# Endomorphism and subalgebra structure; a concrete characterization 

N. SAUER and M. G. STONE

## § 1. Introduction

In [5] the following abstract structure problem is solved: For what semigroups $S$ and what lattices $L$ does there exist an algebra $\mathfrak{H}$ with $S \cong$ End $\mathfrak{H}$, the endomorphisms of $\mathfrak{N}$, and $L \cong S u \mathfrak{A}$ the lattice of subalgebras of $\mathfrak{A}$ ? Here we provide a solution to the corresponding concrete representation problem, where isomorphism is replaced by equality. Thus let $S \subseteq A^{A}$ be a given transformation monoid and $L \subseteq 2^{A}$ a set lattice. It is well known that $L=$ Su $\mathfrak{A}$ for some algebra $\mathfrak{A}$ over the set $A$ iff $L$ is complete and compactly generated [2]; such lattices are called algebraic. In [4] necessary and sufficient conditions for $S=$ Ėnd $\mathfrak{H}$ for some algebra $\mathfrak{H}$ over the set $A$ are given; such transformation semigroups are called algebraic. A similar characterization is given in [4] for semigroups of partial functions. We make use of the latter result by representing subalgebras with partial identity functions to derive a simultaneous characterization for $S$ and $L$. Our characterization, like that for the endomorphisms alone involves the solutions to systems of linear equations.

If $M$ is a set of partial functions on $A$ to $A$ with id $\in M$ the identity function on $A$, a system of linear equations $\Sigma$ over $M$ is a set of functional equations each of the general form: $f x=y$, or $f x=g$ with $f, g \in M$, together with a specified solution variable $X^{\Sigma}$. An assignment $\alpha$ for $\Sigma$ is a map from the variables of $\Sigma$ to partial functions on $A$ to $A$ with a common domain. The assignment $\alpha$ satisfies $\Sigma$ at $d \in A$. provided $f(\alpha x(d))=\alpha y(d)$ whenever $f x=y \in \Sigma$ and $f(\alpha x(d))=g(d)$ whenever $f x=g \in \Sigma$. The assignment $\alpha$ satisfies $\Sigma$ on $D \subseteq A$ iff $\alpha$ satisfies $\Sigma$ at $d$ for each $d \in D$. If $X^{\Sigma}$ is the specified solution variable we say $f$ is a solution to $\Sigma$ on $D$ provided there is

[^0]an assignment $\alpha$ which satisfies $\Sigma$ on $D$ and $\alpha\left(X^{\Sigma}\right)=f$. A solution $f$ to $\Sigma$ on $D$ is unique provided $f \upharpoonright D=h_{\uparrow} D$ whenever $h$ is any solution to $\Sigma$ on $D$. The support of a system $\Sigma$ is the set of all $d \in A$ for which there exists a solution to $\Sigma$ at $d$. We write $B=\operatorname{Spt} \Sigma$ if $B$ is the support of $\Sigma$.

Denote by $\mathfrak{Q}_{M}$ the algebra of all finitary operations which admit each $f \in M$ a a homomorphism. $\tilde{M}$ is the set of all partial endomorphisms of $\mathfrak{A}_{M}$ and $\bar{M}$ is the set of all (total) functions which are endomorphisms of $\mathfrak{A}_{M}$. As usual a partial function $g$ is a homomorphism with respect to an operation $P$ of rank $v$ provided $g P(x)$ is defined and equals $P(g x)$ whenever $g x$ is defined for $x \in A^{v}$. A total function is one whose domain is all of $A$. We will use:

Proposition 1. $g \in A^{B}$ belongs to $\tilde{M}$ iff $B \in \mathrm{Su}_{\mathfrak{N}_{M}}$ and for each finite $D \subseteq B$ there is a system $\Sigma$ over $M$ with $g$ a unique solution to $\Sigma$ on $D$.

Droof. Take $\mu=\aleph_{0}$ in Theorem 2 of [4].

