Concrete representation of related structures of universal algebras. I

L. SZABÓ

In his recent book [6], I. I. VALUCE quotes without proof a result of A. V. Kuznecov, unpublished up to now. Trying to re-establish the proof, we observed some general facts concerning mutual properties of relations and operations. This enables us to solve several concrete representation problems for related structures of algebras in a uniform way.

The basic propositions of this article are Lemmas 1—5 preceded by a survey of notions we shall need. Using them we give a simultaneous characterization for related structures of universal algebras (Theorem 6). As special cases of Theorem 6 we get characterizations for the systems of subalgebras of finite direct powers of algebras (G. Grätzer's Problem 19 in [3]; Theorem 7 and 9) and the endomorphism semigroups of algebras (Grätzer's Problem 3 in [3]; Theorem 15; for another solution of this problem, see N. SAUER and M. G. STONE [5]). As corollaries we get Jürgen Schmidt's concrete representation theorem for the subalgebra systems of algebras (see, e.g. [2]) and the Bodnarčuk—Kalužnin—Kotov—Romov theorem for the subalgebra systems of all finite direct powers of finite algebras [1]. Moreover, we characterize the bicentralizers of sets of operations in arbitrary algebras. Then Kuznecov's above mentioned result appears as a special case.

In a forthcoming Part II, we shall apply the method developed here for the representation of other related structures.

Let A be a nonempty set which will be fixed in the sequel. Let O_n (n=0, 1, 2, ...)and O denote the set of all *n*-ary and all finitary operations of A, respectively; furthermore, let \mathcal{R}_n (n=1, 2, ...) and \mathcal{R} denote the set of all *n*-ary and all finitary relations of A, respectively. In general, we shall not distinguish between an operation and the associated relation, i.e., an *n*-ary operation may be considered as a mapping $f: A^n \to A$ and as an (n+1)-ary relation $\{(a_1, ..., a_n, f(a_1, ..., a_n)) | (a_1, ..., a_n) \in A^n\}$ as well. Thus we have $O \subseteq \mathcal{R}$ and $O_n \subseteq \mathcal{R}_{n+1}$, n=0, 1, 2, ... If R is an *n*-ary relation, we shall often write $R(a_1, ..., a_n)$ instead of $(a_1, ..., a_n) \in R$.

Received March 3, 1977.

L. Szabó

We say that an *n*-ary operation f preserves an *m*-ary relation R, if $R(f(a_{11}, \ldots, a_{1n}), \ldots, f(a_{m1}, \ldots, a_{mn}))$ holds whenever $R(a_{1k}, \ldots, a_{mk}), k=1, \ldots, n$, i.e., (R, f) is a subalgebra of the algebra $(A, f)^m$ (the *m*-th direct power of (A, f)). Remark that the empty set is an *n*-ary relation for every $n \ge 1$, and it is preserved by every *m*-ary operation where $m \ge 1$. Let f and g be operations of arity n and m, respectively. If M is an $m \times n$ matrix of elements of A, we can apply f[g] to each row [column] of M. Thus we get a column [row] consisting of m[n] elements, which will be denoted by f(M)[(M)g]. If for any $m \times n$ matrix M of elements of A, f((M)g)=(f(M))g holds then we say that f and g commute. Clearly, two operations commute if and only if any of them preserves the other as a relation. For any set of relations Γ , denote by Γ^* the set of all operations preserving every member of Γ . We call Γ^* the centralizer of Γ . If $\Gamma = \Omega$ is a set of operations, then Ω^{**} is called the *bicentralizer* of Γ . The symbol Ω° will denote the set of all relations Ω .

Let Π be a set of relations of A, i.e., $\Pi \subseteq \mathscr{R}$. If a relation belongs to Π , we shall call it a Π -relation. Let (A, Ω) be an algebra. By the related structure of type Π of (A, Ω) (in symbol: $\operatorname{Rel}_{\Pi}(A, \Omega)$) we mean the set of all Π -relation preserved by every operation of Ω , i.e., $\operatorname{Rel}_{\Pi}(A, \Omega) = \Omega^{\circ} \cap \Pi$. Observe that if Π_1 is the set of all *n*-ary relations of A, Π_2 is the set of all equivalences of A, Π_3 is the set of all unary operations of A, and Π_4 is the set of all bijective unary operations of A, then $\operatorname{Rel}_{\Pi_1}(A, \Omega) = \operatorname{Sub}((A, \Omega)^n)$, $\operatorname{Rel}_{\Pi_2}(A, \Omega) = \operatorname{Con}(A, \Omega)$, $\operatorname{Rel}_{\pi_3}(A, \Omega) = \operatorname{End}(A, \Omega)$ and $\operatorname{Rel}_{\Pi_4}(A, \Omega) = \operatorname{Aut}(A, \Omega)$.

