Endomorphism and subalgebra structure; a concrete characterization

N. SAUER and M. G. STONE

§ 1. Introduction

In [5] the following abstract structure problem is solved: For what semigroups S and what lattices L does there exist an algebra \mathfrak{A} with $S \cong \operatorname{End} \mathfrak{A}$, the endomorphisms of \mathfrak{A} , and $L \cong \operatorname{Su} \mathfrak{A}$ the lattice of subalgebras of \mathfrak{A} ? Here we provide a solution to the corresponding concrete representation problem, where isomorphism is replaced by equality. Thus let $S \subseteq A^A$ be a given transformation monoid and $L \subseteq 2^A$ a set lattice. It is well known that $L = \operatorname{Su} \mathfrak{A}$ for some algebra \mathfrak{A} over the set A iff L is complete and compactly generated [2]; such lattices are called *algebraic*. In [4] necessary and sufficient conditions for $S = \operatorname{End} \mathfrak{A}$ for some algebra \mathfrak{A} over the set A are given; such transformation semigroups are called *algebraic*. A similar characterization is given in [4] for semigroups of partial functions. We make use of the latter result by representing subalgebras with partial identity functions to derive a simultaneous characterization for S and L. Our characterization, like that for the endomorphisms alone involves the solutions to systems of linear equations.

If *M* is a set of partial functions on *A* to *A* with $id \in M$ the identity function on *A*, a system of linear equations Σ over *M* is a set of functional equations each of the general form: fx=y, or fx=g with $f, g \in M$, together with a specified solution variable X^{Σ} . An assignment α for Σ is a map from the variables of Σ to partial functions on *A* to *A* with a common domain. The assignment α satisfies Σ at $d \in A$. provided $f(\alpha x(d)) = \alpha y(d)$ whenever $fx=y \in \Sigma$ and $f(\alpha x(d)) = g(d)$ whenever $fx=g \in \Sigma$. The assignment α satisfies Σ on $D \subseteq A$ iff α satisfies Σ at *d* for each $d \in D$. If X^{Σ} is the specified solution variable we say *f* is a solution to Σ on *D* provided there is

Received July 1, 1976.

This research was supported in part by NRC Operating grants A7213 and A8094 from the National Research Council of Canada.

13*

an assignment α which satisfies Σ on D and $\alpha(X^{\Sigma}) = f$. A solution f to Σ on D is unique provided $f \uparrow D = h \uparrow D$ whenever h is any solution to Σ on D. The support of a system Σ is the set of all $d \in A$ for which there exists a solution to Σ at d. We write $B = \operatorname{Spt} \Sigma$ if B is the support of Σ .

Denote by \mathfrak{A}_M the algebra of all finitary operations which admit each $f \in M$ a a homomorphism. \widetilde{M} is the set of all partial endomorphisms of \mathfrak{A}_M and \overline{M} is the set of all (total) functions which are endomorphisms of \mathfrak{A}_M . As usual a partial function g is a homomorphism with respect to an operation P of rank v provided gP(x) is defined and equals P(gx) whenever gx is defined for $x \in A^v$. A total function is one whose domain is all of A. We will use:

Proposition 1. $g \in A^B$ belongs to \tilde{M} iff $B \in Su \mathfrak{A}_M$ and for each finite $D \subseteq B$ there is a system Σ over M with g a unique solution to Σ on D.

proof. Take $\mu = \aleph_0$ in Theorem 2 of [4].

§ 2. The subalgebras of \mathfrak{A}_M

We first establish some easy facts about the support of systems Σ over M.

Lemma 1. If $C = \text{Spt } \Sigma$ then there is an assignment α which satisfies Σ on C.

Proof. For each $d \in C$ there is an assignment α_d which satisfies Σ at d. Define α for a variable x of Σ by:

$$\alpha x(d) = \begin{cases} \alpha_d x(d) & \text{if } d \in C \\ d & \text{otherwise.} \end{cases}$$

It is straightforward to verify that α satisfies Σ on C.

