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Counting additive spaces of sets 
KI HANG KIM and FRED W. ROUSH 

1. Introduction. In this paper we consider an asymptotic counting problem 
which occurs in a number of forms. 

D e f i n i t i o n 1. A family Q of subsets of (1,2, . . . ,«} is an additive space if 
0£i2 and AB£Q whenever A, B£Q. Two such families are isomorphic iff they are 
isomorphic as semigroups under union. 

D e f i n i t i o n 2. Let VB be the set of all «-tuples from the two-element Boolean 
algebra {0, 1}. A subset U of Vk is called a Boolean subspace iff the vector (0, 0, ..., 0) 
belongs to the subspace, and whenever u,v£U, the vector u+v= 
=(sup {«!, t>x}, ..., sup {u„, »„}) also belongs to U. Two subspaces are isomorphic 
iff they are isomorphic as semigroups under + . 

D e f i n i t i o n 3. A lattice is of type-(n, m) iff it has exactly m nonzero join ir-
reducible elements and exactly n meet irreducible elements • other than its highest 
element. 

Remark . Every Boolean subspace of V„ has a partial order given by 
iff v + w=w. This makes the subspace into a lattice, with the join operation being 
Boolean sum, and the meet operation on v, w being the sum of all Boolean vectors 
less than or equal to both v, w. 

D e f i n i t i o n 4. By a Boolean matrix of order n is meant an nXn matrix over 
the two-element Boolean algebra {0, 1}. Let B„ denote the set of all such matrices. 
We consider the sum and product of members of B„ to be the sum and product 
over the two-element Boolean algebra {0, 1}. Then B„ is a monoid under multip-
lication. 

D e f i n i t i o n 5. Two Boolean matrices A, B are Si-equivalent iff there exist 
Boolean matrices X, Y such that AX=B, BY=A. They are JSf-equivalent iff there 
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exist matrices U, V such that TJA=B, VB=A. They are 3>-equivalent iff there 
exists a matrix C such that AStLC and C&B. They are .^-equivalent iff they are 
both ^-equivalent and if-equivalent. 

Remark . JSP, 3V are equivalence relations, by a quick computation. As 
a relation, 3) is the composition ^ojSf. It can be shown that (%o£?=£eo(%, and 
this implies 2> is also an equivalence relation. 

D e f i n i t i o n 6. An ideal of B„ is a subset I of B„ such that for all *€ / , a, b£B„, 
the element axb belongs to I. Principal ideals, principal left and right ideals are 
defined in a similar way. 

Quest ions . 
1. What is the asymptotic number of isomorphism classes of additive spaces 

of subsets of (1 ,2 , . . . , n} which have m generators other than the empty set? 
2. What is the asymptotic number of isomorphism classes of Boolean subspaces 

of V„ with m generators other than (0,0, . . . ,0)? 
3. What is the asymptotic number of isomorphism classes of lattices of type-

(n,m)1 
4. What is the asymptotic number of ^-classes of nXm Boolean matrices? 
5. What is the asymptotic number of principal ideals in Bn1 
The answers to 1—4 coincide, and for m=n the fifth also has the same answer. 

We prove that if n, m— «> in such a way that — approaches a nonzero constant, 
m 

2am 

the answer to 1—4 is . 
n\m\ 

We also obtain information about related questions: the number of subspaces 
of V„ with m generators (not just isomorphism classes), the number of 52, JSP, JP-
classes. Also on the number of matrices X such that for some non-identity permuta-
tion matrices P, Q, PXQ=X (for instance if X were a projective plane, such P, Q 
would give a collineation, the existence of P, Q is an unsolved problem [2], [5]). 

2. Facts about Boolean matrices; lemmas. Equivalence of questions 1 and 2 
is by an isomorphism of semigroups. Equivalence to question 3 follows by results 
about lattices involving duality, regarding lattices as idempotent abelian semi-
groups [1]. 