Let $X = \{x_i | i \in I\}$ be a set of variables indexed by an arbitrary set I and let Γ be a set of relations of A. If R is a symbol of an n-ary relation in Γ and f, g are symbols of operations of arity m, s that denote a projection or an operation belonging to Γ , respectively, then $R(x_{i_1}, \ldots, x_{i_n})$ and $f(x_{j_1}, \ldots, x_{j_m}) = g(x_{i_1}, \ldots, x_{i_n})$ are said to be formulas of the variable set X over Γ provided $x_{i_1}, \ldots, x_{i_n}, x_{j_1}, \ldots, x_{j_m}$ $x_{t_1}, \ldots, x_t \in X$. (Note that we might have formulas of the first kind only, but introducing these two kinds of formulas our considerations became somewhat simpler.) We say that a family $(a_i | i \in I) \in A^I$ satisfies the above formulas if $R(a_{i_1}, \ldots, a_{i_n})$, resp. $f(a_{j_1}, \ldots, a_{j_m}) = g(a_{t_1}, \ldots, a_{t_n})$ holds. Consider a triple $\Psi = (\Sigma, X, (x_{i_1}, \ldots, x_{i_n}))$ where $X = \{x_i | i \in I\}$ is a set of variables indexed by $I, (x_{i_1}, \dots, x_{i_n}) \in X^n$, and Σ is a set of formulas of variable set X over Γ . Such a triple will be referred to as a formula scheme over Γ . We say that Ψ is finite if both Σ and X are finite. If $\Psi = (\Sigma, X, (x_{i_1}, ..., x_{i_n}))$ $(X = \{x_i | i \in I\})$ is a formula scheme then we associate with Ψ an *n*-ary relation R_{Ψ} defined as follows: $R_{\Psi} = \{(a_{i_1}, \dots, a_{i_n}) | (a_i | i \in I) \in A^I\}$ and $(a_i | i \in I)$ satisfies (every member of) Σ . Then we say that R_{Ψ} is defined by the formula scheme Ψ .

We say that a formula scheme $\Psi = (\Sigma, X, (x_{i_1}, \dots, x_{i_n}, x_{i_{n+1}}))$ $(X = \{x_i | i \in I\})$

176

defines the *n*-ary operation f on $B \subseteq A^n$ if for any $(a_1, \ldots, a_n) \in B$, $f(a_1, \ldots, a_n) = a_{n+1}$ for some $a_{n+1} \in A$ if and only if $R_{\Psi}(a_1, \ldots, a_n, a_{n+1})$ holds. For $B = A^n$ we say that Ψ defines f. An *n*-ary operation f is said to be locally definable by a set of relations Γ , if for every finite $B \subseteq A^n$ there exists a formula scheme over Γ defining f on B.

The following lemmas describe the connection between the notions "relations preserved by operations" and "relations defined by formula schemes".

Lemma 1. Let Γ be a set of relations of A. If a relation R can be defined by a formula scheme over Γ , then $R \in \Gamma^{*0}$.

Proof. Let $\Psi = (\Sigma, X, (x_{i_1}, ..., x_{i_n}))$ $(X = \{x_i | i \in I\})$ be a formula scheme over Γ and let f be an *m*-ary operation preserving all members of Γ . If $R_{\Psi} = \emptyset$ then f preserves R_{Ψ} trivially, unless m=0. However if m=0, i.e., f is a nullary operation then R(f, ..., f) holds for every $R \in \Gamma$, whence it follows that Σ is satisfied by $(a_i | i \in I)$ where $a_i = f$ for all $i \in I$. Then $R_{\Psi}(f, ..., f)$ holds, a contradiction.

Now suppose $R_{\Psi} \neq \emptyset$ and let $R_{\Psi}(a_1^k, \ldots, a_n^k)$, $k=1, \ldots, m$. Then there exist families $(b_i^k | i \in I)$ satisfying Σ such that $(a_1^k, \ldots, a_n^k) = (b_{i_1}^k, \ldots, b_{i_n}^k)$, $k=1, \ldots, m$. Using the fact that f preserves all relations and commutes with all operations whose symbols occur in Σ , one can observe by routine that $(f(b_i^1, \ldots, b_i^m) | i \in I)$ satisfies Σ . Hence it follows

 $(f(a_1^1, \ldots, a_1^m), \ldots, f(a_n^1, \ldots, a_n^m)) = (f(b_{i_1}^1, \ldots, b_{i_1}^m), \ldots, f(b_{i_n}^1, \ldots, b_{i_n}^m)) \in R_{\Psi}$

showing that f preserves R_{Ψ} . Q.E.D.