Lemma 2. If $C = \operatorname{Spt} \Sigma$ then there is a system Γ and an assignment β which satisfies Γ on C and $C = \operatorname{Spt} \Gamma$ and $\beta(X^{\Gamma}) = \operatorname{id} + C$ is a unique solution to Γ on C.

Proof. Let Γ have one additional new variable X^{Γ} not among those of Σ and let the equations of Γ consist of those of Σ together with the new equation $X^{\Gamma} = id$. By Lemma 1 there is an assignment α which satisfies Σ on C. Let β extend α by assigning $id \models C$ to X^{Γ} . Clearly β satisfies Γ on C and $C = \operatorname{Spt} \Gamma$. If g is any solution to Γ on C then for $d \in C$, g(d) = d so $g \models C = \beta(X^{\Gamma}) = id \models C$ thus $id \models C$ is a unique solution to Γ on C.

Lemma 3. Let each $C \in \mathcal{F}$ be the support of some system Γ_c . Then $\bigcap_{C \in \mathcal{F}} C$ is also the support of some system Γ .

Proof. Assume without loss of generality that each pair of systems Γ_C, Γ_D have no variables in common for $C \neq D$ and let X^{Γ} be a new variable distinct from all of those of the Γ_C . By Lemma 2 we may further assume that $id \models C$ is a unique solution to Γ_c on C for each $C \in \mathscr{F}$. Form $\Gamma = \left(\bigcup_{C \in \mathscr{F}} \Gamma_C \right) \cup \{X^{\Gamma} = id\}$. We claim $\bigcap_{C \cap \mathscr{F}} C = \operatorname{Spt} \Gamma$. If $d \in \operatorname{Spt} \Gamma$, say α satisfies Γ at d, then clearly α_C , the restriction of α to the variables of Γ_C , satisfies Γ_C at d for each $C \in \mathscr{F}$ so $d \in \bigcap_{C \in \mathscr{F}} C$. If on the other hand $d \in \bigcap_{C \in \mathscr{F}} C$ and α_C satisfies Γ_C at d then let $\alpha X = \alpha_C X \models \bigcap_{C \in \mathscr{F}} C$ for a variable X in Γ_C and let $\alpha X^{\Gamma} = id \models \bigcap_{C \in \mathscr{F}} C$. Clearly α satisfies Γ on $\bigcap_{C \in \mathscr{F}} C$ so $d \in \operatorname{Spt} \Gamma$. Thus $\operatorname{Spt} \Gamma = \bigcap_{C \in \mathscr{F}} C$.

Lemma 4. For $D \subseteq A$ the operation defined by $\overline{D} = \bigcap_{D \subseteq Spt \Sigma} Spt \Sigma$ is a closure operator.

Proof. Clevarly $D \subseteq \overline{D}$, and $[C \subseteq D \Rightarrow \overline{C} \subseteq \overline{D}]$. To show $\overline{D} = \overline{D}$ it is only necessary to see then that $\overline{D} \subseteq \overline{D}$. By Lemma 3 there is some system Γ with $\overline{D} = \bigcap_{D \subseteq \text{Spt } \Sigma} \text{Spt } \Sigma =$ =Spt Γ . Clearly $\overline{D} = \bigcap_{D \subseteq \text{Spt } \Sigma} \text{Spt } \Sigma = \text{Spt } \Gamma = \overline{D}$.

Lemma 5. For $D \subseteq A$ the operation defined by $\tilde{D} = \bigcup_{C \text{ finite, } C \subseteq D} \overline{C}$ is a closure operator.

