Generalization of the implicit function theorem and of Banach's open mapping theorem

T. SZILÁGYI

In the present paper we prove the existence of implicit functions (Theorem 1) and of "right-inverse" functions (Theorem 2) under very weak assumptions. In Theorem 3 we generalize the open mapping theorem of Banach to a non-linear case and in Theorem 4 we give a new proof of a known multiplier rule (see [4]). The proof of Theorem 1 is based on Banach's open mapping theorem (see for example [2]), on Nadler's fixed point theorem for multivalued contractions (see [3]), and on the Lagrange inequality (see for example [1]). Theorem 2 is a simple consequence of Theorem 1, Theorem 3 follows easily from Theorem 2, finally Theorem 4 is based on Theorem 2 and on the Banach-Hahn theorem.

Notations. If X and Y are Banach spaces, then the set of all linear continuous mappings from X into Y will be denoted by $L(X, Y)$.

For defining equations we use the symbol $:=$ on the left side of which we write the "quantity" (number, function, set, etc.) to be defined.

If (X, d) is a metric space, r a positive number and $x \in X$, then

$$
S(x, r):=\{y \in X \mid d(x, y)<r\} \quad \text { and } \quad B(x, r):=\{y \in X \mid d(x, y) \leqq r\} .
$$

The dual of a Banach-space X will be denoted by X^{\prime}.
In X and Y are Banach-spaces and $A \in L(X, Y)$, then

$$
p(A):=\sup _{y \in Y \backslash\{0\}}\left\{\|y\|^{-1} \cdot \inf \{\|x\| \mid x \in X, A x=y\}\right\} .
$$

Lemma 1. If X and Y are Banach-spaces, $A \in L(X, Y)$ and $\operatorname{Im} A=Y$, then $p(A)$ is finite.

Proof. The conditions of Banach's open mapping theorem are fulfilled, therefore there exists a positive r such that $B\left(O_{Y}, r\right)$ is contained in the A-image of
$B\left(O_{X}, 1\right)$. Let us take an arbitrary $0 \neq y \in Y$, then

$$
\inf \{\|x\| x \in X, A x=y\}=\frac{\|y\|}{r} \inf \left\{\|x\| \mid x \in X, A x=\frac{r y}{\|y\|}\right\} \leqq \frac{\|y\|}{r}
$$

consequently $p(A) \leqq \frac{1}{r}$.
Lemma 2. Let (X, d) be a complete metric space, $\bar{x} \in X, r>0$ and $\Phi: S(\bar{x}, r) \rightarrow 2^{X}$ such that
a) for all $x \in S(\bar{x}, r), \Phi(x)$ is a non-empty closed subset of X,
b) for all $x_{1}, x_{2} \in S(\bar{x}, r)$, the Hausdorff distance

$$
h\left(\Phi\left(x_{1}\right), \Phi\left(x_{2}\right)\right):=\max \left\{\sup _{x \in \Phi\left(x_{1}\right)} d\left(x, \Phi\left(x_{2}\right)\right), \sup _{x \in \Phi\left(x_{2}\right)} d\left(\Phi\left(x_{1}\right), x\right)\right\}
$$

satisfies

$$
h\left(\Phi\left(x_{1}\right), \Phi\left(x_{2}\right)\right) \leqq \frac{1}{2} d\left(x_{1}, x_{2}\right)
$$

c) $d(\bar{x}, \Phi(\bar{x}))<\frac{r}{2}$.

Then there exists an $x \in S(\bar{x}, r)$ such that $x \in \Phi(x)$.
The proof of this lemma can be found in [3], and in [4].
Lemma 3. Let X be a normed space, L a linear subspace of $X, u_{1}, u_{2} \in X$; $M_{i}:=u_{i}+L(i=1,2)$. Then the Hausdorff distance (see Lemma 2) of M_{1} and M_{2} equals $\inf \left\{\left\|v_{1}-v_{2}\right\|: v_{1} \in M_{1}, v_{2} \in M_{2}\right\}$.

