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Counting additive spaces of sets

- KI HANG KIM and FRED W. ROUSH

1. Introduction. In this paper we consider an asymptotic counting problem
which occurs in a number of forms.

Definition 1. A family @ of subsets of {1,2,...,n} is an édditive space if
9cQ and AB€Q whenever 4, B€Q. Two such families are isomorphic iff they are
isomorphic as semigroups under union,

Definition 2. Let ¥, be the set of all n-tuples from the two-element Boolean
algebra {0, 1}. A subset U of V, is called a Boolean subspace iff the vector (0, 0, ..., 0)
belongs to the subspace, and whenever wu,v€U, the vector wu+ov=
=(sup {u, v1}, ..., sup {u,, v,)) also belongs to U. Two subspaces are isomorphic
iff they are isomorphic as semigroups under +.

Definition 3. A lattice is of type-(n, m) iff it has exactly m nonzero join ir-
reducible elements and exactly n meet irreducible elements-other than its highest
element.

Remark. Every Boolean subspace of ¥, has a partial order given by v=w
iff v+w=w. This makes the subspace into a lattice, with the join operation being
Boolean sum, and the meet operation on v, w being the sum of all Boolean vectors
less than or equal to both v, w.

Definition 4. By a Boolean matrix of order n is meant an nXn matrix over
the two-element Boolean algebra {0, 1}. Let B, denote the set of all such matrices.
We consider the sum and product of members of B, to be the sum and product
over the two-element Boolean algebra {0, 1}. Then B, is a monoid under multip-
lication.

Definition 5. Two Boolean matrices 4, B are #-equivalent iff there exist
Boolean matrices X, Y such that 4X=B, BY=A. They are Z-equivalent iff there
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exist matrices U, V such that U4A=B, VB=A. They are D-equivalent iff there
exists a matrix C such that AZC and C¥B. They are s-equivalent iff they are
both #%-equivalent and Z-equivalent.

Remark. &, %, o are equivalence relations, by a quick computation. As
a relation, 2 is the composition Zo0 . It can be shown that 20 ¥=LoR, and
this implies 2 is also an equivalence relation.

Definition 6. An ideal of B, is a subset I of B, such that for all x€/7, a, b€B,,
the element axb belongs to I. Principal ideals, pnncxpal left and right ideals are
defined in a similar way.

Questions.

1. What is the asymptotic number of isomorphism classes of additive spaces
of subsets of {1,2, ..., n} which have m generators other than the empty set?

2. What is the asymptotlc number of isomorphism classes of Boolean subspaces
of V, with m generators other than (0,0, ..., 0)?

3. What is the asymptotic number of 1somorph1sm classes of lattlces of type-
(n, m)?

4. What is the asymptotic number of Z-classes of nXm Boolean matrices?

5. What is the asymptotic number of principal ideals in B,?

The answers to 1—4 coincide, and for m=n the fifth also has the same answer.

. n
We prove that if n, m—~e in such a way that — approaches a nonzero constant,
m .

the answer to 1-—4 is .
» n!m!

We also obtain information about related questions: the number of subspaces
of V, with m generators (not just isomorphism classes), the number of £, %, -
classes. Also on the number of matrices X such that for some non-identity permuta-
tion matrices P, 0, PXQ=X (for instance if X were a projective plane, such P, Q
would give a collineation, the existence of P, Q is an unsolved problem [2], [5]).

2. Facts about Boolean matrices; lemmas. Equivalence of questions 1 and 2
is by an isomorphism of semigroups. Equivalence to question 3 follows by results
about lattices involving duality, regarding lattices as idempotent abelian semi-
groups [1].

The row space of an m><n Boolean matrix is the subspace of ¥, generated
by its rows, with (0,0, ..., 0). Likewise there is a column space. It is known that
the row space (as a subset of ¥,) determines the Z-class of a matrix and the column
space determines the #-class [3]. Every subspace of ¥, has a unique smallest generat-
ing set excluding (0, 0, ..., 0). Such a set is called a basis. A basis for the row space
of a matrix is called a row basis, and a basis for the column space of a matrix is
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called a column basis. Tt is known [3] that the isomorphism class of the row space
determines the #-class showing that questions 2, 4 have the same answer. It follows
by semigroup theory [4] that for n=m questions 4, 5 have the same answer.

We will begin to answer question 4. The row rank of a Boolean matrix is the
number of elements in a row basis; likewise for the column rank. For any two
Boolean matrices 4, B we say A=B if a;=1 implies b;;=1 for all i, j.

Lemma 1. Let n,m tend to infinity in such a way that

logn 0 logm
m ’ n

- 0.
Then the proportion of mXn Boolean matrices which have both row rank m and
column rank n tends to 1.

Proof. For a Boolean matrix 4, let A be its i*® row, and A.; be its j** column.

Let N;; denote the number of mXn Boolean matrices with Aux=A, and M;;

the number with A=A4.;. Let N denote 2™, the number of all mXn Boolean
matrices. Then for fixed i2j we have

Yo (3

N 4 N 4) -

Thus the number of matrices having no row greater than or equal to any other
and no column greater than or equal to any other is at least -

(IR

All these matrices have row rank m and column rank n. Under the given hypotheses
this number divided by 2™ will tend to 1. The proof of Lemma 1 is completed.

If two matrices of row rank m are £-equivalent their rows must be permuta-
tions of each other by the uniqueness of a row basis. So A=PB. Likewise for
Z#-equivalence if the column rank is ». So for X of the type of this lemma, the only
matrices Z-equivalent to it will be of the form PXQ. Thus such @-classes have
at most n!m! members, and asymptotically the number of P-classes is at least
2nm
n!'m!
PXQO=X.

