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Generalization of the implicit function theorem
and of Banach’s open mapping theorem

T. SZILAGYI

In the present paper we prove the existence of implicit functions (Theorem 1)
and of “right-inverse” functions (Theorem 2) under very weak assumptions. In
Theorem 3 we generalize the open mapping theorem of Banach to a non-linear
case and in Theorem 4 we give a new proof of a known multiplier rule (see [4]).
The proof of Theorem 1 is based on Banach’s open mapping theorem (see for example
[2]), on Nadler’s fixed point theorem for multivalued contractions (see [3]), and
on the Lagrange inequality (see for example [1]). Theorem 2 is a simple consequence
of Theorem 1, Theorem 3 follows easily from Theorem 2, finally Theorem 4 is
based on Theorem 2 and on the Banach—Hahn theorem.

Notations. If X and Y are Banach spaces, then the set of all linear continuous
mappings from X into ¥ will be denoted by L(X, Y).
For defining equations we use the symbol := on the left side of which we write
the ““‘quantity”” (number, function, set, etc.) to be defined.
If (X, d) is a metric space, r a positive number and x¢ X, then
S@, r)={yeX|d(x,y) <r} and B(x,r)={ycX|d(x,y)=r}.

The dual of a Banach-space X will be denoted by X”.
In X and Y are Banach-spaces and A€ L(X, Y), then

p(d):= sup {liy|=-inf {}x||x€ X, 4x = y}}.
ye YN\ {0}

Lemma 1. If X and Y are Banach-spaces, A€L(X,Y) and Im A=Y, then
p(A) is finite.

Proof. The conditions of Banach’s open mapping theorem are fulfilled, there-
fore there exists a positive r such that B(Oy, r) is contained in the A-image: of
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B(Oy, 1). Let us take an arbitrary 0£y€ Y, then

r

i (it xe X, 4x = ) = P int{ixixe x, ax = 22} = 2,
consequently p(A)é_

Lemma 2. Let (X, d) be a complete metric space, X€ X, r=0and ®: S(X, r)—»2x
such that
a) for all x€ S(X,r), ®(x) is a non-empty closed subset of X,
b) for all x,, x,€ S(X, r), the Hausdor[f distance

h(®(xy), D(x,)):= max { sup d(x, P(xp), sup d(P(xy),x)}
x€P(xy) x €D (xq)
satisfies
1 .
h((p (1), ¢(X2)) = bl d(xy, X5),
o) d(%, &%) <-;-.
Then there exists an x€ S(X, r) such that x€ $(x).
The proof of this lemma can be found in [3], and in [4].

Lemma 3. Let X be a normed space, L a linear subspace of X, u;, u,€X;
M;:=u;+L(i=1,2). Then the Hausdorff distance (see Lemma 2) of M, and M,
equals inf {|jv,—v,||: v, € My, V€ M,).

Proof. Clearly,
Jnf oy —vll = mf luy—voll = d(uy, My) = sup d(v;, M) = h(M,, Mp).

v, EM,y

If v,6 M, and v,€M,, then v,=u;+y; (i=1,2, y,€L), thus uy+y,—y €M, and
oy —vy] = luy—(ua+y.—y)l = d(uy, My),

consequently,
v‘i]eJAt;, lo,—voll = d(uy, My,).
Similar arguments show that for all v,€ M, and v,€ M,
d(uy, My) = d(vy, M,) = d(M,, vy),
therefore d(uy, My)=h(M;, M,).

Theorem 1. Let X and Y be Banach spaces, T a topological space, GCTXX
an open set, (g, X))€G and F: G—+Y a function such that

a) F(’Os x0)=0Ys !_igz F(t’ x0)=0Y;
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b) for every (t, x)€G the function F(t, -) has a Fréchet-derivative at x denoted by
D,F(t, x),
¢) the function D,F: G—~L(X, Y) is continuous at (t,, x,), and
d) Im D, F(t4, xg)=7Y.
Then for every neighborhood VC X of x, there exist a neighborhood UCT of
ty and a function ¢: U~V such that F(t,¢(1)) = Oy for all teU.

Proof. Let us denote A:=D,F(t, x,). By Lemma 1 we have p(4d)<+e.
By assumption ¢) there exist a neighborhood U, of #;and a positive number r such
that W:=S(x,, r)cV and for all (¢, x)€UXW

1
D, F(t,x)—A|| < ———.
1D, F(t, )= Al < 5
Now we get from the Lagrange inequality for all (¢, z,) and (t, z,)) €Uy, X W
1) | F(t, ze) — F(t, 2)— A(z,— 2]l =
llzo =zl
= sup |D.F(t,Az;+ (A —2)z,)—A|| |zo— 24| = ————F—
Sup 1Dy F(2, A2+ (1 —2)25) — Al | 22~z 35 (A)

By assumption a) we may choose a neighborhood U of ¢, such that

@ PAIFEx)] <5 forall 1eU.

Let z€ U be a fixed element. We shall show that the equation F(z, x)=0 has
a solution x€ W. We apply Lemma 2 to the Banach space X, to the element X: =0y
and to the (multivalued) function

x — & (x):= {z€ X|Ax— Az = F(t, x4 +x)}.

