r=0 hold, then
a'b” would belong to L, yo implying h'€ L, yo. Since h’'€K; 4, we have r=0 and
h=H, as was to be proved. ]

Let h be any element of K, ,. Since (bh)p=bep+hp =~—n we have either
bheK, , or bh€L,,,, 5. The latter would imply abh=e,hi€ L, 1450, coOntrary to
the assumption eh€K, ,. Hence bh€K, , and by the foregoing bh=hb for the
unique element A=bha of Ky, - Similarly, we have ha€ K, , and hence ha=(ab)ha=
=ah. If h=0, then h=0 is the unique element such that bk=/%b and ha=ah. The
mapping = sending % into 4 is an endomorphism of K? o as we have

[(gh)n]b = b(gh) = (bg)h = (gm)bh = (gm) (hn) b,
whence (gh)n = (gr){(hr). Obviously, en=e. Using these results we obtain the product
of any two elements of S, in the form
(a™gb™) (aPhb?) = a™gb""a?"hb?= a"ga? """ "hb? =
— qm+p——r(gnp-—rhnn—r)bn+q—r’
~where r=min (n, p). In the second step we made use of the equality " "a®* "=
=aP~"b""" implied by the fact that at least one of the exponents equals 0. This
implies that the mapping & defined by
(m,h,n) if s#0 and s=a"hb", heK,,
I if s=0 '
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is an isomorphism of S onto #°(B, K; ,, C, f *, g*, x), where x is the homomorphism
of N° into the endomorphism monoid of Ky , mapping k into z*.

Corollary 2.11. In a semigroup S satisfying the conditions of Theorem 2.10
the relations &, 9 and A" are 0-congruences.

Now we construct a 9-simple semigroup S with identity and a pair of func-
tions f, g: SX S—N° with range N° which fail to have the property that the sub-

semigroup U ; has an identity element. We shall use the notions and results of

W. D. MUNNS paper [8].
The descending w-chain as a meet semilattice is isomorphic to the semilattice
N} with underlying set N° and operation defined by

m A n = max (m, n).

Let E be the direct product N% X N?. The semilattice E is uniform and has a greatest
element (0, 0). The set Ty of all isomorphisms of a principal ideal of E onto another
one considered as partial mappings of E together with the usual multiplication is
a P-simple inverse semigroup with the semilattice of idempotents isomorphic to E.
The principal ideal of E generated by (m, n) will be denoted by [m, n]. For each
pair of elements (m, n), (p, q) of E there exist two isomorphisms af, . ., . and
Um, my, (0 gy OF [, 1] onto [p, q] defined by

(m + i9'n +j)azr.n,n)(p,q) = (p+ ir q+.])9 (m + is n+]) a(—;n,n)(p,q) = (p+.], q+ l)’
where 7, j=0. Let us define the functions y; and x,: T;—~N? as follows:

a,zm,n), (p» q)Xl = m+n a?m,n) (p,q)x2 = P+ q,

where # may be + as well as —. Since o, » .0 TE_a(m, W), q,)TE if and only
if (m,m)=(m’,n’) in E, the set R, yo={B€Tg|frs€k+N° is a right ideal
of Tg. Dually, L, ; yo={B€ Tg|Br€ k+ N° is a left ideal of Tg. Furthermore, denoting

A1/Xs by @, we have
(@), (0. 00 X, (01,0 @ =
= a?’l””\m'v‘l’\"')“?p,q),(m,n)1(PAm'rq/\"')a'(’;n’,n'),(P’,q’)qo =
= (m+n+(pAm’—p)+(gAn" = ))—(p'+ ¢ +(pAm’—m") +(g\n’—n")) =
=(m+n)—(p+g)+m +n)—(p'+q’) =
= Clmny, (0, 0P F Uty ), 57 P-
Hence ¢ is a homomorphism. Theorem 2.3 implies that f, g: Tg X Tp~N° defined

by (5) have the desired properties (1)—(3). There are two idempotents in K; , which
are dual atoms in the semilattice of idempotents: og 1) 01> %t 0,00 CON-