. The proof of the reverse inequality will be based on a study of the equation

Lemma 2. If P or Q have no more than k cycles the number of solutions X of
PXQ=X is no more than 2** or 2", respectively.

Proof. Let P have no more than k cycles. Choose one row from each cycle,
and specify it. This can be done in 2** ways and these rows determine the rest.
Similarly for Q.

6
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Lemma 3. If a permutation P has at least k cycles, it will fix at least m— 2(m k)
numbers from {1,2,...,m).

Proof. Immediate. .

Lemma 4.-Let a permutation group G act on a set T of letters. If for any element
gof G, g fixes at least |T|—a letters with a=0, then there is a set of |T|—2a+1
letters fixed by every element of G.

Proof. The action of G on T gives a linear representation R of G by permuta-
tion matrices. Let oy, ..., 07, 0744, ..., 0p4, be the G-orbits contained in T, where
01, .., 0y contain only one element each, and the rest contain more than one elem-
ent. Corresponding to this orbit decomposition we have a direct sum decomposi-
tion R=R,®... ®RDR;11®...®R,:,. A theorem in group representation theory
(see [6], p. 280) states that

g.GZ; Tr(g) = (f+1)|G].

But 7r(g) = |T|—a for any g€ G, and assuming a=>0, Tr(I) > [T|—a. Therefore
|T|—a <f+t Yet |T|=f+2t. Therefore

which yields the desired inequality on f;
3. Main results

n
TheoremS5. Let n, m tend to infinity such that — tends to a nonzero constant.
, m

mn

Then the number of D-classes of mXn matrices is asymptotically equal to s
_ m!n!

Proof. By Lemma 1 and the considerations after its proof we need only prove

this formula gives an asymptotic upper bound. Let k=sup {lim l, lim ﬁ}.
m n

Case 1. 9D-classes containing some X such that PXQ=X for some P, Q such
that P has no more than m—(4k+1)logm cycles. (All logarithms are base 2.)
For fixed P, Q with P satisfying the hypothesis of this case, there are at most

2m —('4k+_1) logm)n

matrices X such that PXQ=X, by Lemma 2. The number of possibilities for P, Q
cannot exceed n!m!. Thus the number of possibilities for X in the present case

is at most
2(m—(4k+1) logm)nn!m! .
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Therefore also the number of 2-classes containing at. least one such X is at most

2m-(k+logmny § )
nm

2
The ratio of this number to - will approach zero.
nim!

Case 2. 9-classes containing some matrix X such that PXQ0=X for some"
P, Q such that Q has no more than n— (4k+1)logn cycles. This case is treated
like Case 1.

Case 3. D-classes containing a matrix X such that PXQ=X for some P, O
not both the identity, but such that PXQ=X does not hold for any P, Q with
P having no more than m—(4k+1)logm cycles or Q having no more than
- n—(@k+1)logn cycles. For such an X, choose a pair P, Q satisfying PXQ=X
such that sup{m—number of cycles in P, n—number of cycles in Q} is a maximum.
Let s denote this maximum. We have O0<s<(4k+ 1) sup{log m, log n}. For a given
X the set {P:PXQ=X for some 0} forms a group [2]. Each element of this group
will fix at least m—2s letters by Lemma 3. Therefore by Lemma 1 the whole group

will fix at least m—4s letters. There is a similar group of Q’s which fixes at least
n—4s letters.

Fix s. We first choose a set of 4s letters which is to contain the set of all non-

fixed letters under {P:PXQ=X for some Q}. There are ( 4 ) such choices. There

are ( 4 ) choxces for a similar set for {Q PXQ=X for some P}. Provided these

sets are chosen, we can choose P in (4s)! ways to act on its set and Q in (4s)! ways
to act on its set. Once P, Q are chosen we can choose X in at most

onm —-smin {n,m}

ways by Lemma 2. Thus for a given s, there are at most

(7] (7] @9 @9 2m=eminiem

choices of X having the required value of s. However these X ’s do not all lie in
different @-classes. For any permutation matrices R, S, RXS will lie in the same
9D-class and have the same value of s.

How many different matrices RX'S are there for a glven X? We have a group
action of the product of two symmetric groups on such matrices, sending Y to
RYS-1, The isotropy group of X has order at most ((4s)!)? by the remarks above
about choosing P, Q such that PXQ=X. Thus a 2-class contammg one X also
contains at least

n!m!

(4s)!(4s)!
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other matrices with the same s. Therefore the number of 2D-classes containing matrices
of this type for a given s is at most

m3s ps ynm—smin {n, m} ((48) |)2

"n'm!

Allowing any value of s we have at most

m®spts2mm=sms((45)1)2(4k + 1) log n,

max
1=ss(sk+1)m, n!m!
nm
where ny=max{n, m} and ny,=min{n, m}. The ratio of this quantity to —
: nim!

tends to zero.

Case 4. All PXQ are distinct so the 2-classes have at least nim! elements.

' 9-classes of this type. This proves the theorem.
m!

There are at most
n

Corollary 6. Let N be the number of matrices X such that PXQ=X for some
n

P, Q not both the identity. Then if n,m—o in such a way that — approaches. a
m

N.
nonzero constant, > approaches 0.

Theorem 7. Under the hypotheses of Lemma 1, the number of & and Z-classes
2nm 2nm
of mXn matrices are asymptotically equal to — respectively. The number of
n! m! _

H-classes is asymptotically equal to 2™.

Proof. For an upper bound, for instance for #-classes, we have
2m 2m 2m
(n)+(n_1]+ +( 1]
by, for column rank k, choosing a set of £ column vectors to be a column basis.

) i=1 ( - )

which gives the theorem. Similar methods apply in the other cases.
The authors would like to thank Andras Ad4m for a very constructive criticism
of the original draft of this paper.
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