Concrete representation of related structures of universal algebras. I

L. SZABO

In his recent book [6], I. I. Valuce quotes without proof a result of A. V. Kuznecov, unpublished up to now. Trying to re-establish the proof, we observed some general facts concerning mutual properties of relations and operations. This enables us to solve several concrete representation problems for related structures of algebras in a uniform way.

The basic propositions of this article are Lemmas $1-5$ preceeded by a survey of notions we shall need. Üsiing them we give a simultaneous characterization for related structures of universal algebras (Theorem 6). As special cases of Theorem 6 we get characterizations for the systems of subalgebras of finite direct powers of algebras (G. Grätzer's Problem 19 in [3]; Theorem 7 and 9) and the endomorphism semigroups of algebras (Grätzer's Problem 3 in [3]; Theorem 15; for another solution of this problem, see N. Sauer and M. G. Stone [5]). As corollaries we get Jürgen Schmidt's concrete representation theorem for the subalgebra systems of algebras (see, e.g. [2]) and the Bodnarčuk-Kalužnin-Kotov-Romov theorem for the subalgebra systems of all finite direct powers of finite algebras [1]. Moreover, we characterize the bicentralizers of sets of operations in arbitrary algebras. Then Kuznecov's above mentioned result appears as a special case.

In a forthcoming Part II, we shall apply the method developed here for the representation of other related structures.

Let A be a nonempty set which will be fixed in the sequel. Let $O_{n}(n=0,1,2, \ldots)$ and O denote the set of all n-ary and all finitary operations of A, respectively; furthermore, let $\mathscr{R}_{n}(n=1,2, \ldots)$ and \mathscr{R} denote the set of all n-ary and all finitary relations of A, respectively. In general, we shall not distinguish between an operation and the associated relation, i.e., an n-ary operation may be considered as a mapping $f: A^{n} \rightarrow A$ and as an $(n+1)$-ary relation $\left\{\left(a_{1}, \ldots, a_{n}, f\left(a_{1}, \ldots, a_{n}\right) \mid\left(a_{1}, \ldots, a_{n}\right) \in A^{n}\right\}\right.$ as well. Thus we have $O \subseteq \Re$ and $O_{n} \subseteq \mathscr{R}_{n+1}, n=0,1,2, \ldots$ If R is an n-ary relation, we shall often write $R\left(a_{1}, \ldots, a_{n}\right)$ instead of $\left(a_{1}, \ldots, a_{n}\right) \in R$.

We say that an n-ary operation f preserves an m-ary relation R, if $R\left(f\left(a_{11}, \ldots, a_{1 n}\right), \ldots, f\left(a_{m 1}, \ldots, a_{m n}\right)\right)$ holds whenever $R\left(a_{1 k}, \ldots, a_{m k}\right), k=1, \ldots, n$, i.e., (R, f) is a subalgebra of the algebra $(A, f)^{m}$ (the m-th direct power of (A, f)). Remark that the empty set is an n-ary relation for every $n \geqq 1$, and it is preserved by every m-ary operation where $m \geqq 1$. Let f and g be operations of arity n and m, respectively. If M is an $m \times n$ matrix of elements of A, we can apply $f[g]$ to each row [column] of M. Thus we get a column [row] consisting of $m[n]$ elements, which will be denoted by $f(M)[(M) g]$. If for any $m \times n$ matrix M of elements of $A, f((M) g)=(f(M)) g$ holds then we say that f and g commute. Clearly, two operations commute if and only if any of them preserves the other as a relation. For any set of relations Γ, denote by Γ^{*} the set of all operations preserving every member of Γ. We call Γ^{*} the centralizer of Γ. If $\Gamma=\Omega$ is a set of operations, then $\Omega^{* *}$ is called the bicentralizer of Γ. The symbol Ω° will denote the set of all relations preserved by every member of Ω. Remark that $\Omega^{*}=\Omega^{\circ} \cap O$ for any set of operations Ω.

Let Π be a set of relations of A, i.e., $\Pi \subseteq \mathscr{R}$. If a relation belongs to Π, we shall call it a Π-relation. Let (A, Ω) be an algebra. By the related structure of type Π of (A, Ω) (in symbol: $\operatorname{Rel}_{\Pi}(A, \Omega)$) we mean the set of all Π-relation preserved by every operation of Ω, i.e., $\operatorname{Rel}_{\Pi}(A, \Omega)=\Omega^{\circ} \cap \Pi$. Observe that if Π_{1} is the set of all n-ary relations of A, Π_{2} is the set of all equivalences of A, Π_{3} is the set of all unary operations of A, and Π_{4} is the set of all bijective unary operations of A, then $\operatorname{Rel}_{\Pi_{1}}(A, \Omega)=\operatorname{Sub}\left((A, \Omega)^{n}\right), \quad \operatorname{Rel}_{\Pi_{2}}(A, \Omega)=\operatorname{Con}(A, \Omega), \quad \operatorname{Rel}_{\pi_{3}}(A, \Omega)=\operatorname{End}(A, \Omega)$ and $\operatorname{Rel}_{\Pi_{4}}(A, \Omega)=\operatorname{Aut}(A, \Omega)$.