## § 2. The subalgebras of $\mathfrak{Q}_{M}$

We first establish some easy facts about the support of systems $\Sigma$ over $M$.
Lemma 1. If $C=\operatorname{Spt} \Sigma$ then there is an assignment $\alpha$ which satisfies $\Sigma$ on $C$.
Proof. For each $d \in C$ there is an assignment $\alpha_{d}$ which satisfies $\Sigma$ at $d$. Define $\alpha$ for a variable $x$ of $\Sigma$ by:

$$
\alpha x(d)=\left\{\begin{array}{l}
\alpha_{d} x(d) \text { if } d \in C \\
d \text { otherwise }
\end{array}\right.
$$

It is straightforward to verify that $\alpha$ satisfies $\Sigma$ on $C$.
Lemma 2. If $C=\operatorname{Spt} \Sigma$ then there is a system $\Gamma$ and an assignment $\beta$ which satisfies $\Gamma$ on $C$ and $C=\operatorname{Spt} \Gamma$ and $\beta\left(X^{\Gamma}\right)=\mathrm{id} \uparrow C$ is a unique solution to $\Gamma$ on $C$.

Proof. Let $\Gamma$ have one additional new variable $X^{\Gamma}$ not among those of $\Sigma$ and let the equations of $\Gamma$ consist of those of $\Sigma$ together with the new equation $X^{\Gamma}=$ id. By Lemma 1 there is an assignment $\alpha$ which satisfies $\Sigma$ on $C$. Let $\beta$ extend $\alpha$ by assigning id $卜 C$ to $X^{\Gamma}$. Clearly $\beta$ satisfies $\Gamma$ on $C$ and $C=\operatorname{Spt} \Gamma$. If $g$ is any solution to $\Gamma$ on $C$ then for $d \in C, g(d)=d$ so $g \vdash C=\beta\left(X^{\Gamma}\right)=\mathrm{id} \upharpoonright C$ thus id $\upharpoonright C$ is a unique solution to $\Gamma$ on $C$.

Lemma 3. Let each $C \in \mathscr{F}$ be the support of some system $\Gamma_{C}$. Then $\bigcap_{C \in \mathscr{F}} C$ is also the support of some system $\Gamma$.

Proof. Assume without loss of generality that each pair of systems $\Gamma_{C}, \Gamma_{D}$ have no variables in common for $C \neq D$ and let $X^{\Gamma}$ be a new variable distinct from all of those of the $\Gamma_{c}$. By Lemma 2 we may further assume that $\mathrm{id} \uparrow C$ is a unique solution to $\Gamma_{c}$ on $C$ for each $C \in \mathscr{F}$. Form $\Gamma=\left(\bigcup_{c \in \mathscr{F}} \Gamma_{c}\right) \cup\left\{X^{\Gamma}=\mathrm{id}\right\}$. We claim $\bigcap_{C \circledast \mathfrak{F}} C=\operatorname{Spt} \Gamma$. If $d \in \operatorname{Spt} \Gamma$, say $\alpha$ satisfies $\Gamma$ at $d$, then clearly $\alpha_{C}$, the restriction of $\alpha$ to the variables of $\Gamma_{\boldsymbol{c}}$, satisfies $\Gamma_{\boldsymbol{c}}$ at $d$ for each $C \in \mathscr{F}$ so $d \in \bigcap_{c \in \mathscr{F}} C$. If on the other hand $d \in \bigcap_{C \in \mathscr{F}} C$ and $\alpha_{C}$ satisfies $\Gamma_{C}$ at $d$ then let $\alpha X=\alpha_{C} X \mid \bigcap_{C \in \mathscr{F}} C$ for a variable $X$ in $\Gamma_{C}$ and let $\alpha X^{r}=$ id $\upharpoonright \bigcap_{C \in \mathscr{F}} C$. Clearly $\alpha$ satisfies $\Gamma$ on $\bigcap_{C \in \mathscr{F}} C$ so $d \in \operatorname{Spt} \Gamma$. Thus Spt $\Gamma=\bigcap_{C \in \mathscr{F}} C$.

