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Entropy of states of a gage space 
ARTHUR LIEBERMAN 

Let (H, A, m) be a regular gage space. Let g, a, and ij/=Ag+(\ —X)a, 0<A-= 1, 
be regular states. The density operator De of a regular state is a non-negative (possibly 
unbounded) self-adjoint measurable operator. Let F be a continuous convex func-
tion on [0, oo) and define the entropy of g by e(g)=m(F(Dej). Conditions are 
obtained, in terms of e(g) and e(a), for e(tp) to be — f i n i t e , «=, or undefined. 
If both Q and A have finite entropy, then \J/ has finite entropy and e(i//)=Ae(g)+ 
+(1 — A)e(o-); if A=B (H), F is strictly convex, and g^a, then strict inequality 
is obtained. These results are restated as inequalities concerning the trace of a con-
vex function of an operator. 

1. Introduction 

We work in the context of a regular gage space (H, A,m); H is a Hilbert space, 
A is a von Neumann algebra on H, and m is a faithful semi-finite normal trace 
on A. (See [4] for definitions and notation.) A regular state of A is a positive linear 
functional Q on A with g{i) — \, where I is the identity operator on H, which is 
strongly continuous on the unit ball of A. If g is a regular state of A, then by [4] 
Theorem 14 there is a unique operator De(iLl(H, A,m) with 0, m(De)=1, 
and g(T)=m(DBT) for all T£A; De is called the density operator of g. 

The entropy of a regular state g is usually defined by e{g)=m{—De In De), 
cf. [3] Chapter V and [5]. Both von Neumann and Segal suggested defining the entropy 
by e(g)=m(F(Dc)), where F is an arbitrary continuous convex function on [0, <»); 
we use this definition for the remainder of this paper. The results basically say 
that the mixing of states cannot reduce entropy. 

BENDAT and SHERMAN [1] determined when a continuous convex function 
defined on an interval is operator convex; i.e., when F(AK+(l—A)L)^AF(K) + 
+(1 — A) F(L) holds for bounded self-adjoint operators K and L whose spectra 
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are contained in the domain of F. Below we show that m (F(XK+ ( 1 — A) L)) £ 
^Xm(F(K))+(l—X)m(F(L)) holds under suitable hypotheses for self-adjoint 
measurable operators K and L\ this is merely a restatement of the fact that mixing 
of states cannot reduce entropy. 

2. Statement of the results 

T h e o r e m 1. Let (H, A, m) be a gage space with regular states Q and a. Let 
0<A<1, and \]/=XQ+(1—X)O. Assume lim inf F(x)/F(kx)>0 for each 1. 

X-+oo 

Then: 
A. e(ij/) is defined i f f both e(g) and e(a) are defined and {e(f?)> K0)}^ {— 
B. e(ij/) is finite i f f both e(g) and e(a) are finite. 
C. e(i/0 = °° i f f {•»}£ where R is the set of real numbers. 
D. i # ) = - o = > i f f { - °o} i{e (e ) , e ( f f )}g{-°o}U#. 

C o r o l l a r y 1. Let (H, A, m) be a gage space with regular states Q and a. Let 
0<A<1, and \l/=lg + (l-X)a. Then 

A. e(*jj) is defined if both e(g) and e(a) are defined and { — { ^ ( e ) , e ( f f ) } . 
B. e(i¡/) is finite if both e(g) and e(<r) are finite. 
C. e(i1/) = °° if {oo}g{e(0), e(<i)}g«U{oo}, and Hm F(x) = - « . 

T h e o r e m 2. Let (H, A,m) be a gage space with regular states Q and <x. Let 
0<A<1 and {¡/ = Ag + (\ — X)a. If e{g) and e(a) are finite, then e(\j/) is finite and 
e(i/0sAe(i?)+(l — A)e(a). If A=B(H)=all bounded operators on H, Q^O, and 
the function F is strictly convex, then + — X)e(a). 