Let $X=\left\{x_{i} \mid i \in I\right\}$ be a set of variables indexed by an arbitrary set I and let Γ be a set of relations of A. If R is a symbol of an n-ary relation in Γ and f, g are symbols of operations of arity m, s that denote a projection or an operation belonging to Γ, respectively, then $R\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)$ and $f\left(x_{j_{1}}, \ldots, x_{j_{m}}\right)=g\left(x_{t_{1}}, \ldots, x_{t_{3}}\right)$ are said to be formulas of the variable set X over Γ provided $x_{i_{1}}, \ldots, x_{i_{n}}, x_{j_{1}}, \ldots, x_{j_{m}}$, $x_{t_{1}}, \ldots, x_{t_{s}} \in X$. (Note that we might have formulas of the first kind only, but introducing these two kinds of formulas our considerations became somewhat simpler.) We say that a family $\left(a_{i} \mid i \in D\right) \in A^{I}$ satisfies the above formulas if $R\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$, resp. $f\left(a_{j_{1}}, \ldots, a_{j_{m}}\right)=g\left(a_{t_{2}}, \ldots, a_{t_{0}}\right)$ holds. Consider a triple $\Psi=\left(\Sigma, X,\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)\right)$ where $X=\left\{x_{i} \mid i \in I\right\}$ is a set of variables indexed by $I,\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) \in X^{n}$, and Σ is a set of formulas of variable set X over Γ. Such a triple will be referred to as a formula scheme over Γ. We say that Ψ is finite if both Σ and X are finite. If $\Psi=\left(\Sigma, X,\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)\right)\left(X=\left\{x_{i} \mid i \in I\right\}\right)$ is a formula scheme then we associate with Ψ an n-ary relation R_{Ψ} defined as follows: $R_{\Psi}=\left\{\left(a_{i_{1}}, \ldots, a_{i_{n}}\right) \mid\left(a_{i} \mid i \in!\right) \in A^{I}\right.$ and ($a_{i} \mid i \in I$) satisfies (every member of) $\left.\Sigma\right\}$. Then we say that R_{φ} is defined by the formula scheme Ψ.

We say that a formula scheme $\Psi=\left(\Sigma, X,\left(x_{i_{1}}, \ldots, x_{i_{n}}, x_{i_{n+1}}\right)\right)\left(X=\left\{x_{i} \mid i \in I\right\}\right)$
defines the n-ary operation f on $B \subseteq A^{n}$ if for any $\left(a_{1}, \ldots, a_{n}\right) \in B, f\left(a_{1}, \ldots, a_{n}\right)=$ $=a_{n+1}$ for some $a_{n+1} \in A$ if and only if $R_{\Psi}\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)$ holds. For $B=A^{n}$ we say that Ψ defines f. An n-ary operation f is said to be locally definable by a set of relations Γ, if for every finite $B \subseteq A^{n}$ there exists a formula scheme over Γ defining f on B.

The following lemmas describe the connection between the notions "relations preserved by operations" and "relations defined by formula schemes".

Lemma 1. Let Γ be a set of relations of A. If a relation R can be defined by a formula scheme over Γ, then $R \in \Gamma^{* 0}$.

Proof. Let $\Psi=\left(\Sigma, X,\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)\right) \quad\left(X=\left\{x_{i} \mid i \in I\right\}\right)$ be a formula scheme over Γ and let f be an m-ary operation preserving all members of Γ. If $R_{\Psi}=\emptyset$ then f preserves R_{Ψ} trivially, unless $m=0$. However if $m=0$, i.e., f is a nullary operation then $R(f, \ldots, f)$ holds for every $R \in \Gamma$, whence it follows that Σ is satisfied by $\left(a_{i} \mid i \in I\right)$ where $a_{i}=f$ for all $i \in I$. Then $R_{\Psi}(f, \ldots, f)$ holds, a contradiction.

Now suppose $R_{\Psi} \neq \emptyset$ and let $R_{\Psi}\left(a_{1}^{k}, \ldots, a_{n}^{k}\right), k=1, \ldots, m$. Then there exist families $\left(b_{i}^{k} \mid i \in I\right)$ satisfying Σ such that $\left(a_{1}^{k}, \ldots, a_{n}^{k}\right)=\left(b_{i_{1}}^{k}, \ldots, b_{i_{n}}^{k}\right), k=1, \ldots, m$. Using the fact that f preserves all relations and commutes with all operations whose symbols occur in Σ, one can observe by routine that $\left(f\left(b_{i}^{1}, \ldots, b_{i}^{m}\right) \mid i \in I\right)$ satisfies Σ. Hence it follows

$$
\left(f\left(a_{1}^{1}, \ldots, a_{1}^{m}\right), \ldots, f\left(a_{n}^{1}, \ldots, a_{n}^{m}\right)\right)=\left(f\left(b_{i_{1}}^{1}, \ldots, b_{i_{1}}^{m}\right), \ldots, f\left(b_{i_{n}}^{1}, \ldots, b_{i_{n}}^{m}\right)\right) \in R_{\Psi}
$$

showing that f preserves R_{Ψ}. Q.E.D.
Lemma 2. Let Γ be a set of relations of A. Then for every positive integer n, every finitely generated subalgebra of the algebra $\left(A, \Gamma^{*}\right)^{n}$ can be defined by a formula scheme over Γ. Moreover, if A is a finite set, then we can choose these formula schemes to be finite.