sequently, the subsemigroup (J K;; has no identity element.
i=1
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3. In the present section we deal with the properties of 0-extensions #°(S, Z,
C.f, g, ») of a semigroup X by S. We state a proposition on the 0-congruence induced
by the 0-extension. Necessary and sufficient conditions are given for &S, Z, C,
/. & %) to have an identity, to be a regular or an inverse semigroup. We investigate
its Green’s relations and ideals, too. The homomorphisms of a semigroup
FYS, Z, C, f, g ») into 8, X, C, f, g, %) are investigated in some special cases.
We introduce a concept of equivalence between the 0-extensions of a semigroup
X by another one denoted by S and deal with the equivalent 0-extensions. This
section is mostly independent of section 2, the main result of which, Theorem 2.3,
is used in Theorems 3.9 and 3.11 only. _ _

Let the semigroups S and X be given. Consider a 0-extension #°(S, Z, C, f, g, %)
of Z by S over the cancellative monoid C. For brevity, denote &°(S, Z, C, f, g, %)
by S.

The O-congruence induced by the O-extension S will be denoted by €. Its
congruznce classes are C,={(r, 0)lo€ £} and Cy={0}. Denote C,U0 by C;.

Proposition 3.1. (i) All congruence classes C? with O adjointed corresponding
to nonzero idempotents of S are subsemigroups of S isomorphic to Z°.

(i) If X has an idempoient element 1 preserved by all the endomorphisms in
{fo.ts 8s,4l5, tES, st 0} then

{(57 I)ISESO} U O
is a subsemigroup of S isomorphic to S°.
Proof. Since, by Lemma 2.1, f; ;=g; ;=1 we have

(i,00) if go#ow
0 otherwise

(1,00, 0) = {

and
(1,090 =0(@,0) =0-0=0.

Hence C} is isomorphic to Z°. As for (ii) if ¢ has the required property then

(st,1) if stso
0 otherwise

(s,0(t,1) = {

and
(5,00 =0(,2)=0-0=0.

Hence {(s, )|s0} U0 is a subsemigroup ismorphic to S°.

Proposition 3.2. (i) 4n element (i,1) of S is idempotent if and only if i and 1
are idempotents in S and X, respectively.

12
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(ii) The element (e, €) of S is the identity of S if and only if e, ¢ are the identities
of S and Z, respectively, and the endomorphisms of X contained in {f,,, g, s, t¢S,
st#o0}x preserve €.

Proof. Using the definition of S, the element (7, 1) is idempotent if and only if
i2=1i and 1(f;;%)1(g;,%) =1
By Lemma 2.1, i®=i implies f; ;=g; ;=1. Thus the above condition is equivalent
to the following one: i2=i and 12=1. Similarly, (e, &) is an identity if and only
if for any s, 0
se=es=s and o(f,.08(g, %) = e(f,s#)0(8e,4%) = 0.
Lemma 2.1 ensures f, ,=g, ,=1, so that the latter equality says that
08(8;,e%) =e(f,s%)o =0

for any s, 0. Taking s=e this yields that ¢ is the identity of Z. But then &(f, )=
=e(g, )=¢forall s=0. Lets, t be any elements of S such that st#0. Applying (1)
and the fact that » is a homomorphism we have

e =¢(fe,u) = 8(fe,s") (foe2) = 3(fs,t“)’

and similarly, by (3), we have e=e(g, , ). Conversely, if e and ¢ are identities of
S and X and x has the desired property, then (e, ¢) is clearly an identity.

Theorem 3.3. (i) The semigroup S is regular if and only if bot1 S and X are
regular.
(i) S is an inverse semigroup if and only if both S and X are invérse semigroups.

Proof. We show that two elements (, ¢) and (s, 6) of S are inverses of each
other if and only if r, s and ¢, 6 (f;, &, %) are inverses of each other in § and Z,
respectively, where f; ,g, % is an automorphism of X. This proves the theorem.
By definition (r, g) and (s, o) are inverses of each other if and only if

(11 rsr=r, Srs=s,
(12) e/, a®)0 (s 8r,5r) 0(8rs,s%) = @ 0 (f5,15%)0([,585,rs¥) T (€5r,s%) = O.
Using (2), (1) and (3), (11) implies that

Jri58srsSsr8rist =Sris Josir 8sir 8risr = Srisr8rsut-

It follows from Lemma 2.1 that f, =g, ,=f, ,s=8ss=1. Hence f, ,x=
=85 1 X =fs, 1% =8sr,s%, the identity automorphisms of Z and f, &, 5% fs,r8r,o¥®
are automorphisms of Z, inverses of eazh other. Thus conditions (11), (12) are equi-
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valent to (11) and

13) 00 (fs,r8r0)0 = 0 0(f5,r8r,5:7) 00 ([, 181, 5%) = 0(f,1 81, %);
as was to be proved.

