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Entropy of states of a gage space

" ARTHUR LIEBERMAN

Let (H, A, m) be a regular gage space. Let g, 6, and y=1g+(1—1)a, 0<i<l,
be regular states. The density operator D, of a regular state is a non-negative (possibly
unbounded) self-adjoint measurable operator. Let F be a continuous convex func-
tion on [0, =) and define the entropy of ¢ by e(o)=m(F(D,)). Conditions are
obtained, in terms of e(g) and e(o), for e(}) to be —co, finite, o, or undefined.
If both ¢ and ¢ have finite entropy, then ¥ has finite entropy and e(y)=le(o)+
+(1—2)e(o); if A=B(H), F is strictly convex, and oo, then strict inequality
is obtained. These results are restated as inequalities concerning the trace of a con-
vex function of an operator.

1. Introduction

~ We work in the context of a regular gage space (H, 4, m); H is a Hilbert space,
A is a von Neumann algebra on H, and m is a faithful semi-finite normal trace
on A. (See [4] for definitions and notation.) A regular state of A4 is a positive linear
functional ¢ on 4 with o(/)=1, where I is the identity operator on H, which is
strongly continuous on the unit ball of 4. If ¢ is a regular state of A4, then by [4]
Theorem 14 there is a unique operator D,€L'(H, A, m) with D,=0, m(D,)=1,
and ¢(T)=m(D,T) for all T€A; D, is called the density operator of .

. The entropy of a regular state ¢ is usually defined by e(¢)=m(—D,In D,),
cf. [3] Chapter V and {5]. Both von Neumann and Segal suggested defining the entropy
by e(¢)=m(F(D,)), where F is an arbitrary continuous convex function on [0, =);
we ‘use this definition for the remainder of this paper. The results basically say
that the mixing of states cannot reduce entropy.

BENDAT and SHERMAN [l1] determined when a continuous convex function
defined on an interval is operator convex; i.c., when F(AK+(1—-2)L)=AF(K)+
+(1—2)F(L) holds for bounded self-adjoint operators K and L whose spectra
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are contained in the domain of F. Below we show that m(F(AK+(1—A)L))=
=m(F(K))+(1—2)m(F(L)) holds under suitable hypotheses for self-adjoint
measurable operators K and L; this is merely a restatement of the fact that mixing
of states cannot reduce entropy.

2. Statement of the results

Theorem 1. Let (H, A, m) be a gage space with regular states ¢ and . Let
O<A<l, and Yy=Ap+(1—A)o. Assume lim i_gf F(x)/F(kx)=0 for each k=1.
Then:

A e()is deﬁned iff both e(g) and e(o) are defined and {e(g), e(0)}# {— o=, =}.

B. e(Y) is finite iff both e(g) and e(c) are finite.

CC.e()=c iff {=}S{e(0), e(0)}SRU{=}, where R is the set of real numbers.

D.e()=—c iff {—<}S{e(0); e(@)}S{—=}UR

Corollary 1. Let (H, A, m) be a gage space with regular states ¢ and o. Let
O0<A<l, and Yy=lg+(1—A)a. Then

A. e() is defined if both e(g) and e(o) are defined and {— oo, =} {e(Q), e(0)}.

B. e(Y) is finite if both e(o) and e(c) are finite.

C. e)=o if {=}S{e(0). e(@))SRU{eo}, and lim F(x)=—eo

Theorem 2. Let (H, A, m) be a gage space with regular states ¢ and o. Let
O<i<l and Yy=2Ao+(1—-Ao. If e(g) and e(o) are finite, then e(y) is finite and
e)=le(@)+(1—Ae(s). If. A=B(H)=all bounded operators on H, o#a, and
the function F is strictly convex, then e(y)=2le(0)+(1—A)e(c). _

Corollary 2. Let (H, A, m) be a gage space. Let K, L¢ L*(H, A, m). Assume
that either K=0 and L=0 or m(I)<o and K and L are both bounded from
below (or from above). Let F be a continuous convex function defined on an interval
which includes the spectra of K and L and let 0<A<1. If F(K), F(LY¢L'(H, A, m),
then FAK+(Q—A)L)eL*(H,A,m), and m(FAK+(1—-2)L)=im(F(K))+
+(L—-m(F(L)). If A=B(H), K#L, and F s strictly convex, then
m(F(AK+(1 =) LY)=>m(F(K))+ (1 —)m(F(L)).