Lemma 4. For $D \subseteq A$ the operation defined by $\bar{D}=\bigcap_{D \leqq S p t \Sigma}$ Spt $\Sigma$ is a closure operator.

Proof. Clevarly $D \subseteq \bar{D}$, and $[C \subseteq D \Rightarrow \bar{C} \subseteq \bar{D}]$. To show $\bar{D}=\bar{D}$ it is only necessary to see then that $\bar{D} \subseteq \bar{D}$. By Lemma 3 there is some system $\Gamma$ with $\bar{D}=\bigcap_{D \subseteq \operatorname{spt} \Sigma} \operatorname{Spt} \Sigma=$ $=\operatorname{Spt} \Gamma$. Clearly $\bar{D}=\bigcap_{D \cong \operatorname{spt\Sigma }} \operatorname{Spt} \Sigma=\operatorname{Spt} \Gamma=\bar{D}$.

Lemma 5. For $D \subseteq A$ the operation defined by $\tilde{D}=\underset{C f \mathrm{inite}, C \subseteq D}{\bigcup} \bar{C}$ is a closure operator.

Proof. Since $d \in D \Rightarrow d \in\{d\} \subseteq \tilde{D}$ we have $D \subseteq \tilde{D}$. Further $[C \subseteq D \Rightarrow \widetilde{C} \subseteq \tilde{D}]$ since each finite subset of $C$ is also a finite subset of $D$. To show $\tilde{\tilde{D}}=\tilde{D}$ it remains only to see $\tilde{\tilde{D}} \subseteq \tilde{D}$. Suppose $\tilde{\tilde{D}} \subseteq \tilde{D}$; then there is some $a \in \tilde{\tilde{D}}$ with $a \notin \tilde{D}$. We will show this leads to a contradiction. Since $a \in \tilde{\tilde{D}}$ there is some $B \subseteq \tilde{D}, B$ finite, with $a \in \bar{B}$. Thus $a \in \bigcap_{B \subseteq \operatorname{spt} \Sigma} \operatorname{Spt} \Sigma$, and say $B=\left\{b_{1}, \ldots, b_{n}\right\}$. From $B \subseteq \tilde{D}$ we have each $b_{K} \in \tilde{D}$, say $b_{K} \in \bar{C}_{K}$ for some $C_{K} \subseteq D, C_{K}$ finite, $K=1, \ldots, n$. Then $C=\bigcup_{K=1}^{n} C_{K}$ is a finite subset of $D$, so $\bar{C} \subseteq \tilde{D}$. Now $B \subseteq \bigcup_{K=1}^{n} \overline{C_{K}} \subseteq \overline{\bigcup_{K=1}^{n} C_{K}}$ so $a \in \bar{B} \subseteq \overline{\overline{\bigcup_{K=1}^{n} C_{K}}}=\overline{\bigcup_{K=1}^{n} C_{K}}=\bar{C} \cong \tilde{D}$. Thus $a \in \tilde{D}$, contrary to the original choice $a \notin \tilde{D}$, the desired contradiction.

We can now describe explicitly the subalgebras of $\mathfrak{g}_{M}$ :
Theorem 1. $B \in \operatorname{Su} \mathfrak{Q}_{M}$ iff $B=\underset{D \text { finite, } D \leqq B}{\bigcup} \bar{D}$.
Proof. Let $B=\bigcup_{D \text { finte, } D \subseteq B} \bar{D}$. We first consider the case $B=\emptyset$. Thus for each $D \subseteq B, D=\emptyset$ and $\bar{D}=\emptyset$ so $\bar{D}=\bigcap_{\sigma \subseteq \text { Spt } \Sigma}$ Spt $\Sigma$. If $\mathfrak{A}_{M}$ has any nullary operations
 signment which associates with every variable the constant function $\mathrm{f}: A \rightarrow\{a\}$.

