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Jordan model for weak contractions

PEI YUAN WU

Sz.-NAGY and Folag defined in [10] a class of multiplicity-free operators among
C, contractions (also ¢f. [8]). Later on in [1] they developed a “Jordan model”
for C, contractions, which resembles in some respects the usual canonical model
of a finite matrix. In the present paper we extend both concepts from the context
of C, contractions to that of weak contractions.

1. Preliminaries. Let 7 be a contraction defined on a complex, separable Hilbert
space H. Denote by dr=rank (I—T*T)"?, dp=rank (/—TT*"? the defect in-
dices of T.

Recall that T is called a weak contraction if (i) its spectrum o(7T) does not -
fill the open unit disk D, and (ii) I—T*T is of finite trace. Thus in particular C,(N)
contractions and C,; contractions with finite defect indices are weak contractions.
For the theory of Co(N) contractions and C,; contractions, we refer the reader
to [9]. If T is a completely non-unitary (c.n.u.) weak contraction on H, then
dr=dr+ and we can consider its Cy—C;; decomposition. Let H, and H, be the
invariant subspaces for T such that T,=T|H, and T,=T|H, are the C, part
and C;, part of T. Note that T, and 7; are the operators appearing in the

triangulations
- [To X] 4T [T1 Y
o) ¢ T T

[Co. *] " 4 [C.l *
o ¢.] ™ o ¢l

respectively. These triangulations, in term, correspond to the *-canonical factoriza-
tion and canonical factorization

o) =0,d0,,7), () =06,)06.1) (D)
of the characteristic function @(1) of T, ¢f. [9], Chap. VIIL

of type
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Let H? denote the Hardy space of analytic functions on D. For each inner
function ¢, S, denotes the operator on H2© gH? defined by (S, f)(A)=P(if(1))
for A€ D, where P denotes the (orthogonal) projection of H? onto H2© ¢H?2. For
inner functions ¢, and ¢,, ¢,=¢, means that ¢, and ¢, differ by a constant factor
of modulus one; ¢,|¢p, means that ¢, is a divisor of ¢,. H*© ¢H? reduces to {0}
if and only if ¢ is a constant inner function. For a measurable subset E of the unit
circle C, My denotes the operator of multiplication by " on the space L?*(E) of
square-integrable functions on E, where the measure considered is the (normalized)
Lebesgue measure. For measurable subsets E, and E, of C, E;=FE, means that
(EX\E)U(E\ED is of Lebesgue measure zero. If E=§ then L%(E) reduces
to {0}.

For arbitrary operators T, T, on H,, H,, respectively, T, <7, denotes that
T, is a quasi-affine transform of T,, that is, there exists a one-to-one, continuous
linear transformation X from H, onto a dense linear manifold of H, (called quasi-
affinity) such that XT1=T,X. T, and T, are quasi-similar if 7,<7, and 7,<T;.
For an arbitrary operator T on H, let uy denote the multiplicity of T, that is, the

least cardinal number of a subset K of vectors in H for which H= {7 T'K. In

n=9

particular, if pur=1 then T is cyclic and the vector in K is a cyclic vector for T.
Note that both § and Mg are cyclic and that quasi-similar operators have equal
multiplicities.

2. Jordan model. The following theorem; gives the Jordan model for C,
contractions (¢f. [1] and [10]).

Theorem 1. Let T be a C, contraction on a separable Hilbert space, with defect
indices dr=dr+. Then T is quasi-similar to a uniquely determined operator of the

Jorm
Sp, DS, D... 05, B...,

where the @;’s are inner functions satisfying @;.1l@; (j=1,2,...). Moreover, ¢,
is the minimal function of T, and if there are just m (0=m=oc) non-constant
©;’s, then m=pr=pr=dr=drs.

Next we consider C;, contractions. In this case a “Jordan model” can also
be given. '

Theorem 2. Let T be a c.nu. Cy, contraction on a separable Hilbert space,
with defect indices dp=dr. Then T is quasi-similar to. a uniquely determined oper-
ator of the form

) My OMp®..0Ms &...,
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where the E’s are measurable subsets of C satisfying E, .S E, (k=1,2,..). If
there are just n (0=n=e) E’s with nonzero measure, then n=pr=pn=
= dr = dT* . '

We start the proof with the following

Lemma 1. Let T, and T, be operators on H, and H,, respectively. Then
max {#T!’ Hr Sl o1, =Hr, i, ‘

Proof. Let K={x,®V,}.cs be a subset of vectors in H,® H, such that
HoH,= V (I} TY)'K. Then K= {X.}aca 1s a subset of H, satisfying H,=

= \_/0 TiK,. It follows that pr =pr gr,. By symmetry we have Hr, = l1,0T,>

and hence max {ur , pr }SHr ot,-
To prove the second inequality, let K,={x,},c4SH, and K,={ys}scaSH,

be such that HI=V TiK, and H2={7 T3K,, respectively. Then K=
n=0 n=0

={x, B0, 0D Vp}ac 4, pce is a subset of H,® H, satisfying H, d H,= {7 (e TY)'K
n=0

It follows that pg oT, =Hr, tlr,.