Proof. Since $d \in D \Rightarrow d \in \{\overline{d}\} \subseteq \widetilde{D}$ we have $D \subseteq \widetilde{D}$. Further $[C \subseteq D \Rightarrow \widetilde{C} \subseteq \widetilde{D}]$ since each finite subset of C is also a finite subset of D. To show $\widetilde{D} = \widetilde{D}$ it remains only to see $\widetilde{D} \subseteq \widetilde{D}$. Suppose $\widetilde{D} \subseteq \widetilde{D}$; then there is some $a \in \widetilde{D}$ with $a \notin \widetilde{D}$. We will show this leads to a contradiction. Since $a \in \widetilde{D}$ there is some $B \subseteq \widetilde{D}$, B finite, with $a \in \overline{B}$. Thus $a \in \bigcap_{B \subseteq \operatorname{Spt} \Sigma}$ spt Σ , and say $B = \{b_1, ..., b_n\}$. From $B \subseteq \widetilde{D}$ we have each $b_K \in \widetilde{D}$, say $b_K \in \overline{C}_K$ for some $C_K \subseteq D$, C_K finite, K=1, ..., n. Then $C = \bigcup_{K=1}^n C_K$ is a finite subset of D, so $\overline{C} \subseteq \widetilde{D}$. Now $B \subseteq \bigcup_{K=1}^n \overline{C}_K \subseteq \bigcup_{K=1}^n C_K$ so $a \in \overline{B} \subseteq \bigcup_{K=1}^n C_K = \overline{C} \subseteq \widetilde{D}$. Thus $a \in \widetilde{D}$, contrary to the original choice $a \notin \widetilde{D}$, the desired contradiction.

We can now describe explicitly the subalgebras of \mathfrak{A}_M :

Theorem 1.
$$B \in Su \mathfrak{A}_M$$
 iff $B = \bigcup_{D \text{ finite, } D \subseteq B} \overline{D}$

Proof. Let $B = \bigcup_{\substack{D \text{ finite, } D \subseteq B \\ \emptyset \subseteq Spt \Sigma}} \overline{D}$. We first consider the case $B = \emptyset$. Thus for each $D \subseteq B$, $D = \emptyset$ and $\overline{D} = \emptyset$ so $\overline{D} = \bigcap_{\substack{\emptyset \subseteq Spt \Sigma \\ \emptyset \subseteq Spt \Sigma}} Spt \Sigma$. If \mathfrak{A}_M has any nullary operations (constants) $a \in A$ we claim $a \in Spz \Sigma$ for every system Σ . To see this let α be the assignment which associates with every variable the constant function $f: A \to \{a\}$.

Note α satisfies arbitrary Σ at a, since each $g \in M$ must have a as a fixed point. Thus from $\overline{D} = \emptyset$ we conclude \mathfrak{A}_M has no nullary operations, whence $B = \emptyset \in \mathbb{R}$ $\in \operatorname{Su} \mathfrak{A}_M$. Now if $B \neq \emptyset$, fix an operation P of \mathfrak{A}_M of rank n, and $a_1, a_2, \ldots, a_n \in B$. It suffices to show that $P(a_1, \ldots, a_n) \in \overline{\{a_1, \ldots, a_n\}}$ since $\overline{\{a_1, \ldots, a_n\}} \subseteq B$. Let $D = = \{a_1, \ldots, a_n\}$. If $P(a_1, \ldots, a_n) \notin \overline{D}$ then there is some Σ with $D \subseteq \operatorname{Spt} \Sigma$ and $P(a_1, \ldots, a_n) \notin \operatorname{Spt} \Sigma$. By Lemma 1 we may assume that there is an assignment α which satisfies Σ on Spt Σ . We use α to produce an assignment α' which satisfies Σ at $d = P(a_1, \ldots, a_n) \notin \overline{D}$. For a variable x in Σ let $\alpha' x$ be defined by

$$\alpha' x(d) = \begin{cases} \alpha x(d) & \text{if } d \neq P(a_1, ..., a_n) \\ P(\alpha x(a_1), ..., \alpha x(a_n)) & \text{if } d = P(a_1, ..., a_n). \end{cases}$$

We claim α' satisfies Σ at $d=P(a_1, ..., a_n)$. To see this consider an equation fx=y in Σ :

