Jordan model for weak contractions

PEI YUAN WU

Sz.-NAGY and FoiAş defined in [10] a class of multiplicity-free operators among C_{0} contractions (also cf. [8]). Later on in [1] they developed a "Jordan model" for C_{0} contractions, which resembles in some respects the usual canonical model of a finite matrix. In the present paper we extend both concepts from the context of C_{0} contractions to that of weak contractions.

1. Preliminaries. Let T be a contraction defined on a complex, separable Hilbert space H. Denote by $d_{T}=\operatorname{rank}\left(I-T^{*} T\right)^{1 / 2}, d_{T^{*}}=\operatorname{rank}\left(I-T T^{*}\right)^{1 / 2}$ the defect indices of T.

Recall that T is called a weak contraction if (i) its spectrum $\sigma(T)$ does not fill the open unit disk D, and (ii) $I-T^{*} T$ is of finite trace. Thus in particular $C_{0}(N)$ contractions and C_{11} contractions with finite defect indices are weak contractions. For the theory of $C_{0}(N)$ contractions and C_{11} contractions, we refer the reader to [9]. If T is a completely non-unitary (c.n.u.) weak contraction on H, then $d_{T}=d_{T^{*}}$ and we can consider its $C_{0}-C_{11}$ decomposition. Let H_{0} and H_{1} be the invariant subspaces for T such that $T_{0} \equiv T \mid H_{0}$ and $T_{1} \equiv T \mid H_{1}$ are the C_{0} part and C_{11} part of T. Note that T_{0} and T_{1} are the operators appearing in the triangulations

$$
T=\left[\begin{array}{cc}
T_{0} & X \\
0 & T_{1}^{\prime}
\end{array}\right] \quad \text { and } \quad T=\left[\begin{array}{cc}
T_{1} & Y \\
0 & T_{0}^{\prime}
\end{array}\right]
$$

of type

$$
\left[\begin{array}{lr}
C_{0} & * \\
0 & C_{1} .
\end{array}\right] \text { and }\left[\begin{array}{lr}
C \cdot 1 & * \\
0 & C_{\cdot 0}
\end{array}\right],
$$

respectively. These triangulations, in term, correspond to the *-canonical factorization and canonical factorization

$$
\Theta(\lambda)=\Theta_{* e}(\lambda) \Theta_{* i}(\lambda), \quad \Theta(\lambda)=\Theta_{i}(\lambda) \Theta_{e}(\lambda) \quad(\lambda \in D)
$$

of the characteristic function $\Theta(\lambda)$ of $T, c f$. [9], Chap. VIII.

[^0]Let H^{2} denote the Hardy space of analytic functions on D. For each inner function φ, S_{φ} denotes the operator on $H^{2} \ominus \varphi H^{2}$ defined by $\left(S_{\varphi} f\right)(\lambda)=P(\lambda f(\lambda))$ for $\lambda \in D$, where P denotes the (orthogonal) projection of H^{2} onto $H^{2} \Theta \varphi H^{2}$. For inner functions φ_{1} and $\varphi_{2}, \varphi_{1}=\varphi_{2}$ means that φ_{1} and φ_{2} differ by a constant factor of modulus one; $\varphi_{1} \mid \varphi_{2}$ means that φ_{1} is a divisor of $\varphi_{2} . H^{2} \ominus \varphi H^{2}$ reduces to $\{0\}$ if and only if φ is a constant inner function. For a measurable subset E of the unit circle C, M_{E} denotes the operator of multiplication by $e^{i t}$ on the space $L^{2}(E)$ of square-integrable functions on E, where the measure considered is the (normalized) Lebesgue measure. For measurable subsets E_{1} and E_{2} of $C, E_{1}=E_{2}$ means that $\left(E_{1} \backslash E_{2}\right) \cup\left(E_{2} \backslash E_{1}\right)$ is of Lebesgue measure zero. If $E=\emptyset$ then $L^{2}(E)$ reduces to $\{0\}$.

For arbitrary operators T_{1}, T_{2} on H_{1}, H_{2}, respectively, $T_{1}<T_{2}$ denotes that T_{1} is a quasi-affine transform of T_{2}, that is, there exists a one-to-one, continuous linear transformation X from H_{1} onto a dense linear manifold of H_{2} (called quasiaffinity) such that $X T_{1}=T_{2} X . T_{1}$ and T_{2} are quasi-similar if $T_{1}<T_{2}$ and $T_{2}<T_{1}$. For an arbitrary operator T on H, let μ_{T} denote the multiplicity of T, that is, the least cardinal number of a subset K of vectors in H for which $H=\bigvee_{n=0}^{\infty} T^{n} K$. In particular, if $\mu_{T}=1$ then T is cyclic and the vector in K is a cyclic vector for T. Note that both S and M_{E} are cyclic and that quasi-similar operators have equal multiplicities.
2. Jordan model. The following theorem, gives the Jordan model for C_{0} contractions (cf. [1] and [10]).