As for Green’s relations and ideals of the semigroup S=%%S, Z, C, f, g, %)
in general one cannot say more than the definitions of them. Therefore we deal with
the case when S is regular.

Lemma 3.4. Let S be a regular semigroup. The principal left [right] ideal of
S generated by (s, 0) is contained in the one generated by (r, 9) if and only if (r, p)=
=(s, ) or the following conditions are satisfied:

(a) seSr[sersS],
~ (b) ocZonlocgnZ] where n=g, x(xr=s)[r=f,  (rx=73)]
is an endomorphism of X depending only on r and s.

Proof. First we note that xr=s and x’r=s imply g, ,=g, ,. Indeed, if i is
an idempotent in the .#-class containing r, then ri=r and si=s. Thus by (3) we have

8r,i8xr=28s: and g, .8.,=g.;.
Since C is cancellative, g, ,=gx,,-
By definition, (s, 6)€S(r, g) means that there exist elements x and £ in S and X,
respectively, such that

(14) xr =5, &(f,%)0(gx,%) =o0.
Hence the necessity of (a), (b) is proved. Conversely, assume that (a), (b) hold,
that is, there exist x and &€ in S and Z, respectively, such that

xr=s, ¢on=o.

Since S is regular, x can be chosen to satisfy xZs. If j is an idempotent belonging
to the &-class of s, then j=sw for some w and the equality

f},xfx,rfs,w =fj,sfs,w =f.i,.i =1
follows from (1) and Lemma 2.1. Hence f, , is in the group of units of C and f, ,»
is an automorphism. Thus &' =¢(f, ,%) for some &, that is, by (14) (s, 0)ES(r, 0).
The statement for right ideals can be proved dually.
The next theorem deals with Green’s relations of S.

Theorem 3.5. Let S be a regular semigroup. Two distinct elements (r, @) and
(s, 0) of S are L[R]-equivalent if and only if

@) rZslr#s] in S and

(b) o€ Zga, gu€Xolo€oaZ, gucoZ] where a=g, % (xr=5) [a=f, ,s(rx=5)]
is an automorphism of X depending only on r and s.

12¢
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Note that if the group of units of C is trivial, then g, ,=1[f, ,=1], whence
a is the identity automorphism.

Proof. By Lemma 3.4. all we need to show is that if xr=s, ys=r then g, ,%
and g, ;% are automorphisms of X being inverses of each other. To prove this one
has only to observe that we have

8x,r8y.s = Ex,r8yxr = Eyxyr =1
by (3) and Lemma 2.1.
An immediate consequence of this theorem is

Corollary 3.6. Let S be regular and X have the property that 6€o 2\ Za for
all elements ¢ in Z.

(1) The distinct elements (r, ¢) and (s, 6) of S are @-equivalent if and only if
rDs and there exists an element t in S such that r L1Rs and gaDofl, where =g, .,
B=f,, ,#(xr=sy=t) are automorphisms of X depending only on r, s and t.

(i) If both S and X are (0-)D-simple, then S is also 0-@-simple.

(itt) If the group of units of C is trivial, then S is 0-@-simple if and only if S and
Z are (0-)D-simple.

To make the formulation of the theorem on the ideals of S easier we introduce
the following notations. If C is a subset of S containing the 0 element let

C = {s€S|30¢€Z (5,0)€C}

provided S has no zero element and adjoin o to C if 0€ S.
For all ¢ in C different from o define I', as

I, ={o€Z|(c,0)eC}

if Z has no zero element and adjoin w to I', if w¢ 2.