 $f\alpha'x(d) = P(f\alpha x(a_1), ..., f\alpha x(a_n)) = P(g(a_1), ..., g(a_n)) = gP(a_1, ..., a_n) = g(d).$ Thus $d\in \text{Spt } \Sigma$ and we must conclude $P(a_1, ..., a_n) \in \{a_1, ..., a_n\}$, so $B = \bigcup \overline{D}$ $\Rightarrow B \in \text{Su} \mathfrak{A}_M$. To prove the converse, we suppose $B \in \text{Su} \mathfrak{A}_M$. By Lemma 5 $B \subseteq \overline{B} =$ $= \bigcup \overline{D}$ so it remains only to show $B \supseteq \widetilde{B}$. We proceed again by contradiction. Let $a \in \widetilde{B}$ and suppose $a \notin B$. Since $a \in \widetilde{B}$ there is some finite $C \subseteq B$ with $a \in \overline{C}$. From the first part of the theorem we know $\overline{C} \in \text{Su} \mathfrak{A}_M$. In fact \overline{C} is the subalgebra of \mathfrak{A}_M generated by C, for if $D \in \text{Su} \mathfrak{A}_M$ and $C \subseteq D$ then by the first part of our Theorem 1, $D = \bigcup \overline{G}$ so $\overline{C} \subseteq D$. Thus \overline{C} is the smallest subalgebra of \mathfrak{A}_M which contains C. $Gfinite, G \subseteq D$ Now $a \in \overline{C}$ so $a = P(c_1, ..., c_n)$ for some operation P in \mathfrak{A}_M and some sequence $c_1, ..., c_n$ from C. But $B \in \text{Su} \mathfrak{A}_M$ so B is closed under P, and $C \subseteq B$. Thus $a = P(c_1, ..., c_n) \in B$. It follows that $B \supseteq \widetilde{B}$ and thus $B \in \text{Su} \mathfrak{A}_M \Rightarrow B = \bigcup D$

§ 3. Characterization Theorems

For $L \subseteq 2^A$ let $\chi(L) = \{f \in A^B | B \in L, f = id \mid B\}$ be the set of characteristic functions of L. In general a function $f \in A^B$ will be called a characteristic function if $f = id \mid B$. Recall (§ 1) that when M is a set of partial functions, \tilde{M} denotes the set of all partial endomorphisms of the algebra of all finitary operations which admit each $f \in M$ as a partial endomorphism. In what follows $id \in S \subseteq A^A$, $L \subseteq 2^A$ and $M = S \cup \chi(L)$.

Theorem 2. $S = \text{End } \mathfrak{A}$ and $L = \text{Su } \mathfrak{A}$ for some algebra \mathfrak{A} iff \tilde{M} contains no total functions other than S and \tilde{M} contains no characteristic functions other than $\chi(L)$.

Endomorphism and subalgebra structure; a concrete characterization

Proof. Assume $S = \text{End } \mathfrak{A}$ and $L = \text{Su } \mathfrak{A}$ for some algebra \mathfrak{A} . Let $f \in A^A$, $f \notin S$. Since $S = \text{End } \mathfrak{A}$ some operation of \mathfrak{A} destroys f; this same operation must admit each map in $\chi(L)$ since $L = \text{Su } \mathfrak{A}$ so the operation is among those of \mathfrak{A}_M . Thus the only total functions in \tilde{M} are the members of S. Now let $g \in A^B$ with g = id + B, $B \notin L$, be a characteristic function. Then $B \notin \text{Su } \mathfrak{A}$ so there is some operation P in \mathfrak{A} and a finite sequence $b_1, \ldots, b_n \in B$ with $P(b_1, \ldots, b_n) \notin B$. This same operation P is again among the operations of \mathfrak{A}_M . But P does not admit g as a partial endomorphism since $gP(b_1, \ldots, b_n)$ is undefined. Thus the only characteristic functions in \tilde{M} are members of $\chi(L)$. This proves one direction of the Theorem. To complete the proof let $M = S \cup \chi(L)$ and assume that \tilde{M} contains no total functions other than S and no characteristic functions other than $\chi(L)$. Let $\mathfrak{A} = \mathfrak{A}_M$. Since \tilde{M} is the set of all partial endomorphisms of \mathfrak{A}_M we have $S = \text{End } \mathfrak{A}$. Moreover if $B \in \text{Su } \mathfrak{A}_M$ then id $\restriction B$ is a partial endomorphism of \mathfrak{A}_M so id $\restriction B \in \tilde{M}$, thus id $\restriction B \in \chi(L)$ so $B \in L$. Thus $L = \text{Su } \mathfrak{A}$.