Theorem 1. Let T be a C_{0} contraction on a separable Hilbert space, with defect indices $d_{T}=d_{T^{*}}$. Then T is quasi-similar to a uniquely determined operator of the form

$$
S_{\varphi_{1}} \oplus S_{\varphi_{2}} \oplus \ldots \oplus S_{\varphi_{m}} \oplus \ldots
$$

where the φ_{j} 's are inner functions satisfying $\varphi_{j+1} \mid \varphi_{j}(j=1,2, \ldots)$. Moreover, φ_{1} is the minimal function of T, and if there are just m ($0 \leqq m \leqq \infty$) non-constant φ_{j} 's, then $m=\mu_{T}=\mu_{T^{*}} \leqq d_{T}=d_{T^{*}}$.

Next we consider C_{11} contractions. In this case a "Jordan model" can also be given.

Theorem 2. Let T be a c.n.u. C_{11} contraction on a separable Hilbert space, with defect indices $d_{T}=d_{T^{*}}$. Then T is quasi-similar to a uniquely determined operator of the form

$$
\begin{equation*}
M_{E_{1}} \oplus M_{E_{2}} \oplus \ldots \oplus M_{E_{n}} \oplus \ldots \tag{1}
\end{equation*}
$$

where the E_{k} 's are measurable subsets of C satisfying $E_{k+1} \subseteq E_{k}(k=1,2, \ldots)$. If there are just $n(0 \leqq n \leqq \infty) \quad E_{k}$'s with nonzero measure, then $n=\mu_{T}=\mu_{T^{*}} \leqq$ $\leqq d_{T}=d_{T^{*}}$.

We start the proof with the following
Lemma 1. Let T_{1} and T_{2} be operators on H_{1} and H_{2}, respectively. Then $\max \left\{\mu_{T_{1}}, \mu_{T_{2}}\right\} \leqq \mu_{T_{2} \oplus T_{2}} \leqq \mu_{T_{1}}+\mu_{T_{2}}$.

Proof. Let $K=\left\{x_{x} \oplus y_{\alpha}\right\}_{\alpha \in A}$ be a subset of vectors in $H_{1} \oplus H_{2}$ such that $H_{1} \oplus H_{2}=\bigvee_{n=0}^{\infty}\left(T_{1} \oplus T_{2}\right)^{n} K$. Then $K_{1} \equiv\left\{x_{\alpha}\right\}_{\alpha \in A}$ is a subset of H_{1} satisfying $H_{1}=$ $=\bigvee_{n=0}^{\infty} T_{1}^{n} K_{1}$. It follows that $\mu_{T_{1}} \leqq \mu_{T_{1} \oplus T_{2}}$. By symmetry we have $\mu_{T_{2}} \leqq \mu_{T_{1} \oplus T_{2}}$, and hence $\max \left\{\mu_{T_{1}}, \mu_{T_{2}}\right\} \leqq \mu_{T_{1} \oplus T_{2}}$.

To prove the second inequality, let $K_{1}=\left\{x_{\alpha}\right\}_{\alpha \in \Lambda} \subseteq H_{1}$ and $K_{2}=\left\{y_{\beta}\right\}_{\beta \in \Omega} \subseteq H_{2}$ be such that $H_{1}=\bigvee_{n=0}^{\infty} T_{1}^{n} K_{1}$ and $H_{2}=\bigvee_{n=0}^{\infty} T_{2}^{n} K_{2}$, respectively. Then $K=$ $=\left\{x_{\alpha} \oplus 0,0 \oplus y_{\beta}\right\}_{\alpha \in \Lambda, \beta \in \Omega}$ is a subset of $H_{1} \oplus H_{2}$ satisfying $H_{1} \oplus H_{2}=\bigvee_{n=0}^{\infty}\left(T_{1} \oplus T_{2}\right)^{n} K$. It follows that $\mu_{T_{1} \oplus T_{2}} \leqq \mu_{T_{1}}+\mu_{T_{2}}$.

Note that the inequalities in Lemma 1 actually occur. For example, if $T_{1}=T_{2}$ is a simple unilateral shift then $\mu_{T_{1}}=\mu_{T_{2}}=1$ and $\mu_{T_{1} \oplus T_{2}}=2$ (cf. [15], p. 308); if $T_{1}=T_{2}$ is the adjoint of a simple unilateral shift then $\mu_{T_{1}}=\mu_{T_{2}}=1$ and $\mu_{r_{1} \oplus T_{2}}=1$ (cf. [6], Problem 126).

Lemma 2. If there are just $n(0 \leqq n \leqq \infty) E_{k}$'s with nonzero measure in the operator $\quad T=M_{E_{1}} \oplus M_{E_{2}} \oplus \ldots \oplus M_{E_{n}} \oplus \ldots$, where $E_{k+1} \subseteq E_{k} \quad(k=1,2, \ldots)$, then $n=\mu_{T}=\mu_{T^{*}}$.