Note that the mequalmes in Lemma 1 actually occur. For example, if T,=T,
is a simple unilateral shift then pur =pr =1 and prer,=2 (¢f. [15], p. 308); if
T,=T, is the adjoint of a simple unilateral shift then pr,=pr,=1 and
tr,er,=1 (cf. [6], Problem 126).

Lemma 2. If there are just n (0=n=<) E,’s with nonzero measure in the
operator T=My ®©Mr®.. OM ..., where FE, S F, (k=1,2,..), then
n= iy = flrs.

Proof. By the first inequality in Lemma 1, it suffices to consider the case
n<eo, that is, we have to show that if T=ME169...€BME", n<eo, then n=p;.
Inequality u;=n is obvious. To prove that ur=n, let us make use of the direct
integral representation of the Hilbert-space H=L%(E))®...®L*(E,), associated
with the unitary operator 7, that is, let

H= f Hydm with T*T"{x(D)} = (F¥x(D),
a(T) '

where m denotes the Lebesgue measure on ¢(T)SC. Let N= M- If K=
={x,, .. xN} satisfies H= V T"K then K,={x,(1),...,xy(1)} is a set of

. vectors in H, such that H,= \/ {A"x,(A), ..., A"xy(A)} for almost all 4 in o (7).
m=0

But for A in E,, H, is an n-dimensional space. Hence we have uy=~N=n, complet-
ing the proof.
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Proof of Theorem 2. Part of this theorem is implicitly contained in the
work of Sz.-NAGy and Foias [9]. Indeed, since T is quasi-similar to the dual residual
part of its minimal unitary dilation ([9], p. 72), by [9], pp. 88—89 we can infer
that T is quasi-similar to an operator of the form (1) and n=dp (also ¢f. [9], pp.
271—273 for the case dy=dp<<). The uniqueness follows from the multiplicity
theory of normal operators [5] and the fact that quasi-similar normal operators
are unitarily equivalent. Lemma 2 furnishes the proof of the remaining part.

In light of these results we can generalize the notion of Jordan operators to
the following

Definition. An operator T is called a Jordan operator if it is of the form

Sp,D... DS, ... OMp,®...OMs®...,

where the @,’s are inner functions satisfying ¢;..|@; (j=1,2,...), and the Es
are measurable subsets of C satisfying E,,,SF, (k=1,2,..).
Combining Theorems 1 and 2 we obtain

- Theorem 3. Let T be a weak contraction on a separable Hilbert space, with
defect indices dr=dp. Then T is quasi-similar to a uniquely determined Jordan
operator ’ ’

© 50 ®...BS, &...0Mp®...OMg ®....

If there are m (0=m=o) non-constant @;’s and n (0=n=<) E;’s with nonzero
measure, then purp=ur.=max {m,n}. Moreover, if T is c.n.u., then its correspond-
ing Jordan operator is also a weak contraction and pyp=pr.=max {m, n}=dr=dr.
hold.

We will call the uniquely determined Jordan operator the Jordan model for T.

We start the proof of Theorem 3 with the following

Lemma 3. Let T;, T{ be C, contractions on Hy, H, and let T,, T, be unitary
operators on H,, H;, respectively. If T\@T, is a quasi-affine transform of T, ® T,
then Ty is quasi-similar to T, and T, is unitarily equivalent to T,.

" Proof. Let X: Hi@ H,~H,; ®H, be a quasi-affinity such that X(7,@ Tp)=
=(T/®T,)X. For any heH,, let h®dh,=X(h®d0), where hy€¢H and h,€H,.
Since 7, being a C, contraction, is of class C,. ,we have (Z7"h)®(T,"hy)=
~(T ST X(hd0)=X(T,® T)" (h®0)=X(T*h@0)~0 as n-oo. Thus T, h,~0
as n—o. Since 7, is of class C,., this implies that h,=0, and hence that
X(h@0)cH,. Thus with respect to the decompositions H,® H, and H;® H,;, X

is tr iangulated as
[ 1 ]
0 X 2 ’
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By considering the adjoint, a similar argument as above shows that Z=0. Hence
we obtain quasi-affinities X;: H,~H] and X,: H,~H, such that X,T,=T,X,
and X,T,=T,X,, thatis, T,<7, and T,<7,. By the uniqueness of the Jordan
model for C, contractions, we infer that T is quasi-similar to 7y (¢f [1], Theorem 1):
On the other hand, that T, is unitarily equivalent to 7}, follows from [4], Lemma 4.1.