Lemma 2. Let Γ be a set of relations of A. Then for every positive integer n, every finitely generated subalgebra of the algebra $(A, \Gamma^*)^n$ can be defined by a formula scheme over Γ . Moreover, if A is a finite set, then we can choose these formula schemes to be finite.

Proof. Let T be a finitely generated subalgebra of $(A, \Gamma^*)^n$. If $T=\emptyset$ then Γ^* has no nullary operation. Consider the set of formulas $\Sigma = \{R(x_1, \ldots, x_1) | R \in \Gamma\}$. Then there is no element of A satisfying Σ . For if $a \in A$ satisfies Σ then we get $R(a, \ldots, a)$ for all $R \in \Gamma$ which implies that $a \in \Gamma^*$, i.e., Γ^* has a nullary operation, a contradiction. Thus the formula scheme $\Psi = (\Sigma, \{x_1\}, (x_1))$ defines $T=\emptyset$, i.e., $R_{\Psi} = \emptyset = T$. Furthermore, as $R_{\Psi} = \emptyset$, i.e., there is no element of A satisfying Σ , for any $a \in A$ there is a formula $R_a(x_1, \ldots, x_1) \in \Sigma$ such that $R_a(a, \ldots, a)$ does not hold. Then the formula scheme $\Psi' = (\Sigma', \{x_1\}, (x_1))$ with $\Sigma' = \{R_a(x_1, \ldots, x_1) | a \in A\}$ defines $T = \emptyset$, too. Moreover, if A is a finite set then Ψ' is a finite formula scheme.

Now suppose $T \neq \emptyset$ and the set $\{t_i = (t_{1i}, \dots, t_{ni}) | t_i \in A^n, i = 1, \dots, s\}$ generates T. Since Γ^* is a clone (i.e., it contains all projections and is closed under super-

12

position), $T = \{f(t_1, ..., t_s) | f \in \Gamma^* \cap O_s\}$. We construct a formula scheme Ψ which defines T.

Let X be a set of variables indexed by A^s , i.e., $X = \{x_i | i \in A^s\}$. Consider an arbitrary relation Q from Γ . Let m be the arity of Q. Considering every element of Q as a column vector of length m, every element of Q^s is an $m \times s$ matrix of elements of A. With Q and any matrix $M \in Q^s$ we associate a formula $Q(x_{M_1}, \ldots, x_{M_m})$ of the variable set X, where M_k is the k-th row of M, $k=1, \ldots, m$. Now consider the formula scheme $\Psi = (\Sigma, X, (x_{i_1}, \ldots, x_{i_n}))$ where $X = \{x_i | i \in A^s\}$, $\Sigma = \{Q(x_{M_1}, \ldots, x_{M_m}) | Q \in \Gamma$ and $M \in Q^s\}$, and $(i_1, \ldots, i_n) = ((t_{11}, \ldots, t_{1s}), \ldots, (t_{n1}, \ldots, t_{ns}))$. We show that T is defined by Ψ , i.e., $T = R_{\Psi}$. Clearly $R_{\Psi} = \{(a_{i_1}, \ldots, a_{i_n}) | (a_i | i \in A^s) \in A^{A^s}$ and $(a_i | i \in A^s) \in A^{A^s}$. Using this notation we get

$$R_{\Psi} = \left\{ \left(f(t_1), \dots, f(t_n) \right) | f \in O_s \text{ and } f \text{ satisfies } \Sigma \right\} =$$

= $\left\{ \left(f(t_{11}, \dots, t_{1s}), \dots, f(t_{n1}, \dots, t_{ns}) \right) | f \in O_s \text{ and } f \text{ satisfies } \Sigma \right\} =$
= $\left\{ f(t_1, \dots, t_s) | f \in O_s \text{ and } f \text{ satisfies } \Sigma \right\}.$