Remark. In Theorem 2 and Corollary 2, the restriction that 4=B(H) in
order to have strict inequality seems unnecessary; this was first suggested by SEGAL
[5]. We know of no example which requires this extra hypothesis, but are unable
to prove strict inequality without it. '
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3. Proof of the results

Corollaries 1 and 2 are restatements of Theorems 1 and 2 and require no proof.
We now introduce some notation. The self-adjoint operator T has spectral

oo

decomposition T= [ adPr(«); the function Pr is continuous from the left. If

S is a Borel measurable set of real numbers, then Pr(S) is the spectral projection
of T for the set S. The spectral distribution function Ay is defined by Ar(x)=
sup {A:m(Pr[4, ))=x}; the domain of 4y is (0, m(D)] if m(I)<e and (0, )
if m(I)=o. Ar(x) is a nonincreasing function of x and is continuous from the
left. m(P;(Ar(x), «))=x if P has no point mass at Ar(x) and T€L'(H, 4, m).
‘The properties of the spectral distribution function are developed in [2] To s1mp11fy
the notation, we will frequently write P, for Pp, and 4, for Ap

Lemma 1. Let (H, A, m) be a gage space, let K€ L'(H, A, m) wzth K>0 and
let F be a continuous function on (r, <), where Py{r}=0. Then f - F(A) dm (PK(A))=

©om(Pglr, )
= f Fi (AK(x))dx in the sense that if either integral is defined, then both
0 . X .

integrals are defined and are equal. In addition, if F is continuous on [0, o), then

m(l)

[ FOydm(Pe) = [ F(Ag(x)dx. -

[0, )

Proof. Let s>r with Px{s}=0. We will show below that [ F()dm{Px(2))=

m(Pglr, o)) : ‘

= [ F(Ag(x))dx. The first conclusion of the theorem will follow by taking
m(Pgls, =)

the limit as s—oc. The second conclusion then follows by taking the limit as r—0.

Let P={x,, X3, ..., X,41} be a partition of [r,s] with m(Px{x;})=0 for

1=i=n+1. Then f F(A)ydm(Px (D)) ~ ZH'F(AK(m(PK[x,, oo))))m(PK[x,-,xiﬂ]):

m(Pglr, e

;”' F(Ag(m(Pk[x;, «))))(m(Pglx;, °°))—’"(P x[Xi+15 )~ 1) F (Ax(x)) ax.

m(Pgl[s, )

Note that, although m(Pg[x;, «))—m(Pglx;+, c=)) may be large due to the spectrum
of K having point masses in the interval (x;, x;,,), F(A4g(«)) is nearly constant
on the interval m(Pg[x;,,, *))<a=m(Pg[x;, «)) since for « in this interval,
X = Ag (@) <xp43
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Proof of Theorem 1. There are essentially four different non-trivial possibi-
lities for F:

A. F(0)>0, lim F(x)=—
B. _ F(0)= 0, lim F(x) =<=.

C. F/(©)>0, lim F(x)=k, where0<k<eco.
D. F0)=0, lim F(x)=- |

Theorem 1 will be proved for case A since this is the most difficult case; the
proofs for the other cases are trivial modifications and parts of the results are
vacuous in the other cases. For the sake of simplicity, we assume F(0)=0; if
F(0)>0, little change is needed if m () is finite and the results become essentially
vacuous if m(I)=<. We further assume that F has a relative maximum at x=1,
F(1)=1, and that F(2)=0. We will prove the “if”” parts of B, C and D. The
remainder of the proof is essentially redundant.

Assume now that e(g) and e(o) are both finite. e(i) can be infinite in two ways:
¥ can be highly concentrated so that D, is unbounded and e(y)=—e<o, or ¢ can
be so spread out that D, has very large support and e(y)=-o.