Proof. Let T be a finitely generated subalgebra of $\left(A, \Gamma^{*}\right)^{n}$. If $T=\emptyset$ then Γ^{*} has no nullary operation. Consider the set of formulas $\Sigma=\left\{R\left(x_{1}, \ldots, x_{1}\right) \mid R \in \Gamma\right\}$. Then there is no element of A satisfying Σ. For if $a \in A$ satisfies Σ then we get $R(a, \ldots, a)$ for all $R \in \Gamma$ which implies that $a \in \Gamma^{*}$, i.e., Γ^{*} has a nullary operation; a contradiction. Thus the formula scheme $\Psi=\left(\Sigma,\left\{x_{1}\right\},\left(x_{1}\right)\right)$ defines $T=\emptyset$, i.e., $R_{\Psi}=\emptyset=T$. Furthermore, as $R_{\psi}=\emptyset$, i.e., there is no element of A satisfying Σ, for any $a \in A$ there is a formula $R_{a}\left(x_{1}, \ldots, x_{1}\right) \in \Sigma$ such that $R_{a}(a, \ldots, a)$ does not hold. Then the formula scheme $\Psi^{\prime}=\left(\Sigma^{\prime},\left\{x_{1}\right\},\left(x_{1}\right)\right)$ with $\Sigma^{\prime}=\left\{R_{a}^{\prime}\left(x_{1}, \ldots, x_{1}\right) \mid a \in A\right\}$ defines $T=\emptyset$, too. Moreover, if A is a finite set then Ψ^{\prime} is a finite formula scheme.

Now suppose $T \neq \emptyset$ and the set $\left\{t_{i}=\left(t_{1 i}, \ldots, t_{n i}\right) \mid t_{i} \in A^{n}, i=1, \ldots, s\right\}$ generates T. Since Γ^{*} is a clone (i.e., it contains all projections and is closed under super-
position), $T=\left\{f\left(t_{1}, \ldots, t_{s}\right) \mid f \in \Gamma^{*} \cap O_{s}\right\}$. We construct a formula scheme Ψ which defines T.

Let X be a set of variables indexed by A^{s}, i.e., $X=\left\{x_{i} \mid i \in A^{s}\right\}$. Consider an arbitrary relation Q from Γ. Let m be the arity of Q. Considering every element of Q as a column vector of length m, every element of Q^{s} is an $m \times s$ matrix of elements of A. With Q and any matrix $M \in Q^{s}$ we associate a formula $Q\left(x_{M_{1}}, \ldots, x_{M_{m}}\right)$ of the variable set X, where M_{k} is the k-th row of $M, k=1, \ldots, m$. Now consider the formula scheme $\Psi=\left(\Sigma, X,\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)\right) \quad$ where $\quad X=\left\{x_{i} \mid i \in A^{s}\right\}, \quad \Sigma=$ $=\left\{Q\left(x_{M_{2}}, \ldots, x_{M_{m}}\right) \mid Q \in \Gamma \quad\right.$ and $\left.M \in Q^{s}\right\}$, and $\quad\left(i_{1}, \ldots, i_{n}\right)=\left(\left(t_{11}, \ldots, t_{1 s}\right), \ldots\right.$, $\left(t_{n 1}, \ldots, t_{n s}\right)$. We show that T is defined by Ψ, i.e., $T=R_{\Psi}$. Clearly $R_{\Psi}=$ $=\left\{\left(a_{i}, \ldots, a_{i_{n}}\right) \mid\left(a_{i} \mid i \in A^{s}\right) \in A^{A^{s}}\right.$ and $\left(a_{i} \mid i \in A^{s}\right)$ satisfies $\left.\Sigma\right\}$. Remark, however, that $A^{A^{s}}=O_{s}$, and thus we can write $f \in O_{s}$ instead of $\left(a_{i} \mid i \in A^{s}\right) \in A^{A^{s}}$. Using this notation we get

$$
\begin{aligned}
R_{\Psi} & =\left\{\left(f\left(i_{1}\right), \ldots, f\left(i_{n}\right)\right) \mid f \in O_{s} \text { and } f \text { satisfies } \Sigma\right\}= \\
& =\left\{\left(f\left(t_{11}, \ldots, t_{1 s}\right), \ldots, f\left(t_{n 1}, \ldots, t_{n s}\right)\right) \mid f \in O_{s} \text { and } f \text { satisfies } \Sigma\right\}= \\
& =\left\{f\left(t_{1}, \ldots, t_{s}\right) \mid f \in O_{s} \text { and } f \text { satisfies } \Sigma\right\} .
\end{aligned}
$$

