Uniformly distributed sequences on compact, separable, non metrizable groups

V. LOSERT

Let G be a compact topological group with normalized Haar measure λ . G^{∞} shall denote the product of denumerably many copies of G, equipped with the product measure λ_{∞} . If G is metrizable, a well-known theorem ([5] Th. 2.2) asserts that the set of uniformly distributed (u.d.) sequences has measure one in G. If G is separable (i.e. it contains a countable dense subset) but non-metrizable, it follows from a result of W. A. VEECH [9] that u.d. sequences still exist (a shorter proof of this result has been given by H. RINDLER [7], the abelian case has been treated earlier in [1]). Let S be the set of all u.d. sequences in G. In this paper we show that for a compact, separable, non-metrizable group G, S is not measurable in G, its outer measure is one, the inner measure is zero. By the way of proving this result, we extend a result of [6]: if G is a compact, separable group, G/H a metrizable quotient, then any u.d. sequence in G/H can be lifted to G.

For arbitrary separable compact spaces the situation is different. We give an example of a class of spaces for which u.d. sequences exist in trivial cases only, namely if the measure is concentrated on a countable set.

I want to thank W. Maxones and H. Rindler who led my interest to these problems.

For basic notions concerning uniformly distributed sequences see [5].

Lemma 1. Let G be a compact topological group with normalized Haar-measure λ , A a measurable subset of G. Then there exists a closed normal subgroup H of G and H-periodic measurable subsets B, C of G (i.e. B=BH, C=CH) such that $B\subseteq A\subseteq C$, $\lambda(C\setminus B)=0$ and G/H is metrizable.

Proof. It suffices to prove this for open subsets A. By the regularity of λ , there exists an open Baire-set $B \subseteq A$ for which $\lambda(A \setminus B) = 0$. B has the form $\{x \in G: f(x) > 0$ for some continuous, real valued function f on G. Now let H be a closed normal

Received May 10, 1977.

subgroup of G such that G/H is metrizable and f is H-periodic, i.e. f(yx)=f(y) for $x \in H$. For $\dot{x} \in G/H$ put

$$T_H(c_A)(\dot{x}) = \int_H c_A(xy) \, dy \quad \text{and} \quad T_H(c_B)(\dot{x}) = \int_H c_B(xy) \, dx.$$
$$T_H(c_B) = c_{\dot{B}}$$

since B is H-periodic. Define $\dot{C} = \{\dot{x} \in G/H: T_H(c_A)(\dot{x}) > 0\}$ and $C = \{x \in G: \dot{x} \in \dot{C}\}$. Then C is open and H-periodic, $C \supseteq A$. Since $\dot{C} = B$ a.e. on G/H we have $\lambda(C \setminus B) = 0$.

Remark. It is essential that the inclusion $B \subseteq A \subseteq C$ and the equations BH=B, CH=C hold in the set-theoretical sense and not only λ -a.e.

One easily concludes that an arbitrary subset A of G has outer measure one if and only if the canonical image of A has outer measure one in any metrizable quotient group G/H.

Theorem 1. Let G be a compact topological group which is separable but nonmetrizable, λ the normalized Haar measure and S the set of all u.d. sequences in G. Then S has interior measure zero in G^{∞} .

Proof. We want to show that $M = G^{\infty} \setminus S$ has outer measure one. Let $p_n: G^{\infty} \rightarrow G$ be the *n*-th coordinate function. If H_1 is a closed normal subgroup of $G_1 = G^{\infty}$ for which G_1/H_1 is metrizable, there exists a countable set $\{f_n\}$ of continuous functions on G_1/H_1 which is dense in $C(G_1/H_1) \subseteq C(G_1)$ (the space of all continuous functions on G_1/H_1 resp. G_1 with the topology of uniform convergence). By the Stone Weierstrass theorem there exists a countable set $\{g_n\}$ of continuous functions on G such that the closed subalgebra spanned by $\{g_n \circ p_m\}_{m,n=1}^{\infty}$ contains the f_n . Now take a closed normal subgroup H of G for which all g_n are H-periodic and such that G/H is metrizable. Then $H^{\infty} \subseteq H_1$ and $(G/H)^{\infty} = G^{\infty}/H^{\infty}$ is metrizable too. It suffices therefore to prove that the image of M has outer measure zero in G^{∞}/H^{∞} for all closed normal subgroups H of G, for which G/H is metrizable. Since G is not metrizable, H must be a non-trivial subgroup. Take a symmetric neighbourhood U of the unit element in G such that H is not contained in U^2 . If (y_n) is an arbitrary sequence in G/H there exists a sequence (x_n) in $G \setminus U$ such that $\pi(x_n) = y_n$ ($\pi: G \rightarrow G/H$ denotes the canonical projection). (x_n) belongs to M since it is not dense in G. Therefore the image of M comprises all of $(G/H)^{\infty}$.

Lemma 2. Let G be a compact topological group, H a closed normal subgroup, $\pi: G \rightarrow G/H$ the canonical projection. If (y_n) is a sequence in G/H which converges to identity, there exists a sequence (x_n) in G, which converges to identity and satisfies $\pi(x_n) = y_n$. Proof. Let $(U_{\alpha})_{\alpha < \gamma}$ be a well-ordering for the set of all non-equivalent irreducible unitary representations of G. For $\alpha < \gamma$ put

$$H_{\alpha} = H \cap \bigcap_{\beta < \alpha} \ker U_{\beta}, \quad H_0 = H, \quad G_{\alpha} = G/H_{\alpha} = (G/H_{\alpha+1})/(H_{\alpha}/H_{\alpha+1}).$$

If α is a limit-ordinal, then G_{α} is the projective limit of the groups $\{G_{\beta}:\beta < \alpha\}$. It suffices therefore to show that we can lift the sequence from G_{α} to $G_{\alpha+1}$. Since U_{α} seperates the points of $H_{\alpha}/H_{\alpha+1}$, this group is metrizable (in fact a Lie group). This means that we have reduced the proof of the lemma to the case that H is metrizable.

