Quasi-varieties of binary relations

KI HANG KIM and FRED W. ROUSH

A quasi-variety of groups is the class of all groups satisfying a certain set of laws of the form $\lambda u_{i}=v_{i} \Rightarrow u=v$ for all values of the variables in the groups, where u, v, u_{i}, v_{i} are terms. Likewise quasi-varieties of semigroups, groupoids, etc. have been studied. Here we define an analogous concept for binary relations.

Definition. A quasi-variety of binary relations is the class of all binary relations R for which a class of laws of the following forms holds:
I.

$$
\left(\forall(i, j) \in K, x_{i} \mathrm{R} x_{j}\right) \Rightarrow x_{a} \mathrm{R} x_{b},
$$

II.

$$
\left(\mathrm{A}(i, j) \in K, x_{i} \mathrm{R} x_{j}\right) \Rightarrow x_{a} \overline{\mathrm{R}} x_{b}
$$

III.

$$
\left(\forall(i, j) \in K, x_{i} \mathrm{R} x_{j}\right) \Rightarrow x_{a}=x_{b} .
$$

Such a law is specified by giving K, a, b. Here K can be any subset of the Cartesian product of any set with itself. The notation $x_{a} \overline{\mathrm{R}} x_{b}$ means " $x_{a} \mathrm{R} x_{b}$ is false".

Definition. Let S_{a} be a family of sets and let R_{a} be a binary relation defined on S_{a} for each a. Then the direct product of the R_{a} is the relation R on ΠS_{a} such that $x \mathrm{R} y$ if and only if $x_{a} \mathrm{R}_{a} y_{a}$ for each a, where x_{a} and y_{a} are the components in factor a of x and y.

Definition. Two binary relations $\mathrm{R}_{1}, \mathrm{R}_{2}$ on sets S_{1}, S_{2} are isomorphic if and only if there exists an isomorphism f from S_{1} to S_{2} such that $x \mathrm{R}_{1} y$ iff $f(x) \mathrm{R}_{2} f(y)$.

Theorem 1. A non-empty class of binary relations is a quasi-variety if and only if it is closed under direct products, restrictions, and isomorphisms.

Proof. It follows from the form of the laws that quasi-varieties are in fact closed under direct products, restrictions, and isomorphisms.

Received July 10, 1977.

Let V be a non-empty class of binary relations closed under direct products, restrictions, and isomorphisms. Let T be a binary relation which satisfies every law of the forms I, II, III which holds for every member of V. Let S be the set on which T is defined. We will show there exists a member Q of V and a mapping $s \rightarrow x_{g}$ of S into the set on which Q is defined, such that $i \mathrm{~T} j$ implies $x_{i} \mathrm{Q} x_{j}$ for all $i, j \in S$. Suppose not. Then $a \mathrm{~T} b$ for some a, b. Let $K=\{(i, j): i \mathrm{~T} j, i, j \in S$ and $(i, j) \neq(a, b)\}$.

$$
\left(\forall(i, j) \in K, x_{i} \mathrm{R} x_{j}\right) \Rightarrow x_{a} \overline{\mathrm{R}} x_{b}
$$

is a law in V but is not true for T. This is contrary to assumption.
Let A be the set of all relations Q defined on subsets of S, and having the above property; let, furthermore, elements x_{s} be of the set on which Q is defined, such that $i \mathrm{~T} j$ implies $x_{i} \mathrm{Q} x_{j}$ for all $i, j \in S$. Given a Q defined on some set as above, by restriction and isomorphism we obtain a Q^{\prime} defined on a subset of S. Thus A is non-empty. Let π be the direct product of all the relations of A. Let a_{s} for $s \in S$ be the element of π which is x_{s} in each factor.

Suppose $a_{c}=a_{d}$ for $c \neq d$. Then put $K=\{(i, j): i \mathrm{~T} j\}$.

$$
\left(\forall(i, j) \in K, x_{i} \mathrm{R} x_{j}\right) \Rightarrow x_{c}=x_{d}
$$

is a law which holds for all relations of V defined on subsets of S. This means that it is a law of V. But it does not hold for T. This is contrary to assumption. Therefore the a_{g} are distinct.