Furthermore, an s-ary operation f satisfies Σ if and only if $f \in \Gamma^*$. To show this first suppose that $f \in O_s$ satisfies Σ . Let Q be an arbitrary m-ary relation from Γ , and let $q_j = (q_{1j}, \ldots, q_{mj}) \in Q$, $j = 1, \ldots, s$. Then from $M = (q_1, \ldots, q_s) \in Q^s$ we get $Q(x_{M_1}, \ldots, x_{M_m}) \in \Sigma$, which implies $Q(f(M_1), \ldots, f(M_m))$, i.e., $Q(f(q_{11}, \ldots, q_{1s}),$ $\ldots, f(q_{m1}, \ldots, q_{ms}))$ proving that f preserves Q. Hence $f \in \Gamma^*$. Conversely suppose that $f \in O_s \cap \Gamma^*$ and $Q(x_{j_1}, \ldots, x_{j_m})$ is an arbitrary formula from Σ , where $j_k = (j_{k1}, \ldots, j_{ks}), k = 1, \ldots, m$. Then the matrix $(j_{kl})_{m \times s}$ is an element of Q^s , i.e., $(j_{11}, \ldots, j_{ml}) \in Q$, $l = 1, \ldots, s$. Taking into account that f preserves Q we get that $Q(f(j_{11}, \ldots, j_{1s}), \ldots, f(j_{m1}, \ldots, j_{ms}))$, i.e., $Q(f(j_1), \ldots, f(j_m))$ proving that f satisfies the formula $Q(x_{j_1}, \ldots, x_{j_m})$. Hence f satisfies Σ . This implies $R_{\Psi} =$ $= (f(t_1, \ldots, t_s)|f \in \Gamma^* \cap O_s\}$, and the right side is the same as T.

Now let A be a finite set, and consider the formula scheme Ψ constructed above. For every s-ary operation f that does not satisfy Σ there exists a formula $\mathscr{T}_f \in \Sigma$ such that f does not satisfy \mathscr{T}_f . Consider the set of formulas $\Sigma' = \{\mathscr{T}_f | f \in O_s$ and f does not satisfy Σ }. It is evident that an s-ary operation satisfies Σ if and only if it satisfies Σ' . Therefore, the formula scheme $\Psi' = (\Sigma', X, (x_{i_1}, ..., x_{i_n}))$ where X and $(x_{i_1}, ..., x_{i_n})$ are the same as above, defines the relation T. Namely,

$$T = R_{\Psi} = \{ (f(i_1), \dots, f(i_n)) | f \in O_s \text{ and } f \text{ satisfies } \Sigma \} =$$

$$= \{ (f(i_1), \dots, f(i_n)) | f \in O_s \text{ and } f \text{ satisfies } \Sigma' \} = R_{\Psi'}.$$

Furthermore, from $|X| = |A^s|$ and $|\Sigma'| \le |O_s| = |A^{A^s}|$ it follows that X and Σ' are finite. Hence Ψ' is a finite formula scheme. Q.E.D.

Lemma 3. If A is a finite set and a relation can be defined by a formula scheme over a set of relations Γ , then it can be defined by a finite formula scheme over Γ .

Proof. Suppose an *n*-ary relation R can be defined by a formula scheme over Γ . From Lemma 1 it follows $R \in \text{Sub}((A, \Gamma^*)^n)$. Applying Lemma 2 we get that R can be defined by a finite formula scheme over Γ . Q.E.D.

Lemma 4. Let Γ be a set of relations of A. Then a relation R belongs to Γ^{*0} if and only if R is the union of a directed system of relations defined by formula schemes over Γ .

Proof. First let $R = \bigcup_{i \in I} R_i$ where $(R_i | i \in I)$ is a directed system of relations defined by formula schemes over Γ . Therefore, by Lemma 1, we get that $R_i \in \Gamma^{*0}$, $i \in I$. Furthermore, one can see easily that the union of a directed system of elements of Γ^{*0} belongs to Γ^{*0} .

Now suppose that $R \in \Gamma^{*0}$ is an *n*-ary relation. Then *R* is a subalgebra of the algebra $(A, \Gamma^*)^n$. Therefore $R = \bigcup_{i \in I} R_i$ where $(R_i | i \in I)$ is the directed system of the finitely generated subalgebras of $(A, \Gamma^*)^n$ contained in *R*. In view of Lemma 2, we have that R_i , $i \in I$, can be defined by a formula scheme over Γ . Q.E.D.

Lemma 5. Let Γ be a set of relations of A. Then an operation f belongs to Γ^{**} if and only if f can be defined by Γ locally.

