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Generalization of the implicit function theorem 
and of Banach's open mapping theorem 

T. SZILÁGYI 

In the present paper we prove the existence of implicit functions (Theorem 1) 
and of "right-inverse" functions (Theorem 2) under very weak assumptions. In 
Theorem 3 we generalize the open mapping theorem of Banach to a non-linear 
case and in Theorem 4 we give a new proof of a known multiplier rule (see [4]). 
The proof of Theorem 1 is based on Banach's open mapping theorem (see for example 
[2]), on Nadler's fixed point theorem for multivalued contractions (see [3]), and 
on the Lagrange inequality (see for example [1]). Theorem 2 is a simple consequence 
of Theorem 1, Theorem 3 follows easily from Theorem 2, finally Theorem 4 is 
based on Theorem 2 and on the Banach—Hahn theorem. 

N o t a t i o n s . If X&nA F a r e Banach spaces, then the set of all linear continuous 
mappings from X into Y will be denoted by L(X, 7). 

For defining equations we use the symbol := on the left side of which we write 
the "quantity" (number, function, set, etc.) to be defined. 

If (X, d) is a metric space, r a positive number and xfX, then 

S(x, r):={y£X\d(x, y) < r} and B(x, r):= {j'£X\d(x, y) S r}. 

The dual of a Banach-space X will be denoted by X'. 
In X and T a r e Banach-spaces and A £ L(X, Y), then 

p(A):= sup { l l y l l • inf {||x|| |x€ X, Ax = y}}. 
yer\{o} 

L e m m a 1. If X and Y are Banach-spaces, A 6 L(X, Y) and I m A = Y, then 

p(A) is finite. 

P r o o f . The conditions of Banach's open mapping theorem are fulfilled, there-
fore there exists a positive r such that B(Oy,r) is contained in the /4-image of 
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B ( 0 X , 1). L e t u s t a k e a n a rb i t r a ry 0 p ^ y € Y , t h e n 

inf {IWI x e Ax = y} = M i n f { | | * m * e X,Ax = j ^ } S M ; 

consequen t ly p{A)=—. 
r 

L e m m a 2. Let(X, d) be a complete metric space, x£X, r > 0 and <P: S(x, r ) —2X 

such that 

a) for all S(x, r), $(x) is a non-empty closed subset of X, 

b) for all S(x, r), the Hausdorff distance 

h($(xl), m a x { sup d(x, s u p 

satisfies 

h^fxj), 4>(X2)) g y «¿015X2), 

C) d(x, < F ( X ) ) < | . 

Then there exists an xd S(x, r) such that x £ $(x). 

T h e p r o o f of this l e m m a c a n b e f o u n d in [3], a n d in [4]. 

L e m m a 3. Let X be a normed space, L a linear subspace of X, w1; u2(LX; 

Mi:=ui+L(i=l,2). Then the Hausdorff distance (see L e m m a 2) of Mx and M2 

equals inf {||i>i —u2 | |: £Mlt v2£M2). 

P r o o f . Clear ly, 

in f H»1 —172|| g in f | |Mi-t)2 | | = ¿ ( « J , Ma) S s u p d(vx,M^ ^ h(M1,M^). 
v,£Mt v2iM2 Vi £Ml 

If f j g M i a n d U 2 € M 2 , t hen vi=ui+yi ( ¿ = 1 , 2, y^L), t h u s u2+y2—yr£M% a n d 

II»1-«ill = II«! —(u2-hy2 —yOll S ¿ ( « i . M a ) , 
consequen t ly , 

i ? f | |» i -» 2 l l =d(u1,M£. 

Similar a r g u m e n t s show t h a t f o r al l a n d v2£M2 

d(w 1 ; M 2 ) = d(vu M ^ = d(Mu Vn), 

t h e r e fo r e d(ux, M2)—h(M1, M2)-

T h e o r e m 1. Let X and Y be Banach spaces, T a topological space, GcTxX 

an open set, (t0, x 0 ) £ G and F: G — Y a function such that 

a) F(h, x0)=OY, l im F(t, x0) — Or; t—t 0 
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b) for every (t, x)£G the function F(t, •) has a Frechet-derivative at x denoted by 

D2F(t, x), 

c) the function D2F: G-~L(X, y ) is continuous at (/0, x 0 ) , and 

d) I m D2F(t0, x0) = Y. 

Then for every neighborhood VcX of x0 there exist a neighborhood UczT of 

t0 and a function <p: U— V such that F{t,q>(t)) = 0Y for all t£U. 

P r o o f . Let us denote A:=D2F(t0, x0). By Lemma 1 we have p(A)< + °o. 
By assumption c) there exist a neighborhood E^ of t0 and a positive number r such 
that W:= S(x0, r)<z V and for all (t,x)eU1XW 

II D 2 F ( t , x ) - A \ ^ ^ . 

Now we get from the Lagrange inequality for all (t, Zj) and (t, 

(1) II F(t, zj - F{t, z J - A (z2 - z j | | S 

S sup \\D2F(t, Azx + (1 —X)z^—A\\ ||z2 —zj < ^ J *1'1 . 
a €[o,i] 2 p(A) 

By assumption a) we may choose a neighborhood U of t0 such that 

(2) p(A)\\F(t,x0)\\^j f o r all t£U. 

Let t£U be a fixed element. We shall show that the equation F(t,x)=0 has 
a solution JC€ W. We apply Lemma 2 to the Banach space X, to the element x:=Ox 

and to the (multivalued) function 

x $(*):= {ze X\Ax-Az = F(t, *,,+*)}• 

If x£S(0, r), assumption d) implies that <P(x) is non-empty, the continuity of A 
implies that is closed. Moreover, since A is linear, 4>(x) is an affine subspace. 
Therefore (by Lemma 3) if x2d S(Ox, r), then 

hiQix^QixJ) = J n f ^ H ^ - ^ l l = 

= inf {11% r2 | | | Avf = AXi-Fit,x0-l-Xi)i = 1,2}. 