Proof. Clearly,

$$
\inf _{v_{1} \in M_{i}}\left\|v_{1}-v_{2}\right\| \leqq \inf _{v_{2} \in M_{2}}\left\|u_{1}-v_{2}\right\|=d\left(u_{1}, M_{2}\right) \leqq \sup _{v_{1} \in M_{1}} d\left(v_{1}, M_{2}\right) \leqq h\left(M_{1}, M_{2}\right)
$$

If $v_{1} \in M_{1}$ and $v_{2} \in M_{2}$, then $v_{i}=u_{i}+y_{i}\left(i=1,2, y_{i} \in L\right)$, thus $u_{2}+y_{2}-y_{1} \in M_{2}$ and

$$
\left\|v_{1}-v_{2}\right\|=\left\|u_{1}-\left(u_{2}+y_{2}-y_{1}\right)\right\| \geqq d\left(u_{1}, M_{2}\right)
$$

consequently,

$$
\inf _{v_{i} \in M_{i}}\left\|v_{1}-v_{2}\right\|=d\left(u_{1}, M_{2}\right)
$$

Similar arguments show that for all $v_{1} \in M_{1}$ and $v_{2} \in M_{2}$

$$
d\left(u_{1}, M_{2}\right)=d\left(v_{1}, M_{2}\right)=d\left(M_{1}, v_{2}\right)
$$

therefore $d\left(u_{1}, M_{2}\right)=h\left(M_{1}, M_{2}\right)$.
Theorem 1. Let X and Y be Banach spaces, T a topological space, $G \subset T \times X$ an open set, $\left(t_{0}, x_{0}\right) \in G$ and $F: G \rightarrow Y$ a function such that
a) $F\left(t_{0}, x_{0}\right)=O_{Y}, \lim _{t \rightarrow t_{0}} F\left(t, x_{0}\right)=O_{Y} ;$
b) for every $(t, x) \in G$ the function $F(t, \cdot)$ has a Fréchet-derivative at x denoted by $D_{2} F(t, x)$,
c) the function $D_{2} F: G \rightarrow L(X, Y)$ is continuous at $\left(t_{0}, x_{0}\right)$, and
d) $\operatorname{Im} D_{2} F\left(t_{0}, x_{0}\right)=Y$.

Then for every neighborhood $V \subset X$ of x_{0} there exist a neighborhood $U \subset T$ of t_{0} and a function $\varphi: U \rightarrow V$ such that $F(t, \varphi(t))=O_{Y}$ for all $t \in U$.

Proof. Let us denote $A:=D_{2} F\left(t_{0}, x_{0}\right)$. By Lemma 1 we have $p(A)<+\infty$. By assumption c) there exist a neighborhood U_{1} of t_{0} and a positive number r such that $W:=S\left(x_{0}, r\right) \subset V$ and for all $(t, x) \in U_{1} \times W$

$$
\left\|D_{2} F(t, x)-A\right\|<\frac{1}{2 p(A)}
$$

Now we get from the Lagrange inequality for all $\left(t, z_{1}\right)$ and $\left(t, z_{2}\right) \in U_{1} \times W$

$$
\begin{gather*}
\left\|F\left(t, z_{2}\right)-F\left(t, z_{1}\right)-A\left(z_{2}-z_{1}\right)\right\| \leqq \tag{1}\\
\leqq \sup _{\lambda \in[0,1]}\left\|D_{2} F\left(t, \lambda z_{1}+(1-\lambda) z_{2}\right)-A\right\|\left\|z_{2}-z_{1}\right\|<\frac{\left\|z_{2}-z_{1}\right\|}{2 p(A)} .
\end{gather*}
$$

By assumption a) we may choose a neighborhood U of t_{0} such that

$$
\begin{equation*}
p(A)\left\|F\left(t, x_{0}\right)\right\|<\frac{r}{2} \quad \text { for all } \quad t \in U \tag{2}
\end{equation*}
$$

Let $t \in U$ be a fixed element. We shall show that the equation $F(t, x)=0$ has a solution $x \in W$. We apply Lemma 2 to the Banach space X, to the element $\bar{x}:=O_{X}$ and to the (multivalued) function

$$
x \mapsto \Phi(x):=\left\{z \in X \mid A x-A z=F\left(t, x_{0}+x\right)\right\}
$$

If $x \in S(0, \mathrm{r})$, assumption d$)$ implies that $\Phi(x)$ is non-empty, the continuity of A implies that $\Phi(x)$ is closed. Moreover, since A is linear, $\Phi(x)$ is an affine subspace. Therefore (by Lemma 3) if $x_{1}, x_{2} \in S\left(O_{X}, r\right)$, then

$$
\begin{gathered}
h\left(\Phi\left(x_{1}\right), \Phi\left(x_{2}\right)\right)=\inf _{v_{i} \in \Phi\left(x_{i}\right)}\left\|v_{1}-v_{2}\right\|= \\
=\inf \left\{\left\|v_{1}-v_{2}\right\| \mid A v_{i}=A x_{i}-F\left(t, x_{0}+x_{i}\right) i=1,2\right\} .
\end{gathered}
$$

