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Second order Briot-Bouquet differential equations 
E I N A R H I L L E 

O 

1. Introduction. A Briot-Bouquet equation of order k is a DE of the form 

(1.1) P[w, w<*>] = 0 

where P(x, y) is a polynomial in x and y with constant coefficients. In the study 
of such equations the main problem is to find necessary and, if possible, sufficient 
conditions in order that the solutions be single-valued functions, holomorphic 
save for poles in the finite plane. 

In 1887 PICARD [7] proved that an algebraic curve 

(1.2) P(x,y) = 0 

admits of a parametric representation 

(1.3) x = S(t), y = T(t) 

where S and T are transcendental entire or meromorphic functions of t iff the 
curve is of genus 0 or 1. Since w(z) and ww(z) are either both entire or meromorphic 
or neither has this property we have 

Theorem 1. A necessary condition that (1.1) have a single-valued solution, 
holomorphic save for poles in the finite plane, is that the genus of the curve (1.2) be 
zero or one. 

The condition is not sufficient. Thus the second order DE 

-2 /3 

(1.4) w" = wi with e.g. w(z) = 

has movable branch-points. The general solution is obtained by inverting a hyper-
elliptic integral and has of course infinitely many branch-points. 

Received January 31, 1977. 



64 E. Hille 

For k= 1 the investigations of FUCHS [1]. POINCARE [8] and SCHLESINGER [9] 

have determined the limitations which are put on the polynomial coefficients 
of the powers of w' by the existence of meromorphic solutions that are non-
rational. 

Suppose that 
(1.5) P(x, y) = P0(x)yn+P1(x)y-1 +... +i>„(x) 

and let Sj be the degree of Pj(x). Fuchs showed that the existence of solutions of 
the described type requires that P0(x) be a constant, say P0(x) = 1, and that 

(1 .6) Sj = 2j, j = l , 2 , . . . , « . 

These conditions apply to first order BB equations; If they are satisfied and the 
genus is 0 or 1, then (1.1) has single-valued solutions which are rational functions 
of z or of efz for some constant a, or of the Weierstrass -function and its first 
derivative. Thus the solutions belong to the class of functions for which Weierstrass 
has shown the existence of algebraic addition theorems. 

The present note is devoted to the case k=2. Here the analogue of the con-
ditions of Fuchs read (see [3] Theorem 3) 

(1 .7) P0(w) = l , - j = 1 , 2 , . . . , « . 

If the solutions are to be entire functions of z, the inequalities become more 
restrictive: 

(1.8) 8 j S j 

and this inequality holds for all values of k when the solutions are entire functions. 
Cf. [3] Theorem 4. 

In the present note we use the method of Fuchs as presented by Schlesinger 
to the case k=2. We also lean heavily on the results of Painlevd and Gambier 
concerning second order DE's with fixed critical points. It will be found that the 
solutions are either of the same three types as for k= 1 or reducible to such types 
by a change of variables. 

2. Euqations of genus zero. I. Suppose now that k=2, conditions (1.7) hold 
and the curve (1.2) is of genus zero. Then a rational function of x and y exists such 
that 
(2.1) t = R(x,y) 
leads to 
(2.2) x = R1(t), y = R 2 (0 

where Rx and R2 are rational functions of t. The DE then becomes 

(2.3) w"(z) = R2(t) with w(z) = R1(t). 
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Differentiation of the second equation with respect to z gives 

(2.4) w'(z) = w"(z) = Ki(t) 

Thus / as a function of z satisfies the DE 

CKi dH I KO) (dt)*_ s,(t) K } dz1 R[(t) \dz) ~ R[(t) ' 

where Rx and R2 are rational in t. There are two distinct possibilities according 
as Rl ( 0 = 0 or not. The first case is by far the simpler one. 

I. # [ ' (0=0 . We may assume R^(t) = l. The DE (2.5) now reduces to 

d2t 
(2.6) ^ = * 2 (0-

Since in this case w(z)=t(z) + f0, the requirement that w(z) shall have no branch-
points implies that R2(t) is a polynomial in t of degree S 3 by (1.7). It is necessary 
to distinguish between a number of subcases. 

I : l . ' 5 [ i y = 3 . A first integral of (2.6) takes the form 

( dt}2 

(2.7) =A(!-aJ(j-aJ(t-aJ(t-aJ. 