Proof. First suppose that f is an *n*-ary operation which is defined by Γ locally. Choose an *m*-ary operation g from Γ^* and let $M = (a_{kl})_{m \times n}$ be an $m \times n$ matrix of elements of A. According to our assumption, there is a formula scheme Ψ that defines f on

 $B = \{(a_{k1}, \dots, a_{kn}) | k = 1, \dots, m\} \cup \{(g(a_{11}, \dots, a_{m1}), \dots, g(a_{1n}, \dots, a_{mn}))\}.$ Then $R_{\Psi}(a_{k1}, \dots, a_{kn}, f(a_{k1}, \dots, a_{kn}))$ holds, $k = 1, \dots, m$. Using Lemma 1 we get that $R_{\Psi}(g(a_{11}, \dots, a_{m1}), \dots, g(a_{1n}, \dots, a_{mn}), g(f(a_{11}, \dots, a_{1n}), \dots, f(a_{m1}, \dots, a_{mn}))$ holds, too, whence

 $f(g(a_{11}, ..., a_{m1}), ..., g(a_{1n}, ..., a_{mn})) = g(f(a_{11}, ..., a_{1n}), ..., f(a_{m1}, ..., a_{mn}))$ follows, i.e., f((M)g) = (f(M))g. Hence f commutes with g showing that $f \in \Gamma^{**}$.

Now suppose that $f \in \Gamma^{**}$ is an *n*-ary operation and let $B \subseteq A^n$ be a finite set. Considering f as an (n+1)-ary relation we have $f \in \Gamma^{*0}$. Therefore, by Lemma 4, we get $f = \bigcup_{i \in I} R_i$ where $(R_i | i \in I)$ is a directed system of ((n+1)-ary) relations defined by formula schemes over Γ . As $(R_i | i \in I)$ is a directed system and B is a finite set, $f = \bigcup_{i \in I} R_i$ implies $f | B \subseteq R_{i_0}$ for some $i_0 \in I$. Now let Ψ be a formula scheme over Γ defining R_{i_0} . Then $f | B \subseteq R_{i_0} \subseteq f$ implies

 $f|B = \{(a_1, ..., a_n, a_{n+1})|(a_1, ..., a_n) \in B \text{ and } (a_1, ..., a_n, a_{n+1}) \in R_{i_0} = R_{\Psi}\}$ and this means exactly that Ψ defines f on B. Q.E.D.

12*

Theorem 6. Let $\Gamma_i \subseteq \Pi_i (\subseteq \mathbb{R})$, $i \in I$, be sets of relations of A; furthermore, let $\Omega_j \subseteq \Pi_j (\subseteq \mathbb{R})$, $j \in J$, be sets of such relations which are operations of A. Put $\Gamma = (\bigcup_{i \in I} \Gamma_i) \cup (\bigcup_{i \in J} \Omega_j)$. Then the following two statements are equivalent:

I. There exists an algebra (A, Ω) such that $\Gamma_i = \operatorname{Rel}_{\Pi_i}(A, \Omega)$ and $\Omega_j = = \operatorname{Rel}_{\Pi_i}(A, \Omega)$ for every $i \in I$ and $j \in J$.

II. (a) For every $i \in I$, if a Π_i -relation is the union of a directed system of relations defined by formula schemes over Γ , then it belongs to Γ_i .

(β) For every $j \in J$, if a Π_j -relation (operation) can be defined by Γ locally then it belongs to Ω_j .

Proof. I=II. Suppose that $\Gamma_i = \operatorname{Rel}_{\Pi_i}(A, \Omega)$ and $\Omega_j = \operatorname{Rel}_{\Pi_j}(A, \Omega)$ for some algebra (A, Ω) for every $i \in I$ and $j \in J$. First let $i_0 \in I$ and suppose a Π_{i_0} -relation R to be the union of a directed system of relations defined by formula schemes over Γ . Taking into account Lemma 4 and $\Gamma^* \supseteq \Omega$ we have that $R \in \Gamma^{*0} \subseteq \Omega^0$. This fact together with R being a Π_{i_0} -relation shows that $R \in \operatorname{Rel}_{\Pi_{i_0}}(A, \Omega)$. Hence (α) holds.

Now let $j_0 \in J$ and suppose a Π_{j_0} -operation f can be defined by Γ locally. Then, by Lemma 5, we have $f \in \Gamma^{**} \subseteq \Omega^* \subseteq \Omega^0$. Hence $f \in \operatorname{Rel}_{\Pi_{j_0}}(A, \Omega)$, i.e., (β) holds.