In particular, the subsets corresponding to the subsets of S denoted by L, R
and D are denoted by L, A({€L,l+#0), R, P, (r€R, rs¢0) and D, 4,(d€D, d+o),
respectively.

Theorem 3.7. Let S be a regular semigroup. A subset L[R] of the semigroup
S containing the O element is a left [right] ideal if and only if
(a) L{R]is a left [right] ideal of S and
(b) for all elements 1 of L[r of R], I” of Sl{r" of rS] different from o and i of
Ale of P ZinS AfonZ S P, holds where n=g, w(xI=1)n=f, .x(rx=r")] is
an endomorphism of Z depending only on Il and I'[r and r’).

The proof of this theorem is easy thanks to Lemma 3.4, therefore it is left to
the reader.
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Corollary 3.8. Suppose the semigroup S is regular. The semigroup S is 0-simple
if and only if S is (0-)simple and

(16) = U ZonZ

n€E;

Jor all s, t and o different from o and w, respectively, where
Ef ={(gy,sfus,)¥| xRt Ly and xsy =t}.

Proof. S is O-simple if and only if for every element (s, ¢) in it the ideal
D=S(s, 6)S is equal to S itself. By the last theorem this means that S is (0-)simple
and A,= X for every t=0. So it is sufficient to prove that the right side of the equality

(16) is equal to 4,. Theorem 3.7 (b) ensures that |J ZonXC 4,. Conversely, since
nEEf

the nonzero elements of D have the form (x’, £)(s, 6)(3’, n), 4, is contained in the
ideal |J Zo(gy,sfrsy)%2. Letiyand i, be idempotents such that i; #¢.%i, and let
Xy
x'sy’ =t
x=ix’, y=y'i,. Obviously, x#tFy and xsy=t. Applying identities (1)—(3) and
Lemma 2.1, we see that

gx',sfx’s,y' = gx’,sfx's,y’gil,x’sy’ = gx',sgil,x'sfxs,y’ = gx,sfxs,y’ =

= gx,sfxs,y’fxsy’, e — gx,sfxs,y .
Hence (g,,s fr'5,y)#€E; and 4, |J ZonZ, which completes the proof.

n€EE;

In what follows we deal with homomorphisms of a semigroup S=£S, X, C,
/. g %) into another one S=%°8S, %, C, f, g, %) in two special cases. In the first
case we assume that Cx and Cx are contained in the group of automorphisms of
X and X, respectively. Then without loss of generality we can assume C and C
to be groups. In the alternative case we suppose that S and S are inverse semigroups.

Theorem 3.9. Suppose that C and C are groups and the definition of f, g and
J, & can be extended to S° and S%, respectively. Denote the suitable homomorphisms
used in Theorem 2.3 by ¢: S¢—~C and §:52-—~C. Suppose four mappings m,:S°~8§°,
Wy Z°>8% my: S°~X% and p,: T°—~Z® are given with the following properties:

- _ P L [ s B |
(@) omy = wp, omy= o, omi'=omsl, oprt=op;’.

(b) For any r,s, ¢, 0 in S and X, respectively,
an (rsym, = rmy -smy,

(18) () s = opy -0y
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if (rs)my=0 and (o), #0, furthermore
(19) (rs)my, = rmy - smy(rm, o)1,
(20 (e0) pe = opz* oo (opy 30) 1

whenever (rs)m, =0 or rm, - smy#0 and (go)p; #0 or oy, * o, #0.
(c) For any r, 0 in S and X, respectively,

@) rmy- oy = o(rex) " 1uy - rmy,
rmy - ops(rmy @)1 = o(rox) " ps - rmy(o(rox) iy o)

if all the four elements are different from 0 and ®, respectively. In addition, the left
hand sides differ from zero if and only if the right hand sides do so.
Define a mapping ®: S—S in the following way. Let

(r, 09 = (12~ rmy, (@12 rmy (@'t ) 7Y) (fz, 0y rmy 2)s
where o’ =g(f,,, %)™, when both components on the right are nonzero and (r,9)®=0
otherwise. Further, let 09 =(om,, om,) if om; =6 and 0 =0 otherwzse Then
(i) the mapping ® is a homomorphism.
(i) @ is an isomorphism if and only if 00=0 and for all nonzero elements

7,8 of S and Z, respectively, there exist uniquely determined elements r and @ in
S and X such that

F=ou-rmy and @ = Quy-rmy(op, px)~1.