C o r o l l a r y 2. Let (H, A, m) be a gage space. Let K, L^V-(H, A, m). Assume 
that either K^O and I s 0 or m(I)<°° and K and L are both bounded from 
below (or from above). Let F be a continuous convex function defined on an interval 
which includes the spectra of K and L and let 0<A<1. If F(K), F(L)£Ll(H, A, m), 
then F(XK+(l-X)L)^L1(H, A,m), and m(F(XK+ (l-X)L))^Xm(F(K)) + 
+ (l-A)m(F(L)). If A =B(H), K^L, and F is strictly convex, then 
m(F(XK+(\-X)L))>Xm(F(K))+(\-X)m{F(.Lj)-

Remark . In Theorem 2 and Corollary 2, the restriction that A=B(H) in 
order to have strict inequality seems unnecessary; this was first suggested by SEGAL 

[5]. We know of no example which requires this extra hypothesis, but are unable 
to prove strict inequality without it. 
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3. Proof of the results 

Corollaries 1 and 2 are restatements of Theorems 1 and 2 and require no proof. 
We now introduce some notation. The self-adjoint operator T has spectral 

©o 
decomposition T= f adPT(a); the function PT is continuous from the left. If 

S is a Borel measurable set of real numbers, then PT(S) is the spectral projection 
of T for the set S. The spectral distribution function AT is defined by AT(x)= 
sup{A:/n(Pr[A, oo))^x}; the domain of AT is (0, m(/)] if and (0, <*>) 
if m(I)=°°. AT(x) is a nonincreasing function of x and is continuous from the 
left. m{Pf{AT(x), °°))=x if P has no point mass at AT(x) and T^L^iH, A, m). 
The properties of the spectral distribution function are developed in [2]. To simplify 
the notation, we will frequently write Pe for PD^ and Ag for AD^. 

Lemma 1. Let {H, A, m) be a gage space, let KdL1 ( / / , A, m) with K^0, and 

let F be a continuous function on (r, where PK {r} = 0. Then f F(X) dm (PK(X)) = 
r 

"l(Px [r,oo)) 
= J F(AK(x))dx in the sense that if either integral is defined, then both 

o 
integrals are defined and are equal. In addition, if F is continuous on [0, «=), then 

mU) 
f F(X)dm{PK(X)) = / F(AK(x))dx. 

[0, oo) 0 

i 
Proof . Let s=~r with PK{s}=0. We will show below that / F(X)dm(PK(Xj)= 

r 
M(P K [ I7~) ) 

= J F(AK(x))dx. The first conclusion of the theorem will follow by taking 
m (PK [s, oo)) 

the limit as s—The second conclusion then follows by taking the limit as r—0. 
Let P= {xl5 x2, ..., x„+1} be a partition of [r, 5] with m(PK {x;})=0 for 

l s i s i i + l. Then j F(X)dm(PK(k))~ 2 F(AK(m(PK[xt, -)))) m (PK [xt, x i + J ) = 
r '=1 

n m(PK [!•;•»)) 
= 2F(AK(m(PK[Xi, ->))))(m(PK[Xi, ->))-m(PK[xi+i, - ) ) ) ~ / ^ ( / l K ( x ) ) d x . 

Note that, although m(PK[Xi, °=))—m(PK[xi+1, may be large due to the spectrum 
of K having point masses in the interval (xf, x i+1), ,F(/lx(a)) is nearly constant 
on the interval m(PK[x /+1 , °°))-= a ^ m ( P K [ x t , «>)) since for a in this interval, 
x,=E/lK(a)<x i+1. 
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Proof of T h e o r e m 1. There are essentially four different non-trivial possibi-
lities for F: 

A. F'(0) > 0, lim F(x) = -«>. 

B. / r ' ( 0 ) > 0 , lim F(x)=«>. X — oo 
C. F'(0) > 0, lim /•(*) = k, where 0 < k < °o. 

D. F'(0) 0, lim F(x) = -». X — oo 

Theorem 1 will be proved for case A since this is the most difficult case; the 
proofs for the other cases are trivial modifications and parts of the results are 
vacuous in the other cases. For the sake of simplicity, we assume i r (0)=0; if 
F(0) ^ 0, little change is needed if m(I) is finite and the results become essentially 
vacuous if m(I)=°° . We further assume that F has a relative maximum at x = l , 
F(l) = l, and that F(2)=0. We will prove the " i f" parts of B, C and D. The 
remainder of the proof is essentially redundant. 

Assume now that e(g) and e(a) are both finite. e(\p) can be infinite in two ways: 
ij/ can be highly concentrated so that D ,̂ is unbounded and = — or i]/ can 
be so spread out that has very large support and e(ip) = °°. 