Let a=0 and x€H, x7#0. If Pyfx, «)x=x, then A(D,x, x)+(l—,1)(D X, X)=
=a|x|2, so that either P,[x, o)x7#0 or P,lo, «)x=0. By [2, lemma 2],
m(P,la, «=))=m(P,[o, oo))+m(P,[a, =)). Then

fF(a)dm(Pd,(a))éjo F(a) dm(P,())+ fF(a)dm(Pa(a)) > — oo,

have finite entropy.

Now let O<a<l. m(Py(a, 1]) = m(Py(x, <)) —m(Py(1, =) = m(P,(x, «))+
+m(P,(at, ))—m(Py (1, 2))=m(P,(, 1))+ m(P, (&, 1])+m(P,(1, <)) +m(P,(1, <))~
—m(Py(1, ). Let c=m(P,(1, «))+m(P,(1, «))—m(P,(1, =)). Then 0=c<co,
and m(Py(x, 1])=m(P,(a, 1])+m(P,(o, 1])+c. Let M be the unique Borel measure
on (0, 1] such that M(a 1]=m(P, (2, 1])+m(P,(a, 1])+c. Then f F(a) dm(Py ()=

f F(e)dM(«), since F is non-negative and non—decreasmg on (0,1], and

0,11

f F(0)dM(x)<o> since ¢ and o have finite entropy.
©1

- We now prove part C. Assume e(@)=oco. Then ] F(o)dm(P, (oc))-—oo and
by lemma 1, f F(4, (oc))da o for some ¢ such that A (c)Sl and A,,(c)sl
Note that F 1s non-negative and non-decreasing on [0, 1] Since Yy=Ag+(1—A)g,
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D,=AD,, so by [2] Corollary 1, A,,(a)>Aw (@)=AA,(). Then for azc,
F(A,,,(a))ZF (A4,(@)=AF(A,(®) by convexity. Then

f F(A, (@) de = A j F(A,(2)) dot = oo,

c

We now prove part D. Assume e(g)=—-<, so that f F(x) dm(P (a))— —oo,
Choose ¢=>0 and ¢=0 so that F(x)/F(x/2)=¢ for leq Since Dy=AD,,
m(Py[o, °°))§m(Pwa [0, <))=m(P,[/2, =)). Then J F(@)dm(P,(x))=—eo

0 .
implies [ F(®)dm(P,(@))=—co, so that [ F(a/4) dm(P,(#/A))=—co. Then
- a Aq ’ .
[ F(o/2) dm(Py(2))=—o= so [ F(x)dm(Py(®))=—c~ and e@¥)=—co.
iq Aq

Lemma 2. Let R and S be either finite sequences with the same number of mem-
bers or countable sequences. Assume r,,_rH 1Z0, 5,=8,,1=0, 2’ rk—z s, and
2’ n= Z’ sy for j=1. Then there lS a doubly stochastic matnx M with

5= %’mﬂ,rk Jor j=1.

Proof. If R and S are finite sequences the result is well known; our proof
will contain this case if R and S are extended to countable sequences by adding
a string of zeroes at the end. Let R and S be countable sequences and assume r,=0
for all k. M will be constructed one row at a time; each row of M will have finitely
many non-zero entries. Let w(1) be the smallest integer such that s,=r, @y Express
s, as a convex combination of {r;:1=i=w(1)} to obtain the first row of M.

 Assume k—1 rows of M have been obtained. If s,=r, -1y, let wk)=1+
+w(k—1); otherwise, let w(k) be the smallest integer such that SZr,q. We
will show that 5, can be expressed as a convex combination of  {r;:1=i=w(k)}
such that 2 m;;=1 for 1=j=w(k) by showing that there is such a convex com-
bination v:/hlch is =g, and that there is such a convex combination (namely,

wik) -1

D Or+1r,q) which is =s,.
i=1
When Z’m,-,-:l we will say r; is “used up”. Let the number c—Z’c F;
be formed as follows: c, is chosen so that r, is used up; i.e,, ¢;=1~ Z’ My Choose