The row space of an mXn Boolean matrix is the subspace of V„ generated 
by its rows, with (0,0 0). Likewise there is a column space. It is known that 
the row space (as a subset of V„) determines the if-class of a matrix and the column 
space determines the ^-class [3]. Every subspace of V„ has a unique smallest generat-
ing set excluding (0,0, . . . , 0). Such a set is called a basis. A basis for the row space 
of a matrix is called a row basis, and a basis for the column space of a matrix is 
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called a column basis. It is known [3] that the isomorphism class of the row space 
determines the jSf-class showing that questions 2,4 have the same answer. It follows 
by semigroup theoty [4] that for n=m questions 4, 5 have the same answer. 

We will begin to answer question 4. The row rank of a Boolean matrix is the 
number of elements in a row basis; likewise for the column rank. For any two 
Boolean matrices A, B we say A^B if au = 1 implies bu=1 for a l i i , / 

Lemma 1. Let n,m tend to infinity in such a way that 

log" , 0 logm > Q 
m ' n 

Then the proportion of mXn Boolean matrices which have both row rank m and 
column rank n tends to 1. 

Proof . For a Boolean matrix A, let At«be its / th row, and AtJ be its Jtb column. 
Let Nu denote the number of mXn Boolean matrices with ApSAj* and Mi} 

the number with AtlsAtJ. Let N denote 2mn, the number of all mXn Boolean 
matrices. Then for fixed i ^ j we have 

M ' -
Thus the number of matrices having no row greater than or equal to any other, 
and no column greater than or equal to any other is at least 

(l _ ( „ . _ „ ) ( ! ) — (m2—m)^-j j 2mn. 

All these matrices have row rank m and column rank n. Under the given hypotheses 
this number divided by 2m" will tend to 1. The proof of Lemma 1 is completed. 

If two matrices of row rank m are if-equivalent their rows must be permuta-
tions of each other by the uniqueness of a row basis. So A=PB. Likewise for 
^-equivalence if the column rank is n. So for X of the type of this lemma, the only 
matrices ^-equivalent to it will be of the form PXQ. Thus such ^-classes have 
at most n\m\ members, and asymptotically the number of ^-classes is at least 
2<wt 

. The proof of the reverse inequality will be based on a study of the equation 
n\m\ 
PXQ=X. 

Lemma 2. If P or Q have no more than k cycles the number of solutions Xof 
PXQ=X is no more than 2kn or 2km, respectively. 

Proof . Let P have no more than k cycles. Choose one row from each cycle, 
and specify it. This can be done in 2kn ways, and these rows determine the rest; 
Similarly for Q. 

6« 
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Lemma 3. If a permutation P has at least k cycles, it will fix at least m—2(m—k) 
numbers from {1,2, ...,m). 

Proof . Immediate. 

Lemma 4 .Let a permutation group G act on a set T of letters. If for any element 
gof G, g fixes at.least \T\—a letters with a>0, then there is a set of \T\— 2a+\ 
letters fixed by every element of G. 

Proof . The action of G on T gives a linear representation R of G by permuta-
tion matrices. Let olt ..., of, of+1, ..., of+t be the G-orbits contained in T, where 
ot,..., of contain only one element each, and the rest contain more than one elem-
ent. Corresponding to this orbit decomposition we have a direct sum decomposi-
tion R=R1®...@Rf®Rf+1®...®R/+t. A theorem in group representation theory 
(see [6], p. 280) states that 

ZTr(g) = (f+t)\G\. 
BIG 

But Tr(g) S \T\-a for any g£G, and assuming a>0 , Tr(I) > \T\-a. Therefore 
\T\—a -< f+t. Yet \T\sf+2t. Therefore 

which yields the desired inequality on / . 

