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On the strong summability
of Fourier series and the classes H*

V. G. KROTOYV and L. LEINDLER

1. Let f be a 2rn-periodic integrable function and let {s,} be the sequence of the
partial sums of the Fourier series of this function.
- FrReuD [1] proved that if l<p<e and

) ._§ f=sdl?

<ool)

1 ‘ '
then f€Lip—. LeINDLER and NIKBIN [3] proved that under the condition (1)
p ‘ .
with p=1,
w(x,f)=0 [x log %) as x—0,

but no estimate better than this can be given. OSKOLKOV [7] and SzABADOS [9] (in-
dependently) proved that condition (1) with O<p<1 implies f€Lip 1. This is an
answer to a problem of LEINDLER [4] in connection with the above result of LEINDLER
and NIKISIN. ‘

In this paper we investigate the problem to find a necessary and sufficient
condition for a monotonic sequence {1,} such that the condition

<< oo, 0<p<oo

;:) }-x |f___s”|p
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Y ||Ifll=sup |f(¥)], O=x=2=.
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should imply f€ H®, where @ is a fixed modulus of continuity and H® denotes
the set of functions f having modulus of continuity w(f, §) with w(f, §)=0(w(d)).
For a monotonic sequence {1,} and O<p<<- we denote

)

Theorem. Let {A,} be a positive monotonic (nondecreasing or nonincreasing)
sequence, furthermore let ® be a modulus of continuity and 0<p<ece. Then
i) condition

st ={r:

We prove the following

Z{'}lxlf—sxl"

@ Seaye=o[nn(1))
implies )
) Sp{A} < H?;

it) if there exists a number 0 such that 0=0<1 and
@ %02t
then, conversely, (3) implies (2).

Obviously, this Theorem includes all the results mentioned above and, hereby,
we give an answer to a problem raised in [6]. Furthermore, our Theorem includes
some results of LEINDLER [2].

2. To prove our Theorem we require the following lemmas.

Lemma 1. If {a,} is a nonincreasing positive sequence and if q=0, then there
exists a constant C,>0 not depending on n such that

n n q .
> ra, = C, 3 2, (—“;—*1) n=12,..).

Proof. Let {m} and {M;} (i=1,2,..) be two sequences of natural numbers
such that

(5) Ay > %am for Mi=m<m;y,

and

6) a,,,+1§%a,,, for mi=m<M,.
By (6) we obtain

pir=4""a, @=0,.. ,M-m-1;iz2),
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therefore, if i=2, then

M—1 My—m—1
2 2"a,= Z' Mg, L, =2m :a,,,,2'2"S

a. q
= ragmig,, ()’
m;—l

Furthermore, (5) implies

mpyq=1 myyy—1 it 4
3 g, =an” S g, L2
m=M,

m=M, O

and the last two inequalities give for i=2

. : . My a1 myq—1 a 1
(@] 2 2mg, =41t 3 omg [—"”—1) .
m=my m=m;—1 an
If mi§n<mi+1 and i%z, then
n n . q
Q) 3 g, =4%1 3 omg, (i'ﬂil} .
m=m, m=m;—1 Gy

The proof runs exactly as before.
Finally, we set
S Y
o=, 3ra| Zra (%)

then
n n—1 a q
>2™a,=C J 2™a, (—"‘—”]
m=0 m=0 am
for n=1,...,m; and (6) and (7) imply

mg—1 x—1 m“,l—l

Am+1 A1)
c 2 2”'a,,,(— +8-4¢ Z’ 2"a, —"'—]
m=0 an ap,

m=my—1

[IA

for m,=n<m,,, (x=2). Therefore, our inequality is true with

C, = max(C, 8-49).
and Lemma 1 is proved.

Lemma 2. Let {A,} and p be as in the Theorem. Then f¢ Sp{As} implies -
® Z 2" Egm(f) = Cpa(f) %2'"(2"'/12"')"1“’ (n=1,2,.)),

where C, ;(f) is a positive constant and E,(f) is the best approximation of f by
trigonometric polynomials of degree at most x



96 : V. G. Krotov and L. Leindler

Proof. First we assume p=1. Then by Hélder’s inequality we have

)=ty Bat| = (E0) N Bu-sr) | =
= S |v}w =CHERP @=1,2,.),

where A¥=min (4,, 4,,). This implies (8) for p=1.
In the case O<p-<1 we require the following result of [5]:
1/ps

1 2 1/p
E,(f) {7 2 _S"Ip}
where C, depends only on p. Using this inequality, by Lemma 1 we obtain (8).

n=1,2,..),

Lemma 3. If a,=0 and the function

[~ Z°'° a, sin xx
belongs to the class H®, then =
xgnl' xa, =0 (nw (%J]
Proof. Since f(0)=0, fcH® implies
max |f(x)] = Co(»), O<x=<m.
Therefore,

oo& R 2-x_.x-_ x L .
251 - sin®— _Jf(t)dtéCxw(x).

A .
If we take x=—, then
n

2
~ 5 ya, = a_(ﬁ) 50 i %% _ € (_IJ
n xg;xa,, 2 ézxsnzné 1)

x=1 ¥ \N *=1 n ‘n
for n=1,2,... and Lemma 3 is proved.

Lemma 4. If A} or A, and if there exists a number 0, 0=0<1, such that
%21, then the function

® S 3o teh) e sine
x=1
belongs to the class 'Sp(/l,‘}, O<p<eo,

Proof. To prove that f¢ S, {4,} we fix O0<x<n and choose N such that

_.l_.<xs.1_ -
N+1 N’
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We consider the series

4

©o

. N+1
S-S =Cp Zh| 3 L) Hrsinns| +
=1 n=x+1
N oo oo 1 ) ) . P
+ 34 2 = (nl,,) 1P sin nx + Z’ | 2 = @A) Yrsinnx| =
x=1 |[n=N+2 I x=N+1 [n=x+1 1 .
= cp(21+22+28)v'
: 0-1
First we assume that A,}. Then x°1,} with some 6=>1—p. Hence, ——=>—1,
: ¥4
and we have ,
N N p
2 = xP Z ,{ 2 (n), ) 1/1’] = xP 2’ ”—-0 [Z’ n(o—l)/l’] =
n=x+1 x=1 n=1
: = O(x? N1-ONO-1+7) = O(l).
Furthermore,
N oo 1 p
3= 34 3 Leww =
x=1 n= +2 n

) P N
= N-u,;l[ b n—r—u—f»/p) > ), = O(N-9- N- N-0-9) = 0(1),

n=N+2 x=1
In order to estimate 33 we make use of the inequality
) 1 ' .
2> I(n).,,)‘lm sin nx

n=x+1

c
= — (wh,) VP
= (42,)

for O0<x<n. Hence,
S,=Cx? 3 x"17P=0(x~"N-?) = O(l).
x=N+1

The proof in the case A,t is almost the same as for 1,4, we only have to replace
condition (4) by A,}. Therefore, we can omit the detalls
The proof is completed.

3. Proof of theTheorem. i) If f€S,{A,} then using (2), (8) and t’he follow-
ing inequality of STECKIN [8]:

o " f)sc2 21, 2"Epm(f) (n=1,2,..)

we obtain w(2-", f)=0(w(2"") and fEeH®.

i) If condition (2) is not fulfilled, then, by Lemma 3, the function given in
(9) does not belong to H®, but, by Lemma 4, it belongs to the class S, {4,}.

Thus the Theorem is proved.
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