Let a > 0 andx£H,x?±0. If P J a , °°)x=x, then X(Dex, x)+(l-X)(Dax, x ) £ 
Sa||x[|2, so that either PB[a, °°)x^0 or Pa[a, By [2, lemma 2], 
m{P^[ct, ~))s/w(Pe[a, ~ ) ) + m ( P J a , - ) ) . Then 

eo oo oo 

/ F(a)dm(iV(a))s f F(<x)dm(Pe(«))+ / F(a)dm(Pa(a)) > -
2 2 2 

have finite entropy. 

Now let 0 < a < l . m(P^(ct, 1]) = m(P^,(<x, ~ ) ) - m ( P , ( l , S m(Pe(<x, -))+ 
+ m(P„(a, ~ ) ) -m( /V( 1, -))=m(Pe(a, l ] )+m( />>, 1])+«(/>, (1, =°))+m(Pa{\,«,))_ 
-m(Pt( 1, - ) ) . Let c—m(Pe(l, ~))+m(Pa(l, o o ) ) - w ( P , ( 1, - ) ) . Then O ^ c « » , 
and l ] )sm(P 8 (a , 1 ])+m(P„(a, l])+c. Let M be the unique Borel measure 
on(0, 1] such that M(oc, 1 ]=m(Pe(a, \])+m{Pa{a, l])+c. Then / F(oi) dmfaia))s 

(0,1] 

^ f F(pc)dM(<x), since F is non-negative and non-decreasing on (0, 1], and 
(0,1] 

f F(ct)dM(a)<°° since Q and a have finite entropy. 
(0,1] 

l 
We now prove part C. Assume e(g)=^. Then f F(a) dm (Pe (a)) = » , and 

oo 0 
by lemma 1, / F(Ae(a))da=°° for some c such that Ae(c)^ 1 and A^(c) S1. 

C - ' 

Note that F is non-negative and non-decreasing on [0, 1]. Since \J/=AQ+(\—A)o, 
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so by [2] Corollary 1, A^(a)=A^D (tx)—AAe(pt). Then for oiSc, 
F( / l^ (a) )SF(XA e (a) )^XF(A e (a) ) by convexity. Then 

eo oo 

/ / F(At{ct))doL = ~>. 
C C ' -

oo 

We now prove part D. Assume e(g)= — °=, so that f F(a) dm(Pc(a)) = — °°. 
o 

Choose e > 0 and 0 so that F(x)/F(x/X)^s for x^Xq. Since D^XDt, 

m{Pt[x, ~))^rn{PxD [«, ~))=#M(P>M, - ) ) . Then fF(ai)dm{Pt(«))=-«» 
8 o 

oo oo 

implies / F(ot)dm(Pe(a)) = - « , so that / F(ajX) dm(Pe(a/A)) = - . Then 
9 Xq 

Oo o o 

J F(a/A)dm(P^(a)) so / F ( o c ) < / w ( P ^ ( a ) ) = a n d e ( ^ ) = - o o . 

Lemma 2. Lei J? and S be either finite sequences with the same number of mem-
bers or countable sequences. Assume 2 rk~2 sk> an<i 

j j k k 
2 rk — 2 sk for 7 - 1 - Then there is a doubly stochastic matrix M with 

* =1 *=1 
sj=2mjk>-k for /Si. k 

Proof . If i? and S are finite sequences the result is well known; our proof 
will contain this case if R and S are extended to countable sequences by adding 
a string of zeroes at the end. Let R and S be countable sequences and assume rk^0 
for all k. M will be constructed one row at a time; each row of M will have finitely 
many non-zero entries. Let w(l) be the smallest integer such that J i S / - , ^ . Express 
j j a s a convex combination of {/y. 1 S iSw( l )} to obtain the first row of M. 

Assume A: —1 rows of M have been obtained. If sk^rw(k-1)t let w(fc) = l + 
+w(k—1); otherwise, let w(k) be the smallest integer such that sk^rw(k). We 
will show that sk can be expressed as a convex combination of {r,: 1 ^i^w(k)} 

k 
such that 2 mij — 1 f° r by showing that there is such a convex com-

i = 1 
bination which is and that there is such a convex combination (namely, 
w(lc) - 1 