Lemma 4. The operator S,® My on the spa'ce- (H:o pHY) @ L¥}(E) ._:is cych’c.

Proof. Let f be an essentially bounded function in L?(E), which is cyclic for
Mg. If E+C, such is the identity function 1(e")=e" on E.If E=C then it is
well known that the cyclic vectors for the bilateral shift are those functions f€ L2
for which |f|=0 ae. and f log | f|=—o°; we may assume that f is essentially
bounded, for otherwise let F={e": |f(¢")]=1}. Consider yc\ zf+xr. Let P be
the (orthogonal) projection of H? onto H2O pH?, and let 1 also denote the identity
function in H?2. We want to show that P(1)@fis a cyclic vector for S, M.

let K= {7 (S,® Mp)"(P(1)®f). For each heH?, let {p,} be a sequence of
n=0

polynomials such that p,~@h in L:-norm. Since f is essentially bounded, we have
p.f>ohf, and hence P(p,)Dp, f—»P((ph)EB(phf =0@phf. This shows that
0@ @hf is in K for any h€ H?

Now let g be an arbitrary function in L2(E). Since f is a cyclic vector for Mg,
there exists a sequence of polynomials {g,} such that g,f~@g in L*norm. Then
0q,f~oPg=g. By what we proved before, we conclude that 0dgcK for any
g€L2(E). On the other hand, since it is clear that P(h)@®hf€K for any h€ H?, we
have P(h)@0=(P()@hf)—(0dhf)EK. Hence we obtain (H*© ¢H?)® LE(E)=K,
which completes the proof.

Proof of Theorem 3. Let T=U@®T’ be the decomposition of T into
the direct sum of its unitary part U and its c.n.u. part T”. Since T is also a weak
contraction, we may consider its C, part T, and Cy; part 7;. It was proved in [16]
that T” is quasi-similar to T,@ 7;. Hence T is quasi-similar to T, T ¢ U. By
Theorem 1, Lemma 3 and the multiplicity theory of normal operators [5], we con-
clude that T is quasi-similar to a uniquely determined Jordan operator (2).

If T is quasi-similar to (2), then T* is quasi-similar to
Sw;@---@S v®..OMyd..0OMgz ...,

where @} ().)=(p_j(7l..) (j=1,2,..) and E;={e": e "¢E} (k=1,2,..). Hence
it is clear that to show that ur=pp=max {m,n}, we have only to show that
pr=max {m, n}. -For convenience, we assume that n=m. Let dr and dr denote
the defect indices of T, and T3, respectively. By Theorem 1 and Lemma 1 we have
m=pr =lr,61,00=Hr- If m=- then we have already had the result. Hence

13
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we may assume that m=<e. Since (2) is unitarily equivalent to

(Sp, OMe)D...0(S, OMp )OMg_, . ®..OMg_,
using Lemmas 1 and 4 we have ur=1+...+1+1+...+1=m. Thus pr=m=

L e v
n m-—n

=max {m, n}. The case m<n is similarly proved.

Now we assume that 7 is c.n.u., that is, T=T,®T,. We show that the
Jordan model (2) is a weak contraction. Indeed, it is enough to show that
S=S, ®...0S, @... is weak. But § is the Jordan model of T,, which is a weak
C, contraction, so the assertion follows from the results of §8 of [2]. By Theorems
1 and 2 we have m=pr =d; and n=pr =dr . Since dr =dr and dr =dr
(cf. [9] p. 302) we obtain max {m, n}=d;=dp+, completing the proof.

We make some remarks to conclude this section.

By Theorem 3 and Lemma 3 we infer that for weak contractions T3, Ty, if T}
is a quasi-affine transform of T, then T; and T, are quasi-similar to each other.

For c.n.u. weak contractions the unitary part of the Jordan model has an
absolutely continuous spectrum.