Note $\alpha$ satisfies arbitrary $\Sigma$ at $a$, since each $g \in M$ must have a as a fixed point. Thus from $\bar{D}=\emptyset$ we conclude $\mathfrak{n}_{M}$ has no nullary operations, whence $B=\emptyset \in$ $\in \mathrm{Su} \mathfrak{G}_{M}$. Now if $B \neq \emptyset$, fix an operation $P$ of $\mathfrak{M}_{M}$ of rank $n$, and $a_{1}, a_{2}, \ldots, a_{n} \in B$. It suffices to show that $P\left(a_{1}, \ldots, a_{n}\right) \in\left\{\overline{a_{1}, \ldots, a_{n}}\right\}$ since $\left\{\overline{a_{1}, \ldots, a_{n}}\right\} \subseteq B$. Let $D=$ $=\left\{a_{1}, \ldots, a_{n}\right\}$. If $P\left(a_{1}, \ldots, a_{n}\right) \notin \bar{D}$ then there is some $\Sigma$ with $D \subseteq \operatorname{Spt} \Sigma$ and $P\left(a_{1}, \ldots, a_{n}\right) \notin \operatorname{Spt} \Sigma$. By Lemma 1 we may assume that there is an assignment $\alpha$ which satisfies $\Sigma$ on $\operatorname{Spt} \Sigma$. We use $\alpha$ to produce an assignment $\alpha^{\prime}$ which satisfies $\Sigma$ at $d=P\left(a_{1}, \ldots, a_{n}\right)$ and thus obtain $P\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{Spt} \Sigma$ contradicting the hypothesis that $P\left(a_{1}, \ldots, a_{n}\right) \notin \bar{D}$. For a variable $x$ in $\Sigma$ let $\alpha^{\prime} x$ be defined by

$$
\alpha^{\prime} x(d)= \begin{cases}\alpha x(d) & \text { if } d \neq P\left(a_{1}, \ldots, a_{n}\right) \\ P\left(\alpha x\left(a_{1}\right), \ldots, \alpha x\left(a_{n}\right)\right) & \text { if } d=P\left(a_{1}, \ldots, a_{n}\right)\end{cases}
$$

We claim $\alpha^{\prime}$ satisfies $\Sigma$ at $d=P\left(a_{1}, \ldots, a_{n}\right)$. To see this consider an equation $f x=y$ in $\Sigma$ :

$$
f \alpha^{\prime} x(d)=P\left(f \alpha x\left(a_{1}\right), \ldots, f \alpha x\left(a_{n}\right)\right)=P\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)=g P\left(a_{1}, \ldots, a_{n}\right)=g(d)
$$

Thus $d \in$ Spt $\Sigma$ and we must conclude $P\left(a_{1}, \ldots, a_{n}\right) \in\left\{a_{1}, \ldots, a_{n}\right\}$, so $B=\underset{D \text { finite, } D \subseteq B}{\cup} \bar{D} \Rightarrow$ $\Rightarrow B \in \mathrm{Su} \mathfrak{A}_{M}$. To prove the converse, we suppose $B \in \operatorname{Su} \mathfrak{A}_{M}$. By Lemma $5 B \subseteq \widetilde{B}=$ $=\bigcup_{D \text { finte, } D \subseteq B} \bar{D}$ so it remains only to show $B \supseteqq \tilde{B}$. We proceed again by contradiction. Let $a \in \widetilde{B}$ and suppose $a \notin B$. Since $a \in \tilde{B}$ there is some finite $C \subseteq B$ with $a \in \bar{C}$. From the first part of the theorem we know $\bar{C} \in \mathrm{Su}_{M}$. In fact $\bar{C}$ is the subalgebra of $\mathfrak{Q}_{M}$ generated by $C$, for if $D \in S u \mathfrak{A}_{M}$ and $C \subseteq D$ then by the first part of our Theorem 1, $D=\bigcup_{G \text { finite }, G \subseteq D} \bar{G}$ so $\bar{C} \subseteq D$. Thus $\bar{C}$ is the smallest subalgebra of $\mathfrak{A}_{M}$ which contains $C$. Now $a \in \bar{C}$ so $a=P\left(c_{1}, \ldots, c_{n}\right)$ for some operation $P$ in $\mathfrak{U}_{M}$ and some sequence $c_{1}, \ldots, c_{n}$ from $C$. But $B \in \operatorname{Su} \mathfrak{M}_{M}$ so $B$ is closed under $P$, and $C \subseteq B$. Thus $a=P\left(c_{1}, \ldots, c_{n}\right) \in B$. It follows that $B \supseteqq \tilde{B}$ and thus $B \in \operatorname{Su}_{M} \Rightarrow B=\bigcup_{D \text { finite, } D \cong B} \bar{D} . \square$