II \Rightarrow I. Let $\Omega = \Gamma^*$. We shall prove that $\Gamma_i = \operatorname{Rel}_{\Pi_i}(A, \Omega)$ and $\Omega_j = \operatorname{Rel}_{\Pi_j}(A, \Omega)$ for every $i \in I$ and $j \in J$. First choose an arbitrary $i_0 \in I$. The inclusion $\Gamma_{i_0} \subseteq \operatorname{Rel}_{\Pi_{i_0}}(A, \Omega)$ is obvious. Let $R \in \operatorname{Rel}_{\Pi_{i_0}}(A, \Omega)$. Then $R \in \Omega^0 = \Gamma^{*0}$. Therefore, by Lemma 4, we have that R is the union of a directed system of relations defined by formula schemes over Γ . Thus, by the condition (α), $R \in \Gamma_{i_0}$.

Now choose an arbitrary $j_0 \in J$. Again, $\Omega_{j_0} \subseteq \operatorname{Rel}_{\Pi_{j_0}}(A, \Omega)$ is obvious. Let $f \in \operatorname{Rel}_{\Pi_{j_0}}(A, \Omega)$ be a Π_{j_0} -operation. Then $f \in \Omega^* = \Gamma^{**}$. Therefore, by Lemma 5, we get that f can be defined by Γ locally. Thus, by the condition $(\beta), f \in \Omega_{j_0}$. Q.E.D.

Theorem 7. Let $(\Gamma_n | n=1, 2, ...)$ be a family of sets of relations of A such that Γ_n has n-ary relations only, n=1, 2, Then the following two statements are equivalent:

I. There exists an algebra (A, Ω) such that $\Gamma_n = \text{Sub}((A, \Omega)^n), n = 1, 2, ...$

II. (a) For every n, if an n-ary relation can be defined by a formula scheme over

 $\bigcup_{k=1}^{k} \Gamma_k \text{ then it belongs to } \Gamma_n.$

(β) For every n, Γ_n is closed under union of directed systems.

Proof. Put $I = \{1, 2, ...\}$, $J = \emptyset$ and, as Π_n , the set of all *n*-ary relations of A in Theorem 6.

Corollary 8. If A is a finite set then statement II in Theorem 6 can be replaced by

II'. For every n, if an n-ary relation can be defined by a finite formula scheme over $\bigcup_{k=1}^{\infty} \Gamma_k$ then it belongs to Γ_n .

Proof. As A is a finite set, the assumption (β) in Theorem 6 is superfluous and we can apply Lemma 3.

Theorem 9. Let Γ be a set of n-ary relations of A. Then there exists an algebra (A, Ω) such that $\Gamma = \text{Sub}((A, \Omega)^n)$ if and only if Γ is closed under union of directed systems and Γ contains every n-ary relation defined by a formula scheme over Γ .

Proof. Put $I = \{1\}$, $\Gamma_1 = \Gamma$, $J = \emptyset$ and, as Π_1 , the set of all *n*-ary relations of A in Theorem 6.

Corollary 10. Let A be finite and let Γ be a set of n-ary relations of A. Then there exists an algebra (A, Ω) such that $\Gamma = \text{Sub}((A, \Omega)^n)$ if and only if Γ contains every n-ary relation defined by a finite formula scheme over Γ .

Corollary 11. (J. Schmidt) For a set Γ of unary relations of A, there is an algebra (A, Ω) such that $\Gamma = \text{Sub}(A, \Omega)$ if and only if Γ is an algebraic closure system.

Proof. Suppose that $\Gamma = \text{Sub}(A, \Omega)$ for some algebra (A, Ω) . Let $\{R_j | j \in J\}$ be a subset of Γ . Then the formula scheme $(\Sigma, \{x_1\}, (x_1))$ with $\Sigma = \{R_j(x_1) | j \in J\}$ defines $\bigcap_{j \in J} R_j$. Applying Theorem 9, we get that $\bigcap_{j \in J} R_j \in \Gamma$, i.e., Γ is closed under intersections. This fact together with the conditions of Theorem 9 proves that Γ is an algebraic closure system.

Conversely, suppose that Γ is an algebraic closure system. Then Γ is closed under union of directed systems. Now consider a formula scheme $\Psi = (\Sigma, X, (x_1))$ $(X = \{x_i | i \in I\})$ over Γ . If $R_{\Psi} = \emptyset$ then $R_{\Psi} = \emptyset = \bigcap_{R \in \Gamma} R$. Otherwise, $a \in \bigcap_{R \in \Gamma} R$ implies that $(a_i | i \in I)$ where $a_i = a$ for all $i \in I$, satisfies Σ showing $R_{\Psi}(a)$, a contradiction. Thus $R_{\Psi} = \emptyset \in \Gamma$. If $R_{\Psi} \neq \emptyset$, then it is a routine to check that $R_{\Psi} = \bigcap_{R(x_1) \in \Sigma} R$, i.e., $R_{\Psi} \in \Gamma$. Thus we get that Γ satisfies the condition of Theorem 9. Q.E.D.