Furthermore, an s-ary operation f satisfies Σ if and only if $f \in \Gamma^{*}$. To show this first suppose that $f \in O_{s}$ satisfies Σ. Let Q be an arbitrary m-ary relation from Γ, and let $q_{j}=\left(q_{1 j}, \ldots, q_{m j}\right) \in Q, j=1, \ldots, s$. Then from $M=\left(q_{1}, \ldots, q_{s}\right) \in Q^{s}$ we get $Q\left(x_{M_{1}}, \ldots, x_{M_{m}}\right) \in \Sigma$, which implies $Q\left(f\left(M_{1}\right), \ldots, f\left(M_{m}\right)\right)$, i.e., $Q\left(f\left(q_{11}, \ldots, q_{1 s}\right)\right.$, $\ldots, f\left(q_{m 1}, \ldots, q_{m s}\right)$ proving that f preserves Q. Hence $f \in \Gamma^{*}$. Conversely suppose that $f \in O_{s} \cap \Gamma^{*}$ and $Q\left(x_{j_{1}}, \ldots, x_{j_{m}}\right)$ is an arbitrary formula from Σ, where $j_{k}=\left(j_{k 1}, \ldots, j_{k s}\right), k=1, \ldots, m$. Then the matrix $\left(j_{k k}\right)_{m \times s}$ is an element of Q^{s}, i.e., $\left(j_{l l}, \ldots, j_{m l}\right) \in Q, l=1, \ldots, s$. Taking into account that f preserves Q we get that $Q\left(f\left(j_{11}, \ldots, j_{15}\right), \ldots, f\left(j_{m 1}, \ldots, j_{m s}\right)\right.$, i.e., $Q\left(f\left(j_{1}\right), \ldots, f\left(j_{m}\right)\right)$ proving that f satisfies the formula $Q\left(x_{j_{1}}, \ldots, x_{j_{m}}\right)$. Hence f satisfies Σ. This implies $R_{\Psi}=$ $=\left(f\left(t_{1}, \ldots, t_{s}\right) \mid f \in \Gamma^{*} \cap O_{s}\right\}$, and the right side is the same as T.

Now let A be a finite set, and consider the formula scheme Ψ constructed above. For every s-ary operation f that does not satisfy Σ there exists a formula $\mathscr{T}_{f} \in \Sigma$ such that f does not satisfy $\mathscr{\mathscr { F }}_{\boldsymbol{f}}$. Consider the set of formulas $\Sigma^{\prime}=\left\{\mathscr{F}_{f} \mid f \in O_{s}\right.$ and f does not satisfy $\Sigma\}$. It is evident that an s-ary operation satisfies Σ if and only if it satisfies Σ^{\prime}. Therefore, the formula scheme $\Psi^{\prime}=\left(\Sigma^{\prime}, X,\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)\right)$ where X and $\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)$ are the same as above, defines the relation T. Namely,

$$
\begin{aligned}
T & =R_{\Psi}=\left\{\left(f\left(i_{1}\right), \ldots, f\left(i_{n}\right)\right) \mid f \in O_{s} \text { and } f \text { satisfies } \Sigma\right\}= \\
& =\left\{\left(f\left(i_{\mathbb{1}}\right), \ldots, f\left(i_{n}\right)\right) \mid f \in O_{s} \text { and } f \text { satisfies } \Sigma^{\prime}\right\}=R_{\Psi} .
\end{aligned}
$$

Furthermore, from $|X|=\left|A^{s}\right|$ and $\left|\Sigma^{\prime}\right| \leqq\left|O_{s}\right|=\left|A^{A^{s} \mid}\right|$ it follows that X and Σ^{\prime} are finite. Hence Ψ^{\prime} is a finite formula scheme. Q.E.D.

Lemma 3. If A is a finite set and a relation can be defined by a formula scheme over a set of relations Γ, then it can be defined by a finite formula scheme over Γ.

Proof. Suppose an n-ary relation R can be defined by a formula scheme over Γ. From Lemma 1 it follows $R \in \operatorname{Sub}\left(\left(A, \Gamma^{*}\right)^{n}\right)$. Applying Lemma 2 we get that R can be defined by a finite formula scheme over Γ. Q.E.D.

Lemma 4. Let Γ be a set of relations of A. Then a relation R belongs to $\Gamma^{* 0}$ if and only if R is the union of a directed system of relations defined by formula schemes over Γ.

Proof. First let $R=\bigcup_{i \in I} R_{i}$ where $\left(R_{i} \mid i \in I\right)$ is a directed system of relations defined by formula schemes over Γ. Therefore, by Lemma 1 , we get that $R_{i} \in \Gamma^{* 0}$, $i \in I$. Furthermore, one can see easily that the union of a directed system of elements of $\Gamma^{* 0}$ belongs to $\Gamma^{* 0}$.

Now suppose that $R \in \Gamma^{* 0}$ is an n-ary relation. Then R is a subalgebra of the algebra $\left(A, \Gamma^{*}\right)^{n}$. Therefore $R=\bigcup_{i \in I} R_{i}$ where $\left(R_{i} \mid i \in I\right)$ is the directed system of the finitely generated subalgebras of $\left(A, \Gamma^{*}\right)^{n}$ contained in R. In view of Lemma 2, we have that $R_{i}, i \in I$, can be defined by a formula scheme over Γ. Q.E.D.

Lemma 5. Let Γ be a set of relations of A. Then an operation f belongs to $\Gamma^{* *}$ if and only if f can be defined by Γ locally.