If x€S(0, 1), assumption d) implies that &(x) is non-empty, the continuity of A4
implies that &(x) is closed. Moreover, since A is linear, @(x) is an affine subspace.
Therefore (by Lemma 3) if x;, x,€ S(Oy, r), then

h(@G), 8(x)) = dnf o=l =
= inf {llo,—vy||| v, = Ax;— F(t, xo+x) i =1,2}.
Since Im A=Y, the latter infimum equals

inf {||v|||Av = A(x,—x)— F(t, xo+x)+ F(t, xo+x)} =

1
PAIF(t, xo+x2)— F (2, Xo+x) — A(x, — x| = 5 [l26 — x|
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(see (1)). From (2) it follows that condition ¢) in Lemma 2 is fulfilled, too:
r
7

Thus, by Lemma 2, there exists an element g(r)€ S(Oy, r) such that g(z(€ ®(g/t)),
consequently

d(0x, ®(0y) = inf {llzl| Az =~ F(1, x)} = p(DIF(t, xp)ll <

0y=A4(g(1))—A4(g(®) = F(t, xo+2(1)).
Finally, for the element ¢(¢) :=x,+g(t)¢V we have

F(t, o(1)) = Oy.

Theorem 2. Suppose we are given two Banach spaces: X and Y, an open set
Vc X, an element xo€V and a Fréchet-differentiable function f:V—Y for which

a) f": V—=L(X, Y) is continuous at x,,

b) Im f'(xy)=7Y.

Then there exist a neighborhood U of the point t, := f(x,) and a function .U~V
such that fop=idy (that is f(e(t))=t for all tcU); consequently, t, is an interior
point of the range of f.

Proof. Let us define the function F: YXV—Y by letting

F(t,x):=f(x)—t.

Clearly, we can apply Theorem 1 whith T := Y and G := Y XV and this gives the
result to be proved.

Theorem 3. If X and Y are Banach spaces, g: X~ Y is a Fréchet-differentiable
Sunction, g’: X—~L(X, Y) is continuous and Im g’'(x)=Y in every point x€X, then
g is an open mapping.

Proof. Let VCX be an open set and f := g|,,. We must prove that the range
Roffis an open setin Y. If #,€ R, then there exists a point x,€ ¥, for which f(x,)=1¢,.
From Theorem 2 it follows that R is a neighborhood of ¢,.

Theorem 4. Let X and Z be Banach spaces, WC X an open set, g: W—~R and
G: W—~Z Fréchet-differentiable functions. If a point x,€ W affords a local minimum
to g under the constraint G(x)=0,,g" and G’ are continuous at x, and Im G'(x,)
is closed in Z, then there exist a real number A and a continuous linear functional
l€Z’ such that

(i) at least one of them is different from 0,

(i) for all xeX, 2g'(xo)x+1(G’(xo)x)=0.

Proof. Let us choose an open set ¥'C X containing x, such that x, minimizes
the function gj, under the constraint G|, =0, and let us denote Y:=RXZ; for
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all x€V f(x) :=(g(x), G(x)). From our assumptions it follows that the function
S : V—~Y is Fréchet-differentiable, f is continuous at x,, and for all x€X

fxp)x = (g,(xo)x, G’(xo)x).

First we observe that Imf”’(x,)# Y. Indeed, if Im f’(x,) were the whole space Y,
then we could apply Theorem 2: there would be points x¢ V with G(x)=0 and
g(x)<g(x,), since (g(x,), G(x,)) would be an interior point to the range of f. But
this is impossible, because x, is a solution of the minimum problem on V. Therefore
Im f’(x,) is'a proper linear subspace of Y. If it is a closed subspace, then we can
apply a known corollary of the Banach—Hahn theorem: there exists a 0>lc Y’
such that lo f”(x,)=0; and since the continuous linear functional I, defined on the
product space RXZ is of the form

1(t, 2) = M+1(2)

(where A€ R and /€Z’), in this case the proof is complete. If the subspace Imf’(x,)
is not closed, then there exist asequence (x,)C X and an element (r, )€ Y\Im f'(x,)
such that

limg' (x))x, =r and limG’'(x))x, = z.

Since Im G’(x,) is closed, there is an element u€ X such that G'(xg)u=z. Now we
observe that if x€ Ker G’(x), then g’(xo)x=0 (and consequently if G'(x)u; =G’ (Xo)us, .
then g’(xo)uy =g (xo)u,). Indeed, if g’(xo)x were different from 0, then for the real
number
_r—g'tu
g (xo)x
we would get
gG)ut+tx)=r and G (x))(u+tx) =z,

that is, (r, z)€Im f’(x,). Therefore we can define a functional /; on Im G’(x;) in
the following way: if z€Im G’(x,) and u€ X such that G'(xpu=z, then

L(2):= g (x)u.

Obviously, [, is linear and g’(xo)=1/,0G"(x,). Moreover, /; is continuous: if UCR
is any open set, then (g’(x,))~*(U) is open since g’(x,) is continuous, and '

TY(U) = G’ (x0) [(g"(x0) (V)]
is open in the Banach.space Im G’(x,), because G’(xy): X-~Im G'(x,y) is an open
mapping. By the Banach—Hahn theorem there is an extension /€ Z” of 1, it satisfies

(i) with A=—1, as [oG’'(xg) = loG'(x) = &’ (x0).

13
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Remark. It is known (see [4]) that Theorem 4 implies various transversality
conditions and Euler—Lagrange equations concerning the classical problems im
the calculus of variations.

References

[1] J. DIEUDONNE, Foundations of Modern Analysis, Academic Press (New York—London, 1960).

[2) W. RUDIN, Functional Analysis, McGraw-Hill Book Company (New York, 1973).

3] S. B. NADLER, JR., Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475—488.

4] A. A. Uodde—B. M. Taxomuapos, Teopus sxcmpemaavuvix 3aday, 3g. Hayka (Mockea,
1974). '

ELTE TTK ANALIZIS O
1445 BUDAPEST 8.
PF. 323.