In [1], KALUŽNIN and his co-workers have given a characterization for the subalgebra system $\bigcup_{n=1}^{\infty} \text{Sub}((A, \Omega)^n)$ of a finite algebra (A, Ω) . Now we derive their result from Corollary 8. We need some additional notions and notations.

For an *m*-ary relation *R* of *A* and a permutation τ of the set $\{1, ..., m\}$ the τ -translate of *R* is an *m*-ary relation R^{τ} of *A* defined by $R^{\tau} = \{a_{1\tau}, ..., a_{m\tau}\} | R(a_1, ..., a_m)\}$. For any two relations *R* and *T* of arity *m* and *n*, respectively, the direct product of *R* and *T* is an (m+n)-ary relation $R \times T$ defined by $R \times T = \{(a_1, ..., a_{m+n}) | R(a_1, ..., a_m)\}$ and $T(a_{m+1}, ..., a_{m+n})$. If *R* is an *m*-ary relation and $1 \le i_1 < ... < i_t \le m$, then the projection of R to the coordinates i_1, \ldots, i_t is a t-ary relation R_{i_1, \ldots, i_t} defined by $R_{i_1, \ldots, i_t} = \{(a_{i_1}, \ldots, a_{i_t}) | R(a_1, \ldots, a_m)\}$. If R is an m-ary relation and Θ is an equivalence relation of the set $\{1, \ldots, m\}$, then the Θ -diagonal of R is an m-ary relation R_{Θ} defined by $R_{\Theta} = \{(a_1, \ldots, a_m) | R(a_1, \ldots, a_m) \text{ and } (i\Theta j \Rightarrow a_i = a_j)\}$. Finally, the n-ary diagonal D_n is defined by $D_n = \{(a, \ldots, a) | a \in A\}$ for any n.

Corollary 12. (V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, V. A. Romov) If A is a finite set and Γ is a set of relations of A then there exists an algebra (A, Ω) such that $\Gamma = \bigcup_{n=1}^{\infty} \operatorname{Sub}((A, \Omega)^n)$ if and only if all diagonals belong to Γ , and Γ is closed under formation of direct products, as well as arbitrary τ -translates, projections, and Θ -diagonals.

Proof. By Corollary 8 we have to prove only that a set of relations Γ fulfils the assumptions of the corollary if and only if every relation defined by a finite formula scheme over Γ belongs to Γ .

First suppose that all relations defined by finite formula schemes belong to Γ . Then for any *n* the formula scheme $(\emptyset, \{x_1\}, (x_1, ..., x_1))$ defines D_n . If *R* and *T* are relations from Γ of arity *m* and *n*, respectively, τ is a permutation and Θ is an equivalence relation of the set $\{1, ..., m\}$ and $1 \leq i_1 < ... < i_t \leq m$, then the formula schemes

$$(\{R(x_1, ..., x_m), T(x_{m+1}, ..., x_{m+n})\}, \{x_1, ..., x_{m+n}\}, (x_1, ..., x_{m+n})), (\{R(x_1, ..., x_m)\}, \{x_1, ..., x_m\}, (x_{1\tau}, ..., x_{m\tau})), (\{R(x_1, ..., x_m)\}, \{x_1, ..., x_m\}, (x_{i_1}, ..., x_{i_t})), (\{R(x_1, ..., x_m)\} \cup \{D_2(x_k, x_l) | k \Theta l\}, \{x_1, ..., x_m\}, (x_1, ..., x_m))$$

and

define $R \times T$, R^{r} , R_{i_1, \ldots, i_n} and R_{θ} , respectively.

Conversely, suppose that Γ satisfies the assumptions of the corollary and let $\Psi = (\Sigma, X, (x_{i_1}, ..., x_{i_n}))$ $(X = \{x_i | i \in I\})$ be a finite formula scheme over Γ . We have to prove that R_{Ψ} can be got from Γ in a finite number of steps by formation of directed products, τ -translates, projections, and Θ -diagonals. Concerning Ψ , we can assume w.l.o.g. that every component of $(x_{i_1}, ..., x_{i_n})$ occurs in some formula of Σ , otherwise we can add the formulas $D_2(x_{i_1}, x_{i_1}), ..., D_2(x_{i_n}, x_{i_n})$ to Σ . Furthermore, we can assume that $(x_{i_1}, ..., x_{i_n})$ has pairwise distinct components, otherwise we can consider the formula scheme $\Psi = (\Sigma', X', (y_1, ..., y_n))$ where $X' = X \cup \{y_1, ..., y_n\} (X \cap \{y_1, ..., y_n\} \neq \emptyset)$ and $\Sigma' = \Sigma \cup \{D_2(x_{i_1}, y_1), ..., D_2(x_{i_n}, y_n)\}$. Clearly $R_{\Psi} = R_{\Psi'}$. Finally, we can also assume that Σ has formulas of the form $R(x_{i_1}, ..., x_{i_n})$ belongs to Σ , then replace ε by the formulas