Proof. First suppose that f is an n-ary operation which is defined by Γ locally. Choose an m-ary operation g from Γ^{*} and let $M=\left(a_{k l}\right)_{m \times n}$ be an $m \times n$ matrix of elements of A. According to our assumption, there is a formula scheme Ψ that defines f on

$$
B=\left\{\left(a_{k 1}, \ldots, a_{k n}\right) \mid k=1, \ldots, m\right\} \cup\left\{\left(g\left(a_{11}, \ldots, a_{m 1}\right), \ldots, g\left(a_{1 n}, \ldots, a_{m n}\right)\right)\right\}
$$

Then $R_{\Psi}\left(a_{k 1}, \ldots, a_{k n}, f\left(a_{k 1}, \ldots, a_{k n}\right)\right)$ holds, $k=1, \ldots, m$. Using Lemma 1 we get that $R_{\Psi}\left(g\left(a_{11}, \ldots, a_{m 1}\right), \ldots, g\left(a_{1 n}, \ldots, a_{m n}\right), g\left(f\left(a_{11}, \ldots, a_{1 n}\right), \ldots, f\left(a_{m 1}, \ldots, a_{m n}\right)\right)\right.$ holds, too, whence

$$
f\left(g\left(a_{11}, \ldots, a_{m 1}\right), \ldots, g\left(a_{1 n}, \ldots, a_{m n}\right)\right)=g\left(f\left(a_{11}, \ldots, a_{1 n}\right), \ldots, f\left(a_{m 1}, \ldots, a_{m n}\right)\right)
$$

follows, i.e., $f((M) g)=(f(M)) g$. Hence f commutes with g showing that $f \in \Gamma^{* *}$.
Now suppose that $f \in \Gamma^{* *}$ is an n-ary operation and let $B \subseteq A^{n}$ be a finite set. Considering f as an ($n+1$)-ary relation we have $f \in \Gamma^{* 0}$. Therefore, by Lemma 4, we get $f=\bigcup_{i \in I} R_{i}$ where $\left(R_{i} \mid i \in I\right)$ is a directed system of ($n+1$)-ary) relations defined by formula schemes over Γ. As $\left(R_{i} \mid i \in I\right)$ is a directed system and B is a finite set, $f=\bigcup_{i \in I} R_{i}$ implies $f \mid B \subseteq R_{i_{0}}$ for some $i_{0} \in I$. Now let Ψ be a formula scheme over Γ defining $R_{i_{0}}$. Then $f \mid B \subseteq R_{i_{0}} \subseteq f$ implies

$$
f \mid B=\left\{\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) \mid\left(a_{1}, \ldots, a_{n}\right) \in B \quad \text { and } \quad\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) \in R_{i_{0}}=R_{\psi}\right\}
$$

and this means exactly that Ψ defines f on B. Q.E.D.

Theorem 6. Let $\Gamma_{i} \subseteq \Pi_{i}(\subseteq \mathscr{R}), i \in I$, be sets of relations of A; furthermore, let $\Omega_{j} \subseteq \Pi_{j}(\subseteq \mathscr{O}), j \in J$, be sets of such relations which are operations of A. Put $\Gamma=\left(\bigcup_{i \in I} \Gamma_{i}\right) \cup\left(\bigcup_{j \in J} \Omega_{j}\right)$. Then the following two statements are equivalent:
I. There exists an algebra (A, Ω) such that $\Gamma_{i}=\operatorname{Rel}_{\Pi_{i}}(A, \Omega)$ and $\Omega_{J}=$ $=\operatorname{Rel}_{\Pi_{j}}(A, \Omega)$ for every $i \in I$ and $j \in J$.
II. (α) For every $i \in I$, if a Π_{i}-relation is the union of a directed system of relations defined by formula schemes over Γ, then it belongs to Γ_{i}.
(β) For every $j \in J$, if a Π_{j}-relation (operation) can be defined by Γ locally then it belongs to Ω_{j}.

Proof. $\mathrm{I} \Rightarrow$ II. Suppose that $\Gamma_{i}=\operatorname{Rel}_{\Pi_{i}}(A, \Omega)$ and $\Omega_{j}=\operatorname{Rel}_{\Pi_{j}}(A, \Omega)$ for some algebra (A, Ω) for every $i \in I$ and $j \in J$. First let $i_{0} \in I$ and suppose a $\Pi_{i_{0}}$-relation R to be the union of a directed system of relations defined by formula schemes over Γ. Taking into account Lemma 4 and $\Gamma^{*} \supseteq \Omega$ we have that $R \in \Gamma^{* 0} \subseteq \Omega^{0}$. This fact together with R being a $\Pi_{i_{0}}$-relation shows that $R \in \operatorname{Rel}_{\Pi_{i_{0}}}(A, \Omega)$. Hence (α) holds.

Now let $j_{0} \in J$ and suppose a $\Pi_{j_{0}}$-operation f can be defined by Γ locally. Then, by Lemma 5, we have $f \in \Gamma^{* *} \subseteq \Omega^{*} \subseteq \Omega^{0}$. Hence $f \in \operatorname{Rel}_{\Pi_{j_{0}}}(A, \Omega)$, i.e., (β) holds.
$\mathrm{II} \Rightarrow \mathrm{I}$. Let $\Omega=\Gamma^{*}$. We shall prove that $\Gamma_{i}=\operatorname{Rel}_{\Pi_{i}}(A, \Omega)$ and $\Omega_{j}=\operatorname{Rel}_{\Pi_{j}}(A, \Omega)$ for every $i \in I$ and $j \in J$. First choose an arbitrary $i_{0} \in I$. The inclusion $\Gamma_{i_{0}} \subseteq \operatorname{Rel}_{\Pi_{i_{0}}}(A, \Omega)$ is obvious. Let $R \in \operatorname{Rel}_{\Pi_{i_{0}}}(A, \Omega)$. Then $R \in \Omega^{0}=\Gamma^{* 0}$. Therefore, by Lemma 4, we have that R is the union of a directed system of relations defined by formula schemes over Γ. Thus, by the condition (α), $R \in \Gamma_{j_{0}}$.