## § 3. Characterization Theorems

For $L \subseteq 2^{A}$ let $\chi(L)=\left\{f \in A^{B} \mid B \in L, f=\right.$ id $\left.\uparrow B\right\}$ be the set of characteristic functions of $L$. In general a function $f \in A^{B}$ will be called a characteristic function if $f=$ id $\mid B$. Recall (§ 1) that when $M$ is a set of partial functions, $\tilde{M}$ denotes the set of all partial endomorphisms of the algebra of all finitary operations which admit each $f \in M$ as a partial endomorphism. In what follows id $\in S \subseteq A^{A}, L \subseteq 2^{A}$ and $M=S \cup \chi(L)$.

Theorem 2. $S=$ End $\mathfrak{H}$ and $L=S u \mathfrak{A}$ for some algebra $\mathfrak{H}$ iff $\tilde{M}$ contains no total functions other than $S$ and $\widetilde{M}$ contains no characteristic functions other than $\chi(L)$.

Proof. Assume $S=$ End $\mathfrak{H}$ and $L=S u \mathfrak{U}$ for some algebra $\mathfrak{Q}$. Let $f \in A^{A}, f \ddagger S$. Since $S=$ End $\mathfrak{A}$ some operation of $\mathfrak{A}$ destroys $f$; this same operation must admit each map in $\chi(L)$ since $L=S u \mathfrak{H}$ so the operation is among those of $\mathfrak{M}_{M}$. Thus the only total functions in $\tilde{M}$ are the members of $S$. Now let $g \in A^{B}$ with $g=$ id $\upharpoonright B$, $B \notin L$, be a characteristic function. Then $B \notin \mathrm{Su} \mathfrak{A}$ so there is some operation $P$ in $\mathfrak{U}$ and a finite sequence $b_{1}, \ldots, b_{n} \in B$ with $P\left(b_{1}, \ldots, b_{n}\right) \notin B$. This same operation $P$ is again among the operations of $\mathfrak{H}_{M}$. But $P$ does not admit $g$ as a partial endomorphism since $g P\left(b_{1}, \ldots, b_{n}\right)$ is undefined. Thus the only characteristic functions in $\tilde{M}$ are members of $\chi(L)$. This proves one direction of the Theorem. To complete the proof let $M=S \cup \chi(L)$ and assume that $\tilde{M}$ contains no total functions other than $S$ and no characteristic functions other than $\chi(L)$. Let $\mathfrak{H}=\mathfrak{A}_{M}$. Since $\tilde{M}$ is the set of all partial endomorphisms of $\mathfrak{U}_{M}$ we have $S=$ End $\mathfrak{A}$. Moreover if $B \in \operatorname{Su} \mathfrak{A}_{M}$ then id $\upharpoonright B$ is a partial endomorphism of $\mathfrak{N}_{M}$ so id $\upharpoonright B \in \tilde{M}$, thus id $\uparrow B \in \chi(L)$ so $B \in L$. Thus $L=\mathrm{Su} \mathfrak{H}$.