2 Orj+lrw ( t )) which is rnsk. 
>=i k 

When 2 mij~ 1 > w e say r, is "used up". Let the number c=2cJi 
i i = l k-1 

be formed as follows: cx is chosen so that rx is used up; i.e., c x=1 — 2 ma • Choose 
i = 1 

c2 so that c ! + c 2 s 1 and r2 is used up if possible; c2=mm^l—c1,l— 2 

Continue this process until ck is chosen. Then cSsk follows from the hypothesis 

that 2 r ^ 2 s > -
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This completes the construction of the matrix M. Clearly Sj=2 mjkrt for 

all j, mJk^0 for all j, k, and the sum of the elements of any row of M is 1. It remains 
to show that the sum of the elements of any column o f M i s 1 . 1 = 2 s t = 2 2 m u r j = 

i i j 

=22 mijry, since all terms are non-negative the interchange of order of summa-j • 
tion is valid. Since 1 =2rj> 0 = 2 (.l~2mij)rj- ®y t h e construction of M, 

(1 — 2 mij)—0 for each j. Since r ^ O for all j,l=2mij-
t i 

If rj=0 for some j, then rk=0 for all k^j. The construction of M must 
then be modified so that, for k^j, rk is used up before one begins to use rk+1. 

L e m m a 3. Let (H, A, m) be a gage space, let T$.U-(H, A, m) with TsO, let 
y>0 , and let q=m(PT(y, <*>)). Let P be any projection in A with m(JP)=q. Then 
m(PT)^m(PT(y,~.)T). 

m(/) q 
Proof . By lemma 1, m(PT)=m(PTP)= j APTP(x)dx= f APTP(x) dx. 

0 0 
By [2] Theorem 4, APTP(x)^AT(x) for 0 < x S m ( / ) . Note that APT(Y ^T(x) = 
= AT(X) for 0 < x S ? so that APTP(x)^AP^(Y^)T(X) for 0 T h e n 

q « "•(/) 
/ APTP(x) dxrs f APt „) T (x)dx= f ApT(y,m)T(x)dx = m(PT(y, °°)T). 
o o o 

P r o o f of T h e o r e m 2. Assume first that A—B(H). Let q{ be the I t h eigen-
value of De, where the eigenvalues of Dt are arranged in decreasing order and are 
counted according to multiplicity. 

Define a sequence A by a—Agj+O— X)a{ and a sequence B by 6 ( = 
The first three hypotheses of lemma 2 are clearly satisfied. The last hypothesis of 
lemma 2 follows from lemma 3; a trivial modification of lemma 3 is needed if De 

or Da has a repeated eigenvalue. By lemma 2, there is a doubly stochastic matrix 
M with ^ Z m ^ Q j + i l - l ) ^ ) . Then F t y ^ ^ m u (1F( Q j ) + (1—A) F 

Summing this relation yields m {F(D^) = s 2 2 ™u (¿-Hed + (1 - 4) F(oj)) = 

= 2 2 m y ( A F ( e y ) + ( i - X ) F ( * j ) ) = 2 (¿hej)+0-»F(*j))=MF(D
e))+(l • 

j i J 

• m (F(D„)); the interchange of the order of summation is valid since Q and a e ach have 
finite entropy by hypothesis. If q^o, then i/^^Ag^+Cl—A)c-io for some i0, sothat 
M is not the identity matrix. If F is then strictly convex, then F(\j/ia) >• 

We now prove the general case when m(I) = °°; the proof when m ( / ) < ° ° 
is virtually identical. Let e be an arbitrary positive number. For n a natural number, 
let j nt 

tn = — f Af(x)dx; 
B (n-l)« 
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define sequences q„ and <r„ similarly. Assume that D^, De, D„ have no point masses 
at A^(Ice), Ae(ke), A„(ke) respectively, for all natural numbers k; arbitrarily small 
s can always be found so that this holds. By lemma 1 and lemma 3, 

£ ke oo 

e ¿<A„ = f A#(x)dx= f aidm(P^(a)) - m(D^P^(A^(kE, °°))) = 

= AM(DEPT(AI,(ke, ~ ) ) ) + ( l - X ) M ( D a P ^ ( k e , «,))) ^ 

== XM{DePt(At(ke, ~))) + ( l - X ) m ( D a P a ( A a ( k e , - ) ) ) = EX 2 ¿>„+e(l - A ) 2 • n = l 11 = 1 By the first part of the proof of this theorem, 

2 mn) ^ A 2 F(Qn)Hi -X) 2 W n n=l n=1 
n 

To complete the proof, it suffices to show that e ^ approximates 
i = l 

oo 

/ F(Aj,(x))dx for e small. This is immediate since A^ is a non-increasing func-
o 
tion implies A^((n—l)e)^i]/„^A^(nE) and e(\j/) is finite by the hypotheses and 
Corollary 1. 
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