(i) If the semigroups S, S, X and Z have identity elements, then all the homo-
morphisms of S into S are of this form.

Proof. It is not difficult to check statement (i) by computation. (ii) is implied
immediately by the definition of @ and the fact that the elements of Cx and Cx are
automorphisms. Turning to (iii), consider the semigroups S, S, X, 2 with identity.
Since f,, ,» is an automorphism, for any nonzero r, ¢ we have

(r,0) = (e, e(fe,,2)7Y) (r, 8).

Hence all the nonzero elements of S can be uniquely written in the form
(e, 0)(r, &), where {(e, 0)|e€ Z,}U0 and {(r, &)|[r€ Sp} U0 are subsemigroups isomor-
phic to X and S°, respectively. Let ¢: S—S be a homomorphism. Define the map-
pings m;: §°—8°, puy: 22—~8° my: S°—~2%, py: I°Z% as follows. Let om, =owu, =0,
omy=wu,=@ if 00=0 and om,=wu, =7, omy=wp,=g if 0®=(¢, g)(F, &). Let
rmy=20, rmy=a if (r,e)®=0 and op,;=0, ou,=a if (e, 0)®=0, respectively. In
the opposite case, let
(r, &)@ = (&, rmy) (rmy, &) = (rmy, rmy(fz, 1m, %)),

(ea Q)¢ = (e’ Q#Z) (Qﬂls 8) = (Q.“l: Q#2(fé,eu1”))'
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Clearly, om,=wp,, omy=wp,, om'=om;" and ou;'=ap; . Relations (1), (3)
and the fact that @ is a homomorphism yield that for any 7, § with 7320 we have
fa,ffi-,s = fé,i‘.i’

f‘e‘,sgi,§= 2,585 8,0 = SP(F50) ™ fo, 55 = (FO) ™ fo 5

Since x» is a homomorphism, we have

)

(r’ 8) - (S, 8) ¢ = (rml eSmy, rmz(]é, rmy ’?) (frml,sml ’?) °Smy (fé, smy i) (g-rml,snu ﬁ)) =

= (rm1 ssmy, (rmz - smy(rm, @?)—l)fa, rmy.smy 2)

for every pair r, s, whenever both components on the right side are nonzero and
(r,&)®-(s,e)®=0 in the opposite case. The same equality holds if (r, &) or (s, ¢)
is replaced by O, that is, if =0 or s=0. But @ is a homomorphism, (r, &)@ - (s, )P =
=(rs, €)@, which proves that (17) and (19) hold under the conditions mentioned
in the theorem. Investigating @ restricted to the subsemigroup {(e, o)lo€ Z,}U0
one can verify (18) and (20). Observe that for any r and ¢

(r, ) (e; 0) = (e, 0(re) ™) (1, €).

Hence (r, £) D(e, ) P=(e, o(ro»)~1)® - (r, &)®, that is, denoting o(rex)~'u, by
§ and o(rex)~'u, by &, we have
(rm1 * 0y, ("mz * Qa(rmy (5’?)_1) (fé, rmy-emy ﬁ)) = (5 rmy, (6 < rmy(5pi) ! (fé,i'rr;lx))

if all the components are nonzero. Moreover, if a component is zero on one side,
then so is one on the other side. This is equivalent to condition (21), which comple-
tes the proof.

In the next theorem we use the notation f,;! only if £, , is contained in the
group of units of C. If r is an element of an inverse semigroup the unique idempotent
belonging to the #-class containing r will be denoted by [r].

Theorem 3.10. Let S and S be inverse semigroups, E and E the semilattices
of their idempotents, respectively. Assume that mappings my: S°—~8°, m,: S°—~Z2%
i 2280 pi: 3032 (i€ Ey) are given such that they have the following properties.