Since $\operatorname{Im} A=Y$, the latter infimum equals

$$
\begin{gathered}
\inf \left\{\|v\| \mid A v=A\left(x_{1}-x_{2}\right)-F\left(t, x_{0}+x_{1}\right)+F\left(t, x_{0}+x_{2}\right)\right\} \leqq \\
p(A)\left\|F\left(t, x_{0}+x_{2}\right)-F\left(t, x_{0}+x_{1}\right)-A\left(x_{2}-x_{1}\right)\right\| \leqq \frac{1}{2}\left\|x_{1}-x_{2}\right\|
\end{gathered}
$$

(see (1)). From (2) it follows that condition c) in Lemma 2 is fulfilled, too:

$$
d\left(0_{X}, \Phi\left(0_{X}\right)\right)=\inf \left\{\|z\| \mid A z=-F\left(t, x_{n}\right)\right\} \leqq p(A)\left\|F\left(t, x_{0}\right)\right\|<\frac{r}{2}
$$

Thus, by Lemma 2, there exists an element $g(t) \in S\left(O_{X}, r\right)$ such that $g(t(\in \Phi(g / t))$, consequently

$$
0_{Y}=A(g(t))-A(g(t))=F\left(t, x_{0}+g(t)\right)
$$

Finally, for the element $\varphi(t):=x_{0}+g(t) \in V$ we have

$$
F(t, \varphi(t))=0_{Y}
$$

Theorem 2. Suppose we are given two Banach spaces: X and Y, an open set $V \subset X$, an element $x_{0} \in V$ and a Fréchet-differentiable function $f: V \rightarrow Y$ for which
a) $f^{\prime}: V \rightarrow L(X, Y)$ is continuous at x_{0},
b) $\operatorname{Im} f^{\prime}\left(x_{0}\right)=Y$.

Then there exist a neighborhood U of the point $t_{0}:=f\left(x_{0}\right)$ and a function $\varphi: U \rightarrow V$ such that $f \circ \varphi=i d_{V}$ (that is $f(\varphi(t))=t$ for all $t \in U$); consequently, t_{0} is an interior point of the range of f.

Proof. Let us define the function $F: Y \times V \rightarrow Y$ by letting

$$
F(t, x):=f(x)-t .
$$

Clearly, we can apply Theorem 1 whith $T:=Y$ and $G:=Y \times V$ and this gives the result to be proved.

Theorem 3. If X and Y are Banach spaces, $g: X \rightarrow Y$ is a Fréchet-differentiable function, $g^{\prime}: X \rightarrow L(X, Y)$ is continuous and $\operatorname{Im} g^{\prime}(x)=Y$ in every point $x \in X$, then g is an open mapping.

Proof. Let $V \subset X$ be an open set and $f:=\left.g\right|_{V}$. We must prove that the range R of f is an open set in Y. If $t_{0} \in R$, then there exists a point $x_{0} \in V$, for which $f\left(x_{0}\right)=t_{0}$. From Theorem 2 it follows that R is a neighborhood of t_{0}.

Theorem 4. Let X and Z be Banach spaces, $W \subset X$ an open set, $g: W \rightarrow R$ and $G: W \rightarrow Z$ Fréchet-differentiable functions. If a point $x_{0} \in W$ affords a local minimum to g under the constraint $G(x)=O_{Z}, g^{\prime}$ and G^{\prime} are continuous at x_{0} and $\operatorname{Im} G^{\prime}\left(x_{0}\right)$ is closed in Z, then there exist a real number λ and a continuous linear functional $l \in Z^{\prime}$ such that
(i) at least one of them is different from 0 ,
(ii) for all $x \in X, \quad \lambda g^{\prime}\left(x_{0}\right) x+l\left(G^{\prime}\left(x_{0}\right) x\right)=0$.

Proof. Let us choose an open set $V \subset X$ containing x_{0} such that x_{0} minimizes the function $\left.g\right|_{V}$ under the constraint $\left.G\right|_{V}=O_{Z}$ and let us denote $Y:=R \times Z$; for
all $x \in V f(x):=(g(x), G(x))$. From our assumptions it follows that the function $f: V \rightarrow Y$ is Fréchet-differentiable, f^{\prime} is continuous at x_{0}, and for all $x \in X$

$$
f^{\prime}\left(x_{0}\right) x=\left(g^{\prime}\left(x_{0}\right) x, G^{\prime}\left(x_{0}\right) x\right)
$$