Suppose $c \overline{\mathrm{~T}} d$ but $a_{c} \pi a_{d}$. Then with the same K

$$
\left(\forall(i, j) \in K, x_{i} \mathrm{R} x_{j}\right) \Rightarrow x_{c} \mathrm{R} x_{d}
$$

is a law in V but not for T . This is contrary to assumption. Therefore $c \overline{\mathrm{~T}} d$ implies $a_{c} \bar{\pi} a_{d}$. It follows by construction that $c \mathrm{~T} d$ implies $a_{c} \pi a_{d}$. Therefore the restriction of π to the a_{s} is isomorphic to T. Therefore T is isomorphic to a member of V. Therefore $\mathrm{T} \in V$. This shows V is a quasi-variety and proves the theorem.

Remark. Theorem 1 can be proved for any relational structure.
In the following we represent a binary relation R by the Boolean matrix $A=\left(a_{i j}\right)$ such that $a_{i j}=1$ if and only if $(i, j) \in \mathrm{R}$; otherwise $a_{i j}=0$.

Theorem 2. Every 3×3 Boolean matrix belongs to a proper sub-quasi-variety of the quasi-variety of all binary relations.

Proof. Suppose A is a 3×3 Boolean matrix which does not belong to any proper sub-quasi-variety of the quasi-variety of all binary relations.

The set of binary relations R such that $x \mathrm{R} x$ holds for at most one x is a quasivariety. So A has at least two 1 's on its diagonal. Since reflexive matrices are a quasivariety, A has exactly two ones on its diagonal.

Then if A does not belong to the quasi-variety given by the law ($i \mathrm{R} i$ and $j \mathrm{R} j$ and $i \mathrm{R} j$ and $j \mathrm{R} i$) $\Rightarrow \quad i=j$,
it will belong to the quasi-variety given by

$$
(i \mathrm{R} i \text { and } j \mathrm{R} j \text { and } i \mathrm{R} j) \Rightarrow j \mathrm{R} i
$$

Theorem 3. The binary relation corresponding to a 4×4 Boolean matrix of the form

$$
\left[\begin{array}{cccc}
0 & 1 & * & * \\
1 & 1 & 1 & 0 \\
* & 1 & 1 & 1 \\
* & 1 & 1 & 1
\end{array}\right]
$$

does not belong to any proper sub-quasi-variety of the quasi-variety of all binary relations.

Proof. It suffices to show no non-trivial law of the form I, II or III can hold for this relation. Since 2R2, no law of type II can hold. Since $2 R 2,3 R 3,2 R 3,3 R 2$, no law of type III can hold. Suppose a law of type I holds, $a \neq b,(a, b) \notin K$. Then set $x_{a}=2, x_{b}=4$, all other $x_{i}=3$. Then for all $(i, j) \in K, x_{i} \mathrm{R} x_{j}$ is true but $x_{a} \mathrm{R} x_{b}$ is false. So the law does not hold. If a law of type I with $a=b$ is given, $(a, b) \notin K$, let $x_{a}=1$, all other $x_{i}=2$. The law will not hold.

Proposition 4. Any quasi-variety containing all idempotent binary relations also contains all transitive binary relations.

Proof. Any transitive relation is a restriction of an idempotent relation, by the following construction. Let T be transitive. For each x, y such that $x \mathrm{~T} y$ add an element $z(x, y)$ to the set on which T is a relation. Define T_{1} on the new set by $x \mathrm{~T}_{1} y$ if and only if $x \mathrm{~T} y$ or $x=y=z(u, v)$ for some u, v or $x=z(u, v), y=v$ or $x=u, y=z(u, v)$. Let T_{2} be the transitive relation generated by T_{1}, i.e. $x \mathrm{~T}_{2} y$ if and only if $x \mathrm{~T}_{1} x_{1}, x_{1} \mathrm{~T}_{1} x_{2}, \ldots, x_{k} \mathrm{~T}_{1} y$ for some sequence x_{1}, \ldots, x_{k}. Then T_{2} is idempotent and T is a restriction of T_{2}.

Proposition 5. Any quasi-variety containing only idempotent binary relations is contained in one of the following two quasi-varieties: (i) all transitive relations such that $x \mathrm{R} y$ implies $x \mathrm{R} x$, and (ii) all transitive relations such that $x \mathrm{R} y$ implies $y \mathrm{R} y$.

Proof. Suppose a quasi-variety V contains relations $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$ which are transitive but such that (i) fails for R_{i} and (ii) fails for R_{2}. Let $a \mathrm{R}_{1} b$ and $a \overline{\mathrm{R}}_{1} a$ and $c \mathrm{R}_{2} d$ and $d \overline{\mathrm{R}}_{2} d$. Then if we restrict $\mathbf{R}_{1} \times \mathrm{R}_{2}$ to $(a, c),(b, d)$ we have a relation whose matrix is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ or $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Neither is idempotent.