 $f(x_{t_1}, ..., x_{t_p}) = y_e$ and $g(x_{k_1}, ..., x_{k_p}) = y_e$. Considering f and g as (s+1)-ary and (r+1)-ary relations, respectively, these formulas have the form we required. Thus we get a set of formulas Σ'' . Then the formula scheme $\Psi'' = = (\Sigma'', X'', (x_{t_1}, ..., x_{t_n}))$ with $X'' = X \cup \{y_e | e \in \Sigma \text{ and } e \text{ is of the form } f = g\}$ defines $R_{\Psi'}$.

Now suppose that Ψ has these properties. Then let

$$\Sigma = \{R_1(y_1^1, \dots, y_{n_1}^1), \dots, R_s(y_1^s, \dots, y_{n_s}^s)\}, \quad y_k^l \in X, \quad l = 1, \dots, s, \quad k = 1, \dots, n_l.$$

Consider the formula scheme $\Phi = (\Sigma, X, (y_1^1, ..., y_{n_1}^1, ..., y_1^s, ..., y_{n_s}^s))$. Observe that R_{Ψ} can be got from R_{Φ} by formation of a suitable projection and τ -translate. Furthermore, let Θ be an equivalence of the set $\{1, ..., \sum_{k=1}^{s} n_k\}$ defined as follows: $j\Theta l$ if and only if the *j*-th and *l*-th components of $(y_1^1, ..., y_{n_1}^1, ..., y_{n_s}^s)$ are equal, $j, l=1, ..., \sum_{k=1}^{s} n_k$. Now it is a routine to verify that R_{Φ} equals the Θ -diagonal of $R_1 \times ... \times R_s$. Q.E.D.

Theorem 13. If Ω is a set of operations of A, then $\Omega = \Omega^{**}$ if and only if Ω contains every operation defined by Ω locally.

It follows from Lemma 5 immediately.

Corollary 14. (A. V. Kuznecov) If A is a finite set, then $\Omega = \Omega^{**}$ for some set of operations Ω if and only if every operation defined by a finite formula scheme over Ω belongs to Ω .

Proof. If A is a finite set, an operation f locally definable by Ω can be defined by a formula scheme over Ω . Lemma 3 shows that we can restrict ourselves to finite formulas. It remains to apply Theorem 13.

Theorem 15. For a set E of transformations of A there exists an algebra (A, Ω) such that $E = \text{End}(A, \Omega)$ if and only if E contains every transformation defined by E locally.

Proof. Put $I=\emptyset$, $J=\{1\}$, $\Omega_1=E$ and, as Π_1 , the set of all unary operations in Theorem 6.

Corollary 16. If A is a finite set, then for a set E of transformations of A there exists an algebra (A, Ω) such that $E = \text{End}(A, \Omega)$ if and only if E contains every transformation defined by a finite formula scheme over E.

Proof. We can proceed similarly as it was done in the proof of Corollary 12.

References

- [1] V. G. BODNARČUK, L. A. KALUŽNIN, V. A. KOTOV, and V. A. ROMOV, Galois theory for Post algebras, *Kibernetika (Kiev)*, 1969, no. 3, 1-10; 1969, no. 5, 1-9 (in English: Cybernetics, 5 (1969), 243-252; 531-539).
- [2] P. M. COHN, Universal algebra, Harper and Row (1965).
- [3] G. GRÄTZER, Universal algebra, Van Nostrand (1968).
- [4] B. JÓNSSON, Topics in universal algebra, Lecture Notes in Mathematics, Vol. 250, Springer (1972).
- [5] N. SAUER, M. G. STONE, The algebraic closure of a semigroup of functions, Algebra Universalis, 7 (1977), 219-233.
- [6] I. I. VALUCE, Mappings, Algebraic aspects of the theory, Izd. Štiinca (Kishinev, 1976) (Russian).

BOLYAI INSTITUTE, UNIV. SZEGED ARADI VÉRTANÚK TERE 1 6720 SZEGED, HUNGARY