First we observe that $\operatorname{Im} f^{\prime}\left(x_{0}\right) \neq Y$. Indeed, if $\operatorname{Im} f^{\prime}\left(x_{0}\right)$ were the whole space Y, then we could apply Theorem 2: there would be points $x \in V$ with $G(x)=0$ and $g(x)<g\left(x_{0}\right)$, since $\left(g\left(x_{0}\right), G\left(x_{0}\right)\right)$ would be an interior point to the range of f. But this is impossible, because x_{0} is a solution of the minimum problem on V. Therefore Im $f^{\prime}\left(x_{0}\right)$ is a proper linear subspace of Y. If it is a closed subspace, then we can apply a known corollary of the Banach-Hahn theorem: there exists a $0 \neq l \in Y^{\prime}$ such that $l \circ f^{\prime}\left(x_{0}\right)=0$; and since the continuous linear functional l, defined on the product space $R \times Z$ is of the form

$$
l(t, z)=\lambda t+l(z)
$$

(where $\lambda \in R$ and $l \in Z^{\prime}$), in this case the proof is complete. If the subspace $\operatorname{Im} f^{\prime}\left(x_{0}\right)$ is not closed, then there exist a sequence $\left(x_{n}\right) \subset X$ and an element $(r, z) \in Y \backslash \operatorname{Im} f^{\prime}\left(x_{0}\right)$ such that

$$
\lim g^{\prime}\left(x_{0}\right) x_{n}=r \quad \text { and } \quad \lim G^{\prime}\left(x_{0}\right) x_{n}=z
$$

Since $\operatorname{Im} G^{\prime}\left(x_{0}\right)$ is closed, there is an element $u \in X$ such that $G^{\prime}\left(x_{0}\right) u=z$. Now we observe that if $x \in \operatorname{Ker} G^{\prime}\left(x_{0}\right)$, then $g^{\prime}\left(x_{0}\right) x=0$ (and consequently if $G^{\prime}\left(x_{0}\right) u_{1}=G^{\prime}\left(x_{0}\right) u_{2}$, then $\left.g^{\prime}\left(x_{0}\right) u_{1}=g^{\prime}\left(x_{0}\right) u_{2}\right)$. Indeed, if $g^{\prime}\left(x_{0}\right) x$ were different from 0 , then for the real number

$$
t:=\frac{r-g^{\prime}\left(x_{0}\right) u}{g^{\prime}\left(x_{0}\right) x}
$$

we would get

$$
g^{\prime}\left(x_{0}\right)(u+t x)=r \quad \text { and } \quad G^{\prime}\left(x_{0}\right)(u+t x)=z
$$

that is, $(r, z) \in \operatorname{Im} f^{\prime}\left(x_{0}\right)$. Therefore we can define a functional l_{1} on $\operatorname{Im} G^{\prime}\left(x_{0}\right)$ in the following way: if $z \in \operatorname{Im} G^{\prime}\left(x_{0}\right)$ and $u \in X$ such that $G^{\prime}\left(x_{0}\right) u=z$, then

$$
l_{1}(z):=g^{\prime}\left(x_{0}\right) u
$$

Obviously, l_{1} is linear and $g^{\prime}\left(x_{0}\right)=l_{1} \circ G^{\prime}\left(x_{0}\right)$. Moreover, l_{1} is continuous: if $U \subset R$ is any open set, then $\left(g^{\prime}\left(x_{0}\right)\right)^{-1}(U)$ is open since $g^{\prime}\left(x_{0}\right)$ is continuous, and

$$
l_{1}^{-1}(U)=G^{\prime}\left(x_{0}\right)\left[\left(g^{\prime}\left(x_{0}\right)^{-1}(U)\right]\right.
$$

is open in the Banach space $\operatorname{Im} G^{\prime}\left(x_{0}\right)$, because $G^{\prime}\left(x_{0}\right): X \rightarrow \operatorname{Im} G^{\prime}\left(x_{0}\right)$ is an open mapping. By the Banach-Hahn theorem there is an extension $l \in Z^{\prime}$ of l_{1}, it satisfies (ii) with $\lambda=-1$, as $l \circ G^{\prime}\left(x_{0}\right)=l \circ G^{\prime}\left(x_{0}\right)=g^{\prime}\left(x_{0}\right)$.

Remark. It is known (see [4]) that Theorem 4 implies various transversality conditions and Euler-Lagrange equations concerning the classical problems im the calculus of variations.

References

[1] J. DieudonnÉ, Foundations of Modern Analysis, Academic Press (New York-London, 1960).
[2] W. Rudin, Functional Analysis, McGraw-Hill Book Company (New York, 1973).
[3] S. B. Nadler, Jr., Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488.
[4] А. Д. Иоффе-В. М. Тихомиров, Теория экстремальных задач, Изд. Наука (Москва, 1974).

ELTE TTK ANALIZIS II
1445 BUDAPEST 8.
PF. 323.