Here there are essentially five different possibilities. 
1:11. The a/s are distinct. Then there exists an affine transformation z=as, 

t=bv + c which takes (2.7) into the Jacobi normal form 

(2-8) = CI 

where the modulus k is determined by the a/s. The solutions of (1.1) are thus elliptic 
functions of Z: 

1:12. a^—a^a , (a—a3)(a—a^^O. Set 

(2.9) t = a+— v v 
which reduces (2.7) to the form 

= Bfp-vJiv-vJ. 

The corresponding solution w(z) is a rational function of eaz for some a. It is simply 
periodic. 
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1:13. a 1 =a a =a , az=a^—b, a^b. Thus 

(2.11) *- = B(t-a)(t-b). 

Here also w(z) is simply-periodic and a rational function of exp [(a—b)Bz\. 
1:14. a1=ai=aB=a, a^b^a so that 

(2.11) =A(t-af(t-b). 

The substitution (2.9) leads to a DE of the form 

(2.12) = 

which is satisfied by a quadratic polynomial so that w(z) is a rational function of z. 
1:15. All the a/s are equal to a. The equation may be reduced to the form 

(2.13) ^ - = v2 with v(z) = t>o-(z-Zo)_ 1 
az 

so that w(z) is also in this case a rational function of z. 
This exhausts the possibilities when 5(R^)=3, i?x(i)=1 and p=0. 
1:2. 5(R^)=2 gives the first integral 

(2.14) [^J = A(t-aJ(t-aJ(t-aJ. 

Here we have the following subcases: 
1:21. The a's are distinct. An affine transformation leads to Weierstrass's 

normal form 

(2.15) { ^ ) = ^ - g 2 v - g a 

so that w(z) is of the form 

(2.16) w(z) = bp(cz-s0; g2, gs)+«0 

with i0 and v0 as arbitrary constants. 
1:22. a, =a2=a, a3=b^a. The substitution (2.9) reduces the DE to the form 

(2.10). 
1:23. All the a/s are equal to a so that the solution w(z) is a rational func-

tion of z. 
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The only remaining case is that where S (i?2)=1 so that 

(2.17) ¥ ± = c n - a , c * 0 

with 

(2.18) t(z) = Kie
cz+K2e-cz+ac-2 

so that w(z) is a rational function of e". This ends the case Ri(t)=0. 

3. General case with p—0. We have now equation (2.5) with 0. 
Suppose that w(z) has a pole at a finite point z0. Since w(z)=Rt(t) is a rational 
function of t, it is seen that R1(t)—°° as and this says that at /=°o 

(3.1) R1(t) = a0t"+o(t"), 

where fi is a positive integer. The cases / i = l and /¿>1 require separate treatment. 
If f i=1, then 

(3.2) * i ( 0 = aot+aj. + az t - i + O i r * - 1 ) , a0a2 ^ 0 

where A is a positive integer. Hence 

(3.3) H ^ i ^ D r ^ - H O i r 1 - » ) , 

In the second case fi>-l the ratio equals 

(3.4) 0—1 )t-1+0(t~2). 
Further 
(3.5) R2(t) = b0r+O(tv~1). 

Since R2(t)=w" (z) and w"(z)/w(z) becomes infinite as z approaches a pole, one 
concludes that 
(3.6) v s / i + l 
and in 

(3.7) ^ i « 

the leading exponent is at least 2. 
We can start to whittle down the exponent. Some of this work is elementary 

but ultimately we have to fall back on the results of Painleve and Gambier. Suppose 
that w(z) has a pole of order a at z=z0 where 

(3.8) w(z) = a(z—z0)~"[l +o(l)] 
so that 

(3.9) M- ' (Z) = -cm(z-z0)-"-1[l +o(l)], w"(z) = a ( a + l ) a ( z - z 0 ) — a t l + o( l ) ] . 
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Set 

( 3 . 1 0 ) 

so that (2.5) becomes 
(3.11) <*(*)+fii( Of W = Qa(t). 