(a) For each i in E, we have omy=wp, omy=wus, om =om;* and o(ui)~t=
—au)

(b) For any r,s, 0,0 in S and Z, respectively, and i in E, we have
(rs)ym, = rmy -smy,

(o)1 = opi-oui .
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if (rs)my0 and (go)ul= 0. Further we have
(rs)my = rmy(Fiomy1, trmy-sm3 %) * S ((Grmy, Lsmu) Jirms-sma1, rm i) %),
(o) th = b (Figus), fons o) %) * T2 (Bout, fout) Fiont -ont], et fon) #)
if (rs)my0 or rm,-smy0 and (0o)pi =0 or oy’ -opui=o.
(c) Foranyr,oin Sand X and i in E,
rmy-opi = Q((gr,if i, ri)”)#g'i] - (riymy,
715 (Firmy, frmy- 001 %) * @H3 ((Brmy, Lont )y -omt], s Lent) %) =
= W et fesr-comd @) (DM (Eutrt, fenm) Sizutr - eomsd, eutr e mg)) %)
if all the four elements are different from zero. Moreover, the left hand sides of the

equalities differ from zero if and only if the right hand sides do so, too. In the second
equality ¢'=0((g,,: fyii) %) Define a mapping ®: S-S in the following way. Let

(ra Q)¢ = (G#Er] srmy, (gﬂ%’] (f[cui’]],[apg']-rmd ’—{) *
115 ((8antr, ] Jlontr1-rml, ol Ty ) ot o), ol vy %))

where 6= 0(f;;;%), whenever both components are different from zero, (r, @)®=0
otherwise. Further, put 0®=(om,, om,) if om,6 and 0p=0 otherwise. Then

(i) the mapping ® is a homomorphism,

(i) if the semigroups X and X have identity elements preserved by all endo-
morphisms f, ¢, g, % and f; %, g %, respectively, then all homomorphisms of
S into S are of this form.

Proof. (i) can be verified by computation. If S is an inverse semigroup and
Z has an identity preserved by the endomorphisms f; ;% and g, (%, then all the
nonzero elements (r, ¢) of S can be uniquely written in the form ([r], ¢")(r, &) with
o'=o(f;,%) because fi,y, is in the group of units of C by Lemmas 2.2 and 2.1
and hence f;;%% is an automorphism. Since the proof of (ii) is similar to that
of Theorem 3.9 (iii), it is left to the reader. We note only that by (1)—(3) we have

f[r], rfr, s = f[r], s f[r], [rs] f[rs], rs

Since {rs]=rss~1r~2, we have [rs]r[s]=r[s] and

f[rs],r[s]f[rs]r[s],sfrs,s' 1p-1 =f[rs],rsfrs,s‘ 1p-1 =f[rs], {rs] = 1.
Hence f;,s), (s is in the group of units of C and we have
. — — -1
f[s],sgr, s = &l fr s)s — &r,[s] f[rs],r[s] f[rs],rs .

Let S and X be two semigroups and consider two 0-extensions S=59(S, Z, C,
f.8 %) and 8’'=9%S, Z,C,f, g, %) of X by S.
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Definition. The 0-extension S is said to be equivalent'to 8 if for every s in
S, there exists an automorphism , of X such that the mapping ¥: S-S’ defined
by 0¥ =0, (s, 0)¥=(s, 0y,) is an isomorphism.

This definition clearly determines an equivalence relation on the class of 0-ex-
tensions of X by S.

In the next theorems we investigate the equivalent 0O-extensions.

Before formulating the first one we note that if the images of the functions
fx and gx are contained in the group of automorphisms of X, then Theorem 2.3
applies to them provided S has an identity. The homomorphism used in this theorem
will be denoted by ¢*.

Theorem 3.11. Let S be a semigroup with identity and X a reductive semigroup.
Assume that the images of fx and gx are in the group of automorphisms of X. The
O-extension S is equivalent to S’ if and only if the images f% and g% are included in
the group of automorphisms of ¥ and @*=q@*U for some inner automorphism U of
the group of automorphisms of ZX.