Now choose an arbitrary $j_{0} \in J$. Again, $\Omega_{j_{0}} \subseteq \operatorname{Rel}_{\Pi_{j_{0}}}(A, \Omega)$ is obvious. Let $f \in \operatorname{Rel}_{\Pi_{j_{0}}}(A, \Omega)$ be a $\Pi_{j_{0}}$-operation. Then $f \in \Omega^{*}=\Gamma^{* *}$. Therefore, by Lemma 5 , we get that f can be defined by Γ locally. Thus, by the condition $(\beta), f \in \Omega_{j_{0}}$. Q.E.D.

Theorem 7. Let $\left(\Gamma_{n} \mid n=1,2, \ldots\right)$ be a family of sets of relations of A such that Γ_{n} has n-ary relations only, $n=1,2, \ldots$. Then the following two statements are equivalent:
I. There exists an algebra (A, Ω) such that $\Gamma_{n}=\operatorname{Sub}\left((A, \Omega)^{n}\right), n=1,2, \ldots$.
II. (α) For every n, if an n-ary relation can be defined by a formula scheme over $\bigcup_{k=1}^{\infty} \Gamma_{k}$ then it belongs to Γ_{n}.
(β) For every n, Γ_{n} is closed under union of directed systems.
Proof. Put $I=\{1,2, \ldots\}, J=\emptyset$ and, as Π_{n}, the set of all n-ary relations of A in Theorem 6.

Corollary 8. If A is a finite set then statement II in Theorem 6 can be replaced by
II^{\prime}. For every n, if an n-ary relation can be defined by a finite formula scheme over $\bigcup_{k=1}^{\infty} \Gamma_{k}$ then it belongs to Γ_{n}.

Proof. As A is a finite set, the assumption (β) in Theorem 6 is superfluous and we can apply Lemma 3.

Theorem 9. Let Γ be a set of n-ary relations of A. Then there exists an algebra (A, Ω) such that $\Gamma=\operatorname{Sub}\left((A, \Omega)^{n}\right)$ if and only if Γ is closed under union of directed systems and Γ contains every n-ary relation defined by a formula scheme over Γ.

Proof. Put $I=\{1\}, \Gamma_{1}=\Gamma, J=\emptyset$ and, as Π_{1}, the set of all n-ary relations of A in Theorem 6 .

Corollary 10. Let A be finite and let Γ be a set of n-ary relations of A. Then there exists an algebra (A, Ω) such that $\Gamma=\operatorname{Sub}\left((A, \Omega)^{n}\right)$ if and only if Γ contains every n-ary relation defined by a finite formula scheme over Γ.

Corollary 11. (J. Schmidt) For a set Γ of unary relations of A, there is an algebra (A, Ω) such that $\Gamma=\operatorname{Sub}(A, \Omega)$ if and only if Γ is an algebraic closure system.

Proof. Suppose that $\Gamma=\operatorname{Sub}(A, \Omega)$ for some algebra (A, Ω). Let $\left\{R_{j} \mid j \in J\right\}$ be a subset of Γ. Then the formula scheme $\left(\Sigma,\left\{x_{1}\right\},\left(x_{1}\right)\right)$ with $\Sigma=\left\{R_{j}\left(x_{1}\right) \mid j \in J\right\}$ defines $\bigcap_{j \in J} R_{j}$. Applying Theorem 9, we get that $\bigcap_{j \in J} R_{j} \in \Gamma$, i.e., Γ is closed under intersections. This fact together with the conditions of Theorem 9 proves that Γ is an algebraic closure system.

Conversely, suppose that Γ is an algebraic closure system. Then Γ is closed under union of directed systems. Now consider a formula scheme $\Psi=\left(\Sigma, X,\left(x_{1}\right)\right)$ ($X=\left\{x_{i} \mid i \in I\right\}$) over Γ. If $R_{\Psi}=\emptyset$ then $R_{\Psi}=\emptyset=\bigcap_{R \in \Gamma} R$. Otherwise, $a \in \bigcap_{R \in \Gamma} R$ implies that $\left(a_{i} \mid i \in I\right)$ where $a_{i}=a$ for all $i \in I$, satisfies Σ showing $R_{\varphi}(a)$, a contradiction. Thus $R_{\Psi}=\emptyset \in \Gamma$. If $R_{\Psi} \neq \emptyset$, then it is a routine to check that $R_{\Psi}=\underset{R\left(x_{1}\right) \in \Sigma}{ } R$, i.e., $R_{\Psi} \in \Gamma$. Thus we get that Γ satisfies the condition of Theorem 9. Q.E.D.

In [1], KALUŽNIN and his co-workers have given a characterization for the subalgebra system $\bigcup_{n=1}^{\infty} \operatorname{Sub}\left((A, \Omega)^{n}\right)$ of a finite algebra (A, Ω). Now we derive their result from Corollary 8 . We need some additional notions and notations.