Now 
w ( z ) = Rdt(z)] = a 0 [ / ( z ) ] " [ l + O ( l ) ] 

in a neighborhood of a pole and t(z) is a rational function of z, w(z) and w"{z) by 
(2.1) so any infinitude of t(z) must be a pole, say of z order ft at z=z 0 and here 

so that (i is a divisor of a. At z=z0 the three terms of (3.11) have poles of order 

f}+2, p+2 or 2—Xp, and (v+l~n)p, 

respectively. Since the infinitary terms must balance in the equation, it is seen that 
P + 2 ^ ( v + l ~ n ) P or ( v - n ) p ^ 2 . Here both factors on the left are positive in-
tegers, at least equal to 1. It follows that 

(3.13) l s v - / i s 2 . 
Since P=ufoi, it is seen that 

2 u 
(3.14) a = —— and v S 3u. v V—fl 

This is as far as we can get with elementary methods. 
P . P A I N L E V E [ 6 ] and R . G A M B I E R [ 2 ] have determined the D E ' s of the form 

which have fixed critical points. Here L, M, N are analytic functions of z and ra-
tional in v. An excellent presentation of the theory is given in I N C E [5, Chapter 
XIV]. Painleve and Gambier found that the equations of type (3.15) with fixed 
critical points (branch points and essential singular points) could be reduced, possibly 
by change of variables, to one of 50 different normal forms. We shall apply these 
results to equation (3.11). This equation does not involve z explicitly, 
further M(v) is identically zero while N(v) is definitely not. This reduces the types 
that have to be considered from 50 to 15. These are listed by I N C E [5, pp. 337—343] 
under the headings X I I , X V I , X V I I I , X I X , X X I — X X I I I , X X V I , X X I X , X X X , 

X X X I I , X X X I I I , X X X V I I I , X L I V and X L I X . We refer to I N C E for details. 
On the face of it his equation XIV should also be considered, but this equa-

. dw 
tion contains a misprint: a factor — is missing so M(v) is not identically zero. /77 

(3.12) 

(3.15) t/'(z) = L{z, v)[f/(z)]2 + M(z, v)v'(z) + N(z, v) 
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One can set the arbitrary functions q(Z) and r(Z) equal to zero but this also makes 
N(v)=0 so the equation does not qualify. 

The reduction to a normal form may involve a change of variables but in the 
case of (3.11) and p=0 only affine transformations 

(3.16) Z = az+b, V = cv+d, 
need be considered. 

The function v>^*L(v) has at most 3 poles and for XLIX this number is reached 
and the normal form is 

(3.17) = + 

Two poles occur in XXXVIII and XLIV with L(v) equal to 

(3-18) -^-H—^—r and + 2v v— 1 4 lt> 1J 

respectively. All the other JJs are of the form Cv~l where the constant C has only 
three possible values -f-'-f-'l. At infinity L(v) has a simple zero. Comparison 
with (3.3) and (3.4) shows that /¿>1. 

The rational function N(v) is normally of degree v = 3 ; it is 2 for XVIII, XIX, 
XXI, XXIII, XXXIII. For XXII v = 0 and - 1 for XXXII. The latter two equa-
tions are excentional in as much as the solutions are polynomials in z and thus 
have no finite poles. There is no contradiction with (3.13) and (3.14) since these 
relations presuppose the existence of poles. 

The solutions of (3.11) are elliptic functions when v=2 or 3. Combining the 
results of this section with those of the preceding one leads to 

T h e o r e m 2. If the curve (1.1) is of genus zero and if (1.7) holds then the solu-
tions of the DE 

(3.19) K(Z)]« + 2 ^[w(z)][w"(z)]"-J ' = 0 
j=i 

are rational functions of z or of eal for some a, or finally of p (az+b; g2, g3) and its 
derivative with respect to z for some choice of the parameters a,b,g2,g3. 

4. The case p=1. Here we can find four rational functions, each of two argu-
ments, such that 

(4.1) s = R1(x,y), t — R2(x, y), x = R3(s, t), y = R^s, t) 
with 
(4.2) t2 = 4s3—g2s—g3 

where the parameters g2 and g3 may be determined from the coefficients pJk of (1.2). 
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Since t2 is a polynomial in s, the functions R3 and Rt may be written as follows 

(4.3) R3(s, t) = R31(s)+tR32(s), Ri(s, t) = Ra(s)+tR4t(s) 

where the RJk are rational functions of s. 
d2x 

Since by definition — - = y we get 
dz2 

d*x L, . . „ 6s2-i 
(4.4) = 

It follows that z>—s(z) satisfies a DE of the form 

d2s (ds\2 

(4.5) = 1Qu{s) + tQa(s)] [-g-J +Q21(s) + tQ22(s) 

where the QJk are rational functions of s. 
Here there are various possibilities. 
I. g1 2( i) = g 2 2 ( i )=0. The equation (4.5) is then essentially of the same nature 

as (2.5) and the previous results apply. The solution is normally an elliptic func-
tion of z but it may degenerate to a rational function of z or of <fz for some constant 
a. This case gives nothing new. 