We now combine Theorem 2 with Proposition 1 and Theorem 1 to obtain an equational condition for $S$ and $L$ to be jointly algebraic. The characterization theorem which follows says roughly that $S$ must contain all functions which are unique solutions to systems of equations over $M=S \cup \chi(L)$ and that the support of every such system must belong to $L$. (For $A$ finite the theorem says exactly that; the more general statement involves only additional "compactness" conditions which are "local" analogs of the above properties.)

Theorem 3. $S=$ End $\mathfrak{A}$ and $L=\mathrm{Su} \mathfrak{A}$ for some algebra $\mathfrak{A}$ iff

$$
\left[\begin{array}{l}
\forall \text { finite } D \subseteq A \exists \text { system } \Sigma \text { over } M \text { with }  \tag{1}\\
g \backslash D \text { the unique solution to } \Sigma \text { on } D
\end{array}\right] \Rightarrow g \in S .
$$

and

$$
\begin{equation*}
B=\bigcup_{D \text { finite } D \cong B}\left(\bigcap_{D \cong \operatorname{Spt} \Sigma, \Sigma \text { over } M} \operatorname{spt} \Sigma\right) \Rightarrow B \in L . \tag{2}
\end{equation*}
$$

Proof. From Theorem 2 we know $S=$ End $\mathfrak{H}$ and $L=\mathrm{Su} \mathfrak{A}$ for some algebra $\mathfrak{A}$ iff
(i) $g \in A^{A} \quad$ and $\quad g \in \tilde{M} \Rightarrow g \in S$, and (ii) $i d \vdash B \in \tilde{M} \Rightarrow B \in L$.

By Proposition 1 of $\S 1$, (i) is equivalent to (1). Again by Proposition 1 of $\S 1$, (ii) is equivalent to:

$$
\left[\begin{array}{l}
B \in \operatorname{Su} \mathfrak{A}_{M} \text { and } \forall \text { finite } D \subseteq B \exists \text { system } \Sigma  \tag{ii'}\\
\text { over } M \text { with (id } \uparrow B) \upharpoonright D \text { the unique solution to } \Sigma \text { on } D
\end{array}\right] \Rightarrow B \in L .
$$

Furthermore the system $\Sigma:\left\{X^{\Sigma}=\mathrm{id}\right\}$ has id $\ D$ as a unique solution on each $D$,
thus (ii') is equivalent to: $\left[B \in S u \mathfrak{M}_{M} \Rightarrow B \in L\right]$, and by Theorem 1 this is equivalent to:

Thus $S=$ End $\mathfrak{A}$ and $L=\operatorname{Su} \mathfrak{A}$ iff (1) and (2) hold.
For $A$ finite Theorem 3 can be restated simply and completely as:
Corollary 1. If $A$ is finite and $\operatorname{id} \in S \subseteq A^{A}$ and $L \subseteq 2^{A}$ then $S=$ End $\mathfrak{H}$ and $L=S u \mathfrak{A}$ for some algebra $\mathfrak{A}$ iff
(1) $g \in S$ whenever $g$ is the unique solution to some system of equations with coefficients from $S \cup \chi(L)$, and
(2) $B \in L$ whenever $B$ is the support of any system of equations with coeff icients from $S \cup \chi(L)$.

## Bibliography

[1] M. Armbrust and J. Schmidt, Zum Cayleyschen Darstellungsatz, Math. Annalen, 154 (1964), 70-72.
[2] G. Birkhoff and O. Frink, Representations of lattices by sets, Trans. Amer. Math. Soc., 64 (1948), 299-316.
[3] G. Grätzer, Universal Algebra. Van Nostrand (Princeton, 1968).
[4] N. Sauer and M. G. Stone, The algebraic closure of a semigroup of functions (To appear).
[5] M. G. Stone, Subalgebra and automorphism structure in Universal Algebras, a concrete characterization, Acta Sci. Math., 33 (1972), 45-48.


[^0]:    Received July 1, 1976.
    This research was supported in part by NRC Operating grants A7213 and A8084 from the National Research Council of Canada.