For an m-ary relation R of A and a permutation τ of the set $\{1, \ldots, m\}$ the τ-translate of R is an m-ary relation R^{τ} of A defined by $\left.R^{\tau}=\left\{a_{1 \tau}, \ldots, a_{m \tau}\right) \mid R\left(a_{1}, \ldots, \dot{a}_{m}\right)\right\}$. For any two relations R and T of arity m and n, respectively, the direct product of R and T is an $(m+n)$-ary relation $R \times T$ defined by $R \times T=\left\{\left(a_{1}, \ldots, a_{m+n}\right) \mid R\left(a_{1}, \ldots, a_{m}\right)\right.$ and $\left.T\left(a_{m+1}, \ldots, a_{m+n}\right)\right\}$. If R is an m-ary relation and $1 \leqq i_{1}<\ldots<i_{t} \leqq m$, then
the projection of R to the coordinates i_{1}, \ldots, i_{t} is a t-ary relation $R_{i_{1}}, \ldots, i_{t}$ defined by $R_{i_{1}, \ldots, i_{t}}=\left\{\left(a_{i_{1}}, \ldots, a_{i_{\mathrm{i}}}\right) \mid R\left(a_{1}, \ldots, a_{m}\right)\right\}$. If R is an m-ary relation and Θ is an equivalence relation of the set $\{1, \ldots, m\}$, then the Θ-diagonal of R is an m-ary relation R_{θ} defined by $R_{\theta}=\left\{\left(a_{1}, \ldots, a_{m}\right) \mid R\left(a_{1}, \ldots, a_{m}\right)\right.$ and $\left.\left(i \Theta j \Rightarrow a_{i}=a_{j}\right)\right\}$. Finally, the n-ary diagonal D_{n} is defined by $D_{n}=\{(a, \ldots, a) \mid a \in A\}$ for any n.

Corollary 12. (V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, V. A. Romov) If A is a finite set and Γ is a set of relations of A then there exists an algebra (A, Ω) such that $\Gamma=\bigcup_{n=1}^{\infty} \operatorname{Sub}\left((A, \Omega)^{n}\right)$ if and only if all diagonals belong to Γ, and Γ is closed under formation of direct products, as well as arbitrary τ-translates, projections, and Θ-diagonals.

Proof. By Corollary 8 we have to prove only that a set of relations Γ fulfils' the assumptions of the corollary if and only if every relation defined by a finite formula scheme over Γ belongs to Γ.

First suppose that all relations defined by finite formula schemes belong to Γ. Then for any n the formula scheme ($\emptyset,\left\{x_{1}\right\},\left(x_{1}, \ldots, x_{1}\right)$) defines D_{n}. If R and T are relations from Γ of arity m and n, respectively, τ is a permutation and Θ is an equivalence relation of the set $\{1, \ldots, m\}$ and $1 \leqq i_{1}<\ldots<i_{t} \leqq m$, then the formula schemes

$$
\begin{gathered}
\left(\left\{R\left(x_{1}, \ldots, x_{m}\right), T\left(x_{m+1}, \ldots, x_{m+n}\right)\right\},\left\{x_{1}, \ldots, x_{m+n}\right\},\left(x_{1}, \ldots, x_{m+n}\right)\right), \\
\left(\left\{R\left(x_{1}, \ldots, x_{m}\right)\right\},\left\{x_{1}, \ldots, x_{m}\right\},\left(x_{1 \tau}, \ldots, x_{m t}\right)\right) \\
\left(\left\{R\left(x_{1}, \ldots, x_{m}\right)\right\},\left\{x_{1}, \ldots, x_{m}\right\},\left(x_{i_{1}}, \ldots, x_{i_{t}}\right)\right),
\end{gathered}
$$

and

$$
\left(\left\{R\left(x_{1}, \ldots, x_{m}\right)\right\} \cup\left\{D_{2}\left(x_{k}, x_{l}\right) \mid k \Theta l\right\},\left\{x_{1}, \ldots, x_{m}\right\},\left(x_{1}, \ldots, x_{m}\right)\right)
$$