We now combine Theorem 2 with Proposition 1 and Theorem 1 to obtain an equational condition for S and L to be jointly algebraic. The characterization theorem which follows says roughly that S must contain all functions which are unique solutions to systems of equations over $M = S \cup \chi(L)$ and that the support of every such system must belong to L. (For A finite the theorem says exactly that; the more general statement involves only additional "compactness" conditions which are "local" analogs of the above properties.)

Theorem 3. $S = End \mathfrak{A}$ and $L = Su \mathfrak{A}$ for some algebra \mathfrak{A} iff

(1)
$$\begin{cases} \forall \text{ finite } D \subseteq A \exists \text{ system } \Sigma \text{ over } M \text{ with} \\ g \nmid D \text{ the unique solution to } \Sigma \text{ on } D \end{cases} \Rightarrow g \in S.$$

and

(2)

 $B = \bigcup_{\substack{D \text{ finite } D \subseteq B}} \left(\bigcap_{\substack{D \subseteq \text{Spt } \Sigma, \Sigma \text{ over } M}} \operatorname{spt} \Sigma \right) \Rightarrow B \in L.$

Proof. From Theorem 2 we know S=End \mathfrak{A} and L=Su \mathfrak{A} for some algebra \mathfrak{A} iff

(i) $g \in A^A$ and $g \in \tilde{M} \Rightarrow g \in S$, and (ii) $id \models B \in \tilde{M} \Rightarrow B \in L$.

By Proposition 1 of § 1, (i) is equivalent to (1). Again by Proposition 1 of § 1, (ii) is equivalent to:

(ii') $\begin{bmatrix} B \in Su \ \mathfrak{A}_M \text{ and } \forall \text{ finite } D \subseteq B \exists \text{ system } \Sigma \\ \text{over } M \text{ with } (\text{id} \models B) \models D \text{ the unique solution to } \Sigma \text{ on } D \end{bmatrix} \Rightarrow B \in L.$

Furthermore the system Σ : { X^{Σ} = id} has id D as a unique solution on each D,

thus (ii') is equivalent to: $[B \in Su \mathfrak{A}_M \Rightarrow B \in L]$, and by Theorem 1 this is equivalent to:

(2)
$$B = \bigcup_{\substack{D \text{ finite } D \subseteq B}} \left(\bigcap_{D \subseteq \text{Spt } \Sigma, \text{ Zover } M} \right) \Rightarrow B \in L$$

Thus $S = End \mathfrak{A}$ and $L = Su \mathfrak{A}$ iff (1) and (2) hold.

For A finite Theorem 3 can be restated simply and completely as:

Corollary 1. If A is finite and $id \in S \subseteq A^A$ and $L \subseteq 2^A$ then $S = End \mathfrak{A}$ and $L = Su \mathfrak{A}$ for some algebra \mathfrak{A} iff

(1) $g \in S$ whenever g is the unique solution to some system of equations with coefficients from $S \cup \chi(L)$, and

(2) $B \in L$ whenever B is the support of any system of equations with coefficients from $S \cup \chi(L)$.

Bibliography

- M. ARMBRUST and J. SCHMIDT, Zum Cayleyschen Darstellungsatz, Math. Annalen, 154 (1964), 70-72.
- [2] G. BIRKHOFF and O. FRINK, Representations of lattices by sets, Trans. Amer. Math. Soc., 64 (1948), 299-316.
- [3] G. GRÄTZER, Universal Algebra, Van Nostrand (Princeton, 1968).
- [4] N. SAUER and M. G. STONE, The algebraic closure of a semigroup of functions (To appear).
- [5] M. G. STONE, Subalgebra and automorphism structure in Universal Algebras, a concrete characterization, Acta Sci. Math., 33 (1972), 45-48.

DEPT. MATHEMATICS AND STATISTICS UNIVERSITY OF CALGARY 2920 24 AVE. N.W. CALGARY, CANADA T2N 1N4