¢, so that ¢;+c¢,=1 and r, is used up if possible; c2=mm(1—c1, 1— 2’ m,z)
Contmue this process until ¢, is chosen. Then c=s, follows from the hypothesm

that 2 = 2’ 5.
i=1 i=1
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This completes the construction of the matrix M. Clearly s-=2 myr, for

all j, m; =0 for all j, k, and the sum of the elements of any row of M is 1 It remains
to show that the sum of the elements of any column of M is 1. 1 —2’ s,—Z'Z mr;=

—Z'Z' my,r,; since all terms are non-negative the interchange of order of summa-
tlon is valid. Since 1= Z'rj, 0= 2’ 1- Z’m,,)r, By the construction of M,
(l—Zm,,)ZO for each _] Since r,;éO for all j, 1= Z’mU '

If r;=0 for some j, then r,=0 for all k=j. The construction of M must
then be modified so that; for k=j, r, is used up before one begins to use r,,,.

Lemma 3. Let (H, A, m) be a gage space, let TCL'(H, A, m) with T=0, let
9>0, and let g=m(Pr(y, «)). Let P be any projection in A with m(P)=q. Then
m(PT)=m(Pr(y, <) T).

Proof. By lemma 1, m(PT)=m(PTP)= f APTP(x)dx f Aprp(x) dx.

By [2] Theorem 4, Ap;p(x)=Ar(x) for 0<x$m(1) Note that AP ey TX)=
=Ar(x) for 0<xsq so that Aprp(X)=4p_(;,.)7(x) for 0=x=g. Then
m(I)
f Aprp(x)dx = f Ap ()7 (X)dx = f Apr G, er1(X)dx = m(Pr(y, =)T).

Proof of Theorem 2. Assume first that 4=B(H). Let g, be the i*® eigen-
value of D,, where the eigenvalues of D, are arranged in decreasing order and are
counted according to multiplicity.

Define a sequence A by a;=1g;+(1—1)g; and a sequence B by b,=y,.
The first three hypotheses of lemma 2 are clearly satisfied. The last hypothesis of
lemma 2 follows from lemma 3; a trivial modification of lemma 3 is needed if D,
or D, has a repeated eigenvalue. By lemma 2, there is a doubly stochastic matrix
M with ;=3 nmy(Ag;+(1—2a;). Then F@E)=3 m;;(AF(e)+(1—2) F(a))).
Summmgthlsrejlatmn yieldsm(F(D,))= Z‘F(w,) = ZZ'm, i(AF(@)+ (1= F(op)) =
—Z' Z' m(AF(e)+(1— ) F(o))= Z ()*F(Q;)'i‘(l ~HFG@ P)=Am(F(Dp)+(1—2) -

-m (F(D, ); the interchange of the order of summation is valid since ¢ and o e ach have
finite entropy by hypothesis. If ¢#o, then Y, #1¢, +(1—2)o; forsome iy, sothat
M is not the identity matrix. If F is then stnctly convex then F(y,)>
>2 m; j(lF(Qj)+(l A F(o))).

We now prove the general case when m(l)=<; the proof when m{)<o
is virtually identical. Let ¢ be an arbitrary positive number. For » a natural number,
let ’ ' 1 ™

Vo=~ [ A®dx;

(n-1)e
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define sequences g, and o, similarly. Assume that D, D,, D, have no point masses
at Ay (ke), A,(ke), A,(ke) respectively, for all natural numbers k; arbitrarily small
¢ can always be found so that this holds. By lemma 1 and lemma 3,

sné'l Vo= f Ay(x)dx = j° adm(Py(®) = m(D¢P¢,(A¢,(ke, =))) =

Ay (ke)

=im (Do Py (Ay(ke, <)) +(1 =) m(D, Py(Ay ke, =))) = _

k ’ k

= Am (D, P,(A,(ke, «)))+(1 =) m(D, P,(A,(ke, «))) =€l 3 g, +e(1—4) Jo,.
n=1 n=1

By the first part of the proof of this theorem, '

3 FU) =1 2" F(e)+(1—2) 2" F(s,).

n
To complete the proof, it suffices to show that & 2’ F(y,) approximates

f F(A,,(x)) dx for ¢ small. This is immediate since Aw is a non-increasing func-

tlon implies A, ((n—1)e)=y,=A,(ne) and e(y) is finite by the hypotheses and
Corollary 1.
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