Since Im A = Y, the latter infimum equals 

inf {IMI | Av = A(x1-x2)-Fit,x0+xJ) + Fit,x0+x2)} == 

J7(^)[|FCf, + x 2 ) - . F C i , x 0 + X i ) - ( x 2 - Xi)il S J I I * ! - * , » 
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(see (1)). From (2) it follows that condition c) in Lemma 2 is fulfilled, too: 

d ( 0 x , 0(OX)) = inf { | |z | | |^z = - f ( i , x 0 ) } S p(A)^F(t, x0)|| < j-. 

Thus, by Lemma 2, there exists an element g(t)€ S(Ox, r) such that g(t(€ 4>(g/t)), 
consequently 

0 , = ^ ( g ( / ) ) - / f ( g ( 0 ) = F ( r , x 0 + g ( 0 ) . 

Finally, for the element (p(t) :=x0-\-g(t)£V we have 

F(t, cp(tj) = 0
Y
. 

T h e o r e m 2. Suppose we are given two Banach spaces: X and Y, an open set 
Vcz X, an element x 0 £ F and a Frechet-differentiable function f : V—Y for which 

a) f'- y^L{X, Y) is continuous at x0, 
b) Im/ ' (x 0 ) = Y. 
Then there exist a neighborhood U of the point t0 := f(x0) and a function (p:U-*V 

such that focp = idv (that is f((p(t)) = t for all t£U); consequently, t0 is an interior 
point of the range of f. 

P r o o f . Let us define the function F: YxV—Y by letting 

F(t,x):=f(x)-t. 

Clearly, we can apply Theorem 1 whith T := Y and G := YX V and this gives the 
result to be proved. 

T h e o r e m 3. If X and Y are Banach spaces, g: X-+ Y is a Frechet-differentiable 
function, g': X-+L(X, Y) is continuous and I m g ' ( x ) = F in every point x£X, then 
g is an open mapping. 

P r o o f . Let VczX be an open set and f := g\v- We must prove that the range 
R o f / i s an open set in Y. If i0 € R, then there exists a point x0 6 V, for which/(x0) = t0. 
From Theorem 2 it follows that R is a neighborhood of t0. 

T h e o r e m 4. Let X and Z be Banach spaces, WczX an open set, g: W-+R and 
G: W-*Z Frechet-differentiable functions. If a point x 0 € W affords a local minimum 
to g under the constraint G{x) = Oz, g' and G' are continuous at x0 and I m G'(x0) 
is closed in Z, then there exist a real number X and a continuous linear functional 
l£Z' such that 

(i) at least one of them is different from 0, 
(ii) for all x£X, Xg'(x0)x+l(G'(x0)x)=0. 

P r o o f . Let us choose an open set VczX containing x0 such that x0 minimizes 
the function under the constraint G\v=Oz and let us denote Y:=RXZ; fo r 
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all x£V f(x) := (g(x), G(x)). From our assumptions it follows that the function 
/ : V ^ Y is Frechet-differentiable,/ ' is continuous at x0 , and for all x£X 

f'(x0)x = (g ' (x 0 )x , G'(x0)x). 

First we observe that Im f'(x0) Y. Indeed, if Im f'(x0) were the whole space Y, 
then we could apply Theorem 2: there would be points xP V with G(x)=0 and 
g(x)<g(x0), since (g(x0), G(x0)) would be an interior point to the range of / . But 
this is impossible, because x0 is a solution of the minimum problem on V. Therefore 
Im f'(x0) is a proper linear subspace of Y. If it is a closed subspace, then we can 
apply a known corollary of the Banach—Hahn theorem: there exists a O ^ Z g F ' 
such that lo f'(x0)=0; and since the continuous linear functional I, defined on the 
product space RXZ is of the form 

l(t,z) = lt+l(z) 

(where and /£Z ' ) , in this case the proof is complete. If the subspace Im f'(x0) 
is not closed, then there exist a sequence ( x „ ) c l and an element (r, z)£ F \ I m f'(x0) 
such that 

lim g'(x0)xn = r and limG'(x0)x„ = z. 

Since Im G'(x0) is closed, there is an element udX such that G'(x0)u=z. Now we 
observe that if x € Ker G'(x0), then g'(x0)x=0 (and consequently if G'(*o)"i = G'(x0)u2, 
then g'ixo)^ =g'(x0)«2). Indeed, if g'(xo)x were different from 0, then for the real 
number 

t . = r-g'(x0)u 
g'(x0)x 

we would get 

g'(x0) (u + tx) = r a n d G'(x0)(u + tx) = z, 

that is, (r, z)£lm / ' ( x 0 ) . Therefore we can define a functional on Im G'(x0) in 
the following way: if z £ I m G'(x0) and u£X such that G'(x0)u=z, then 

h(z)'-= g '(xo)u. 

Obviously, is linear and g'(x0)=/1oG'(x0). Moreover, 4 is continuous: if UcR 
is any open set, then is ° P e n since g'(x0) is continuous, and 

lrliU) = <r(xJ№(xJ~\U)] 

is open in the Banach space Im G'(x0), because G'(x0): X-*Im G'(x0) is an open 
mapping. By the Banach—Hahn theorem there is an extension / £ Z ' of / l5 it satisfies 
(ii) with A = - 1 , as /oG'(x0) = /oG'(x0) = g'(x0). 
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Remark. It is known (see [4]) that Theorem 4 implies various transversality 
conditions and Euler—Lagrange equations concerning the classical problems im 
the calculus of variations. 
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