Proof. Suppose S and S’ are equivalent. This means that for any r, s in S
with rs o and g, ¢ in ¥ we have

(r, 0,) (5, o) = (s, (@ (fy s ) 08y, s))Vrs)

provided they are nonzero or else both of them are zero. In both cases we have

oV, (fr,s D)oY (&,,s30) = 0(f,, ) Y50 (&), 3D Vs.-
For r=e this yields
oY e(fe,s W) oY = 0 (fe,s )P0V

2 is reductive and ¥/, is an automorphism. Hence for any sso we have

we(fe,s}?) = (fe,s%)lljs'
&s, l//e, (&se?) = (e”)‘//s

for s#o0. From these equalities it follows that f, ;% and g, % are automorphisms
for all s>£0, which implies by (1) and (3) that so are f, ;% and g, %, where rs=o.
Moreover, we have

Dually, one can see that

s¢* = Y1 (59" Y.,
which completes the proof of the only if part. Conversely, suppose that the conditions
of the theorem are satisfied. Denote the automorphism of ¥ inducing % by ¥.
Define ¥, by
ll/s = (fe,s“)—lw(fe,si)'

Making use of the equalities (22) and the fact that s¢” =y ~1(sp* holds for every
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§#0, one can obtain by computation

‘pr(fr,si) = (fr,sx)lprs! l»bs(gr,s’?) = (gr.s”)lprsa

whenever rs#o.

Theorem 3.12. Consider a regular semigroup S and a reductive semigroup 2.
The O-extensions S and S’ are equivalent if and only if there exist automorphisms
Y; of X indexed by the idempotents of S, such that for every pair i, i’ of idempotents
i'i=i’ and i’i=i’" imply

23 - (for)Ve = ¥:(fiv®) and  (gv, )Wy = ¥i(&r,: %),
respectively, and iDi’ implies that
(24) ir OV (fir ) = (&r30Y: (8, %)

Sor any r such that iRr Li’.

Proof. In the proof of the last theorem we saw that the 0-extensions are equiv-
alent if and only if the equality

oV (s ) 0Us(8,,%) = e(f,,s9) V0 (&, )Yy
holds for any r, s such that rs=o and for arbitrary ¢, ¢ in X. If ir=r, this implies
by Lemma 2.1 that
oV (fir %) - 0¥, = e(fi, )Y, - 0.
Since X is reductive we have ‘

(fi,rx)l//r = lﬁi(ﬂ,,ﬁ)

(&, v, = ¥ (&,,:%)
if ri’=r. In particular, this yields (23) if » is an idempotent. If i%r.Zi’, then, as
it has been verified above, f; ., and g, » belong to the group of units of C. Hence
fi»% and g, ;% are automorphisms and it follows from the foregoing that
(25) ¥, = (fi V(0 = (8 b)Y (.0 7).
Conversely, assume that the conditions of the theorem hold for some automorphisms
¥;. Let r be an element of S, and i, i’ idempotents such that iZr Zi’. Define y, by
(25). Obviously, ¥, is well defined. If j is an idempotent such that ji=i, then applying
(1) and (23) we have
1000, = (1 5D 0(Fir ) = (F,000:(F, . %) =
= Y;((fs.i %) = ¥, (F;,. -
Hence if r, s are elements of Ssuch that rs=o, then denoting an idempotent in the
Z-class of r by i, we have

>¢r (fr, s 2) = (fi,_rl X) !l/i ((f:, r fr, s) 3?) = (fi,_r1 %) 'pi (.i:, rs i) =
= ((fi,_r1 i, rs) %) ‘prs = (fr, s %) lAbr.ﬁ: .

" Dually, we can obtain that
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Similarly, one can show that ¥ (g, ,%)=(g,, ;#)¥,s. This completes the proof.
Note that if S is (0-)2-simple and C has a trivial group of units, then (24) implies
that all y; are equal. Conversely, if all y; coincide, then, denoting ¥; (i€ E;) by ¥/, (23)
implies
wex =Y (fi, 0¥ and g, ;% =¥"g, ;9)Y,
whenever ir=r and rj=r, respectively. Hence (24) holds trivially. Thus we have
proved the following

Corollary 3.13. If S is a (0-)2-simple regular semigroup and X is reductive,
then the 0-extensions S and S’ are equivalent if and only if there exists an automorphism
Y of ¥ such that for all idempotents i, i’ the equalities

forZ =y e)¥ and g% = YN gy, ;)Y

are implied by ii’=i’" and i’i=i’, respectively.
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