3. Main results 
n 

Theorem 5. Let n, m tend to infinity such that — tends to a nonzero constant. 
m 

2m" 
Then the number of Si-classes of mXn matrices is asymptotically equal to . 

mini 

Proof . By Lemma 1 and the considerations after its proof we need only prove 

this formula gives an asymptotic upper bound. Let fc=sup ilim —, lim—}. 
I m n) 

Case 1. ^-classes containing some X such that PXQ=X for some P, Q such 
that P has no more than m — (4fc+l)logm cycles. (All logarithms are base 2.) 
For fixed P, Q with P satisfying the hypothesis of this case, there are at most 

- CI 
2(m - +1) log m) n 

matrices A" such that PXQ=X, by Lemma 2. The number of possibilities for P, Q 
cannot exceed nlml. Thus the number of possibilities for X in the present case 
is at most 

2(m-(4* + l ) I o g m ) n n | m | 
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Therefore also the number of ©-classes containing at least one such X is at most 
2(m - (4k +1) log m) n „ | m | 

2«m 
The ratio of this number to will approach zero. 

n\m\ 

Case 2. ©-classes containing some matrix X such that PXQ=X for some 
P,Q such that Q has no more than n — (4&+ l)logn cycles. This case is treated 
like Case 1. 

Case 3. ©-classes containing a matrix X such that PXQ=X for some P, Q 
not both the identity, but such that PXQ=X does not hold for any P, Q with 
P having no more than m—(4fc+l) log m cycles or Q having no more than 
n—(4&+1) log n cycles. For such an X, choose a pair P, Q satisfying PXQ=X 
such that sup {m—number of cycles in P, «—number of cycles in Q} is a maximum. 
Let s denote this maximum. We have 0<s<(4fc+1) sup{log m, log n). For a given 
X the set {P:PXQ=X for some Q} forms a group [2]. Each element of this group 
will fix at least m—2s letters by Lemma 3. Therefore by Lemma 1 the whole group 
will fix at least m—4s letters. There is a similar group of Q's which fixes at least 
« - 4 s letters. 

Fix s. We first choose a set of 4s letters which is to contain the set of all non-

fixed letters under {P:PXQ=X for some Q). There are such choices. There 

are choices for a similar set for {Q: PXQ=X for some P). Provided these 

sets are chosen, we can choose P in (4s)! ways to act on its set and Q in (4s)! ways 
to act on its set. Once P, Q are chosen we can choose X in at most 

2 M m — smin {n, m} 

ways by Lemma 2. Thus for a given s, there are at most 

(4s) (4s) (4s)!(4s)!2"m-smin{n'm> 

choices of X having the required value of s. However these do not all lie in 
different ^-classes. For any permutation matrices R, S, RXS will lie in the same 
©-class and have the same value of s. 

How many different matrices RXS are there for a given XI We have a group 
action of the product of two symmetric groups on such matrices, sending Y to 
RYS~1. The isotropy group of X has order at most ((4s)!)2 by the remarks above 
about choosing P, Q such that PXQ=X. Thus a ©-class containing one X also 
contains at least 

til m! 

(4s)! (4s)! 
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other matrices with the same s. Therefore the number of ©-classes containing matrices 
of this type for a given s is at most 

J J J 4 s J J 4 s 2 n m — s m i n {n , m ) ^ ( 4 5 ) 

n! m! 

Allowing any value of s we have at most 

mis n*3 2nm ~ ((4i) !)2 (4k-f 1) log mx max —:— lsssiit+Dn! nlml 
2 tun 

where «^maxf / i , m) and n2=min{n, m). The ratio of this quantity to 
n l m l 

tends to zero. 

Case 4. All PXQ are distinct so the ©-classes have at least n\m\ elements. 
2nm 

There are at most ©-classes of this type. This proves the theorem. 
n\m\ 

Coro l l a ry 6. Let N be the number of matrices X such that PXQ—X for some 

P, Q not both the identity. Then if n,m—<*> in such a way that — approaches a 
N , m 

nonzero constant, — approaches 0. 

Theorem 7. Under the hypotheses of Lemma 1, the number of di and JSf-classes 
2nm 2nm 

of mXn matrices are asymptotically equal to —, — respectively. The number of 
n\ ml 

-classes is asymptotically equal to 2nm. 

Proof . For an upper bound, for instance for ^-classes, we have 

(2;)+(n
2:,)+-+(T) 

by, for column rank k, choosing a set of k column vectors to be a column basis. 
This is less than or equal to 

which gives the theorem. Similar methods apply in the other cases. 
The authors would like to thank András Ádám for a very constructive criticism 

of the original draft of this paper. 
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