If Tis a c.n.u. weak contraction with finite defect indices, then in the Jordan
model of T we have E,={e":rank 4(e*)=k} (k=1,2,...,n), where A(e")=
=[I-0(e")*O(")]"® and ©(4) denotes the characteristic function of 7. Indeed,
since the characteristic function @,(4) of the C,; part T, is the purely contractive
part of the outer factor @,(1) of @), if 4,(e")=[I—0,(€")*O(eM)]'* then
rank 4 (e*)=rank 4,(e") a.e.. Thus the assertion follows from [9] Theorem VI. 6.1.
In particular, E,={¢": ©(e") is not isometric} and n=ess sup rank 4 (e").

- 3. Multiplicity-free operators. A C, contraction T is called multiplicity-free
if pr=1, or equivalently, T has a cyclic vector. Some of the equivalent conditions
for multiplicity-free C, contractions are gathered in the next theorem (cf. [10]
and [13]).

Theorem 4. Let T be a C, contraction on a separable Hilbert space. Then the
Jollowing conditions are equivalent to each other:
(1) T is multiplicity-free; '
(i) T is quasi-similar to S, for some inner function ¢;
(iii) {T} is commutative.
Here {T} denotes the commutant of 7.
We generalize this to the following

Theorem 5. Let T be a c.n.u. weak contraction on a separable Hilbert space.
Let Ty and T, denote the C, and Cy, part of T, respectively. Then the foIIowmg con-
ditions are equivalent to each other:
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() T admits a cyclic vector;

(ii) Ty and T, admit cyclic vectors;

(ili) T is quasi-similar to S,® Mg for some inner function ¢ and some measurable
subset E of C (here ¢ may be constant and E may have measure zero);

@iv) {TY is commutative; )

W) {7} and {T\}Y are commutative.

This theorem suggests the following

Definition. A c.n.u. weak contraction T is called multiplicity-free if it
satisfies the equivalent conditions (i)—(v) in Theorem 5.

Note that CLARK [3] also defined multiplicity-free operators among operators
of class [Cy.UC.JN[C.qUC.{]. It is clear that our definition is consistent with his.

Proof of Theorem 5. The equivalence of (i), (ii) and (iii) follows from The-
orems 1, 2 and 3. The implication (i)= (iv) and the equivalence (ii)<(v) were proved
by Sz.-NaGy and Foias (cf. [11], [12] or [7], [13]). Thus to complete the proof we
have only to show that (iv) implies one of the other conditions. Let us prove the
implication (iv)=(iii). Let S®M denote the Jordan -model of T, where
S=8, ®S,,®@... and M=Mp GMg ®..., and let X, Y be two quasi-affinities
such that TX = X(SOM) and (SOM)Y = YT.

Then, from (iv) it follows that the relation

(XAY)(XBY) = (XBY)(XAY)
holds whenever 4, B€ {S&® M} and hence

A(YX)B = B(YX)A.

Now by Lemma 3 it follows that YX=Z@V where Ze{SY}, Ve{M}y
and we have '
©) AZB = BZA, A'VB =BVA
for any 4, B€{SY, A’, B’¢{M}’. Taking B=1I, B’=I in (3), it follows that Z¢ {S}”
and V€ {M}” such that, again by (3), we infer that {S} and {M}" are commutative.
From the implication (v)=(ii) it follows that S=§, and M =Mpg and (iii)
follows.

We remark that conditions (i)—(v) in Theorem 5 are equivalent to the
corresponding conditions for T*. (This follows from Theorem 3 that pp=pr+.)
Also note that if the defect indices of T are finite, then these conditions are equiv-
alent to:

(vi) The minors of order dr,,—l of the matrix of 0,;(1) have no common
inner divisor, and rank 4(¢")=1 a.e. (¢f. [9], pp. 267 and 271). In particular,
we have

13+
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Corollary 1. If T is a cnu. contraction with scalar-valued. characteristic
Sunction @(A)#0, then T is cyclic and {TY is commutative.

Proof. T is certainly a c.n.u. weak contraction which satisfies condition
(vi). The assertion follows from the remark we made above.
Part of the previous result was obtained earlier by Sz.-NAGy and Foiag [14].

Corollary 2. Let T be a c.n.u. multiplicity-free weak contraction on H. If
K is an invariant subspace for T such that T|K is also a weak contraction, then T|K
is multiplicity-free. ’

Proof. Since T is multiplicity-free, we have pp=1, so that pge=1.
Therefore, if T|K is a- weak contraction, it follows that it is multiplicity-free.

The author wishes to express his gratitude to Dr. H. Bercovici for suggesting
several improvements, especially the simplification of the proof of Theorem 5.
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