II. At least one of the functions Q12(s) and Q22(s) is not identically zero. We 
note that at least one of the functions g2 1 and Q22 cannot vanish identically save 
for the trivial DE [w"(z)]"=0. 

Suppose that at s=°° 
(4.6) <2;*(s) = ^ S M l + o ( l ) ] 

and suppose that a solution s(z) of (4.5) has an infinitude of order /? at z=z0 

so that 
(4.7) s(z) = b(z-z0)-*[l+o(l)]. 

Equation (4.5) involves five terms that may become infinite as a negative power 
of (z—z0). The orders are respectively 

(4.8) P+2, (dn+2)f}+2, (<512+y)/i+2, 521p, (<522+|)/? 

provided the corresponding ajk^0. Here the SJk are integers, > 0 or 0 or <0 . 
Since no term can dominate the first term and at least one of the other terms must 
be of the same order of magnitude we get a set of inequalities which must be 
satisfied by the 5Jk's: 
(4.9) ¿ u ^ - 1 . <5x2^-3, 3, 1. 
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Let us now bring the known facts to bear on our problem. Painlevi also examin-
ed the case where the coefficients L, M, N are algebraic functions of v so that 
L, M, N are rational functions of the variables v and W where 

(4.10) C(w, W) = 0 

and C is a polynomial with constant coefficients and the curve (4.10) is of genus 
0 or 1. 

Besides the 50 types found in the rational case p=0 Painlev6 found only 
3 additional types free from movable critical points. If in these equations the 
arbitrary functions are replaced by arbitrary constants and the conditions M(v) = 
=0,N(v)^0 are imposed, only two types are found to qualify. These equations 
may be written 

(4.11) s"(z) = y ^ [ s ' ( z ) r + r [ r ( s ) r 

and 

(4.12) 5"(z) = { y [ s W + r ^ W f -

Here 

(4.13) T (s) = 4s3—g2s—g3 

and 2to is an arbitrary period of p(s\g2,g3)-
Equation (4.11) is equivalent to the system 

fs'(z)=u(z){T[S(z)iy<* 
( 4 A 4 ) l„ '(z) = r 
with solutions 

(4.15) s(z) = p ( | r z 2 + C 1 z + C 2 ; g 2 , g 3 ) . 

By (4.1) the solution w(z) of (1.2) is a rational function of s(z) and T[s(z)], that is 
expressible in terms of elliptic functions of a quadratic polynomial. Such an elliptic 
function would necessarily have Nevanlinna order 4. But this contradicts Theorem 
6 of [4] according to which the Nevanlinna order of a meromorphic solution of 
a Briot-Bouquet DE is at most 2. We conclude that an equation of type (4.11) 
can not arise when the birational transformation (4.1) is applied to a BB equation. 

As we shall see in a moment, equation (4.12) can also be dismissed. This equa-
tion also leads to a simple system 

s'(z) = u(z)T[s(z)]^ 

(4A6) >u'(z) = i^[u(z)r+r. 
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n 
Here r?±0 since N(v)?éO. We set r—i — a2 so that 

œ 

(4.17) u (z) = ai tanh z0) j , 

(4.18) f u(s)ds = i — logsinhla — (z — z0)| J n i co i 
so that 

(4.19) s (z) = p | i ^ log sinh zo)] ; g2, g3} • 

CO 
This solution has singularities at all the points zk=z0+k — i. If z describes a po-

il 
sitive circuit around one of these points, the logarithm is increased by 2ni and the 
argument of the ^-function decreases by 2co which is a period so the solution returns 
to its original value. Thus the solution is single-valued but it is not a meromorphic 
function. In fact, each of the points zk is a point of accumulation of poles. Thus 
z>—s(z) takes on every value infinitely often in an arbitrarily small neighborhood 
of zk. Now a rational function of s(z) and T[s{z)] inherits these properties of s(z). 

According to Theorem 4 of [4] the determinateness theorem of Painlevé holds 
also for second order BB-equations. This shows that an equation of type (4.11) 
cannot be obtained as a transform of a BB-equation. Thus we have proved 

Theorem 3. If the curve (1.1) is of genus 1 and //(1.7) holds, then the solutions 
of (3.19) are rational functions of z or of eaz for some a or, finally, of p [L(z);g2, g j 
and its z-derivative where L(z) is a linear function of z. 
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