By induction we can define a sequence $\{U_m\}$ of open neighborhoods of the unit element in G with the following properties: $U_{m+1} \subseteq U_m$, $\{U_m \cap H\}$ is a neighborhood base of the unit element in H, if $F_m = H \setminus U_m$, then $U_{m+1} \cap U_{m+1}F_m = \emptyset$. Now we choose elements $x_n \in G$ such that $\pi(x_n) = y_n$ and almost all x_n belong to U_m (m=1, 2, ...). We want to show that $\{x_n\}$ tends to zero. Let V be an arbitrary neighborhood of e in G and W an open neighborhood for which $W^2 \subseteq V$. Put $F = H \setminus W$ then there exists an index m such that $U_m \cap U_m F = \emptyset$. If $x \in U_m$ and $\pi(x) \in \pi(W \cap U_m)$ there exists $y \in W \cap U_m$ such that $\pi(y) = \pi(x)$, i.e. $y^{-1}x \in H$. If $y^{-1}x$ would belong to F then $x \in y \subseteq U_m F$, a contradiction. Therefore $y^{-1}x \in W$ and it follows that $x \in yW \subseteq V$.

Theorem 2. Let G be a compact, separable group, H a closed normal subgroup, G/H metrizable, (y_n) a u.d. sequence in G/H. Then there exists a u.d. sequence (x_n) in G such that $\pi(x_n) = y_n$ (where π denotes the canonical quotient map).

Proof. This result was already claimed without proof in [6], but we were informed by the author of that paper that his proof contains a gap. The methods of [6] enable us to show the following: If G is a compact group, H a separable subgroup, G/H metrizable, (y_n) u.d. in G/H, then there exists a u.d. sequence (x_n) in G such that $y_n^{-1}\pi(x_n)$ tends to identity. Now it follows from the previous lemma that there exists a sequence (z_n) in G such that (z_n) converges to identity and $\pi(z_n^{-1}) =$ $= y_n^{-1}\pi(x_n)$. $(x_n z_n)$ is u.d. in G and $\pi(x_n z_n) = y_n$. According to [4] a compact topological group is separable if and only if it has an open base for its topology of cardinality $\leq c$ (the power of the continuum). It follows that a closed subgroup of a separable compact group is separable and the proof is finished.

Corollary. Let G be a separable compact group, λ the normalized Haar measure and S the set of all u.d. sequences in G. Then S has outer measure one in G.

Now let X be an arbitrary compact Hausdorff space. We write C(X) for the space of continuous scalar-valued functions on X with supremum norm, M(X) for the dual and M(X)' for the bidual of C(X). According to [8] we call X a *G*-space if $\sigma(M(X), C(X))$ -convergent sequences are $\sigma(M(X), M(X)')$ convergent.

Proposition. If X is a G-space and μ is a probability measure on X, which is not concentrated on a countable subset, then there exist no μ -u.d. sequences in X.

Proof. Assume that (x_n) is u.d. Put $\mu_N = N^{-1} \sum_{n \leq N} \varepsilon_{x_n}$, where ε_x denotes the point measure of mass one concentrated in x. μ_N converges to μ in the topology $\sigma(M(X), C(X))$ and consequently also for $\sigma(M(X), M(X)')$. It follows that $\mu_N(A)$ converges to $\mu(A)$ for any Borel-subset A of X, in particular that μ is concentrated on the set $\{x_n\}_{n=1}^{\infty}$.

It was first proved in [3] that any extremely disconnected space is a G-space (X is called extremely disconnected, if the closure of any open subset is open). For example βN the Stone—Čech compactification of N is extremely disconnected and clearly separable. The last proposition shows that there exists no u.d. sequence for a measure μ on βN which is not concentrated on a countable set.

More generally it has been shown in [8] that any F-space is a G-space (a compact space X is an F-space, if disjoint open F-sets have disjoint closures. See [2] for further properties and examples of F-spaces).

References

- I. D. BERG, M. RAJAGOPALAN, L. A. RUBEL, Uniform distribution in locally compact Abelian groups, *Trans. AMS*, 133 (1968), 435-446.
- [2] L. GILLMAN, M. JERISON, Rings of Continuous Functions, Van Nostrand (Princeton, 1960).
- [3] A. GROTHENDIECK, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Can. J. of Math., 5 (1953), 129-173.
- [4] G. L. ITZKOWITZ, On the density character of compact topological groups, Fund. Math., 75 (1972), 201-203.
- [5] L. KUIPERS, H. NIEDERREITER, Uniform distribution of sequences, Wiley (New York, 1974).
- [6] H. RINDLER, Uniformly distributed sequences in quotient groups, Acta Sci. Math., 38 (1976), 153-156.

[7] H. RINDLER, Uniform distribution on locally compact groups, Proc. AMS, 57 (1976), 130-132.

[8] G. L. SEEVER, Measures on F-spaces, Trans. AMS, 133 (1968), 267-280.

[9] W. A. VEECH, Some questions of uniform distribution, Ann. of Math., (2) 94 (1971), 125-138.

MATH. INST. DER UNIVERSITÄT WIEN STRUDLHOFGASSE 4 1090 WIEN AUSTRIA