define $R \times T, R^{\mathrm{t}}, R_{i_{1}, \ldots, i_{t}}$ and R_{θ}, respectively.
Conversely, suppose that Γ satisfies the assumptions of the corollary and let $\Psi=\left(\Sigma, X,\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)\right)\left(X=\left\{x_{i} \mid i \in I\right\}\right)$ be a finite formula scheme over Γ. We have to prove that R_{Ψ} can be got from Γ in a finite number of steps by formation of directed products, τ-translates, projections, and Θ-diagonals. Concerning Ψ, we can assume w.l.o.g. that every component of $\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)$ occurs in some formula of Σ, otherwise we can add the formulas $D_{2}\left(x_{i_{1}}, x_{i_{1}}\right), \ldots, D_{2}\left(x_{i_{n}}, x_{i_{n}}\right)$ to Σ. Furthermore, we can assume that ($x_{i_{1}}, \ldots, x_{i_{n}}$) has pairwise distinct components, otherwise we can consider the formula scheme $\Psi=\left(\Sigma^{\prime}, X^{\prime},\left(y_{1}, \ldots, y_{n}\right)\right)$ where $\quad X^{\prime}=X \cup\left\{y_{1}, \ldots, y_{n}\right\}\left(X \cap\left\{y_{1}, \ldots, y_{n}\right\} \neq \emptyset\right) \quad$ and $\quad \Sigma^{\prime}=\Sigma \cup\left\{D_{2}\left(x_{i_{1}}, y_{1}\right), \ldots\right.$, $D_{2}\left(x_{i_{n}}, y_{n}\right)$. Clearly $R_{\Psi}=R_{\Psi \prime}$. Finally, we can also assume that Σ has formulas of the form $R\left(x_{j_{1}}, \ldots, x_{j_{m}}\right)$ ($R \in \Gamma$) only. Otherwise, if a formula ε of the form $f\left(x_{t_{1}}, \ldots, x_{t_{s}}\right)=g\left(x_{k_{1}}, \ldots, x_{k_{r}}\right)$ belongs to Σ, then replace ε by the formulas
$f\left(x_{t_{1}}, \ldots, x_{t_{\varepsilon}}\right)=y_{s}$ and $g\left(x_{k_{1}}, \ldots, x_{k_{r}}\right)=y_{e}$. Considering f and g as ($s+1$)-ary and $(r+1)$-ary relations, respectively, these formulas have the form we required. Thus we get a set of formulas $\Sigma^{\prime \prime}$. Then the formula scheme $\Psi^{\prime \prime}=$ $=\left(\Sigma^{\prime \prime}, X^{\prime \prime},\left(x_{i_{2}}, \ldots, x_{i_{n}}\right)\right)$ with $X^{\prime \prime}=X \cup\left\{y_{e} \mid \varepsilon \in \Sigma\right.$ and ε is of the form $\left.f=g\right\}$ defines R_{Ψ}.

Now suppose that Ψ has these properties. Then let

$$
\Sigma=\left\{R_{1}\left(y_{1}^{1}, \ldots, y_{n_{1}}^{1}\right), \ldots, R_{s}\left(y_{1}^{s}, \ldots, y_{n_{s}^{s}}^{s}\right)\right\}, \quad y_{k}^{l} \in X, \quad l=1, \ldots, s, \quad k=1, \ldots, n_{l} .
$$

Consider the formula scheme $\Phi=\left(\Sigma, X,\left(y_{1}^{1}, \ldots, y_{n_{1}}^{1}, \ldots, y_{1}^{s}, \ldots, y_{n_{s}}^{s}\right)\right)$. Observe that R_{Ψ} can be got from R_{Φ} by formation of a suitable projection and τ-translate. Furthermore, let Θ be an equivalence of the set $\left\{1, \ldots, \sum_{k=1}^{s} n_{k}\right\}$ defined as follows: $j \Theta l$ if and only if the j-th and l-th components of $\left(y_{1}^{1}, \ldots, y_{n_{1}}^{1}, \ldots, y_{1}^{s}, \ldots, y_{n_{\mathrm{B}}}^{s}\right)$ are equal, $j, l=1, \ldots, \sum_{k=1}^{s} n_{k}$. Now it is a routine to verify that R_{Φ} equals the Θ-diagonal of $R_{1} \times \ldots \times R_{s}$. Q.E.D.

Theorem 13. If Ω is a set of operations of A, then $\Omega=\Omega^{* *}$ if and only if Ω contains every operation defined by Ω locally.

It follows from Lemma 5 immediately.
Corollary 14. (A. V. Kuznecov) If A is a finite set, then $\Omega=\Omega^{* *}$ for some set of operations Ω if and only if every operation defined by a finite formula scheme over Ω belongs to Ω.

Proof. If A is a finite set, an operation f locally definable by Ω can be defined by a formula scheme over Ω. Lemma 3 shows that we can restrict ourselves to finite formulas: It remains to apply Theorem 13.

Theorem 15. For a set E of transformations of A there exists an algebra (A, Ω) such that $E=\operatorname{End}(A, \Omega)$ if and only if E contains every transformation defined by E locally.

Proof. Put $I=\emptyset, J=\{1\}, \Omega_{1}=E$ and, as Π_{1}, the set of all unary operations in Theorem 6.

Corollary 16. If A is a finite set, then for a set E of transformations of A there exists an algebra (A, Ω) such that $E=E n d(A, \Omega)$ if and only if E contains every transformation defined by a finite formula scheme over E.

Proof. We can proceed similarly as it was done in the proof of Corollary 12.

References

[1] V. G. Bodnarěuk, L. A. Kalužnin, V. A. Kotov, and V. A. Romov, Galois theory for Post algebras, Kibernetika (Kiev), 1969, no. 3, 1-10; 1969, no. 5, 1-9 (in English: Cybernetics, 5 (1969), 243-252; 531-539).
[2] P. M. Cohn, Universal algebra, Harper and Row (1965).
[3] G. Grätzer, Universal algebra, Van Nostrand (1968).
[4] B. Jónsson, Topics in universal algebra, Lecture Notes in Mathematics, Vol. 250, Springer (1972).
[5] N. Sauer, M. G. Stone, The algebraic closure of a semigroup of functions, Algebra Universalis, 7 (1977), 219-233.
[6] I. I. Valuce, Mappings, Algebraic aspects of the theory, Izd. Stiinca (Kishinev, 1976) (Russian).