Proof. By the first inequality in Lemma 1, it suffices to consider the case $n<\infty$, that is, we have to show that if $T=M_{E_{1}} \oplus \ldots \oplus M_{E_{n}}, n<\infty$, then $n=\mu_{T}$. Inequality $\mu_{T} \leqq n$ is obvious. To prove that $\mu_{T} \geqq n$, let us make use of the direct integral representation of the Hilbert-space $H=L^{2}\left(E_{1}\right) \oplus \ldots \oplus L^{2}\left(E_{n}\right)$, associated with the unitary operator T, that is, let

$$
H=\int_{\sigma(T)}^{\oplus} H_{\lambda} d m \quad \text { with } \quad T^{* k} T^{h}\{x(\lambda)\}=\left\{\lambda^{k} \lambda^{h} x(\lambda)\right\}
$$

where m denotes the Lebesgue measure on $\sigma(T) \leqq C$. Let $N=\mu_{T}$. If $K=$ $=\left\{x_{1}, \ldots, x_{N}\right\}$ satisfies $H=\bigvee_{m=0}^{\infty} T^{m} K$ then $K_{\lambda}=\left\{x_{1}(\lambda), \ldots, x_{N}(\lambda)\right\}$ is a set of vectors in H_{λ} such that $H_{\lambda}=\bigvee_{m=0}^{\infty}\left\{\lambda^{m} x_{1}(\lambda), \ldots, \lambda^{m} x_{N}(\lambda)\right\}$ for almost all λ in $\sigma(T)$. But for λ in E_{n}, H_{λ} is an n-dimensional space. Hence we have $\mu_{T}=N \geqq n$, completing the proof.

Proof of Theorem 2. Part of this theorem is implicitly contained in the work of Sz.-NAGY and Foiaş [9]. Indeed, since T is quasi-similar to the dual residual part of its minimal unitary dilation ([9], p. 72), by [9], pp. 88-89 we can infer that T is quasi-similar to an operator of the form (1) and $n \leqq d_{T^{*}}$ (also cf. [9], pp. 271-273 for the case $d_{T}=d_{T^{*}}<\infty$). The uniqueness follows from the multiplicity theory of normal operators [5] and the fact that quasi-similar normal operators are unitarily equivalent. Lemma 2 furnishes the proof of the remaining part.

In light of these results we can generalize the notion of Jordan operators to the following

Definition. An operator T is called a Jordan operator if it is of the form

$$
S_{\varphi_{1}} \oplus \ldots \oplus S_{\varphi_{m}} \oplus \ldots \oplus M_{E_{1}} \oplus \ldots \oplus M_{E_{n}} \oplus \ldots
$$

where the φ_{j} 's are inner functions satisfying $\varphi_{j+1} \mid \varphi_{j}(j=1,2, \ldots)$, and the E_{k} 's are measurable subsets of C satisfying $E_{k+1} \subseteq E_{k}(k=1,2, \ldots)$.

Combining Theorems 1 and 2 we obtain
Theorem 3. Let T be a weak contraction on a separable Hilbert space, with defect indices $d_{T}=d_{T^{*}}$. Then T is quasi-similar to a uniquely determined Jordan operator

$$
\begin{equation*}
S_{\varphi_{1}} \oplus \ldots \oplus S_{\varphi_{m}} \oplus \ldots \oplus M_{E_{1}} \oplus \ldots \oplus M_{E_{n}} \oplus \ldots \tag{2}
\end{equation*}
$$

If there are $m(0 \leqq m \leqq \infty)$ non-constant φ_{j} 's and $n(0 \leqq n \leqq \infty) E_{k}$'s with nonzero measure, then $\mu_{T}=\mu_{T^{*}}=\max \{m, n\}$. Moreover, if T is c.n.u., then its corresponding Jordan operator is also a weak contraction and $\mu_{T}=\mu_{T^{*}}=\max \{m, n\} \leqq d_{T}=d_{T^{*}}$ hold.

We will call the uniquely determined Jordan operator the Jordan model for T.
We start the proof of Theorem 3 with the following
Lemma 3. Let T_{1}, T_{1}^{\prime} be C_{0} contractions on H_{1}, H_{1}^{\prime} and let T_{2}, T_{2}^{\prime} be unitary operators on H_{2}, H_{2}^{\prime}, respectively. If $T_{1} \oplus T_{2}$ ïs a quasi-affine transform of $T_{1}^{\prime} \oplus T_{2}^{\prime}$, then T_{1} is quasi-similar to T_{1}^{\prime} and T_{2} is unitarily equivalent to T_{2}^{\prime}.

Proof. Let $X: H_{1} \oplus H_{2} \rightarrow H_{1}^{\prime} \oplus H_{2}^{\prime}$ be a quasi-affinity such that $X\left(T_{1} \oplus T_{2}\right)=$ $=\left(T_{1}^{\prime} \oplus T_{2}^{\prime}\right) X$. For any $h \in H_{1}$, let $h_{1} \oplus h_{2}=X(h \oplus 0)$, where $h_{1} \in H_{1}^{\prime}$ and $h_{2} \in H_{2}^{\prime}$. Since T_{1}^{\prime}, being a C_{0} contraction, is of class C_{0}., we have $\left(T_{1}^{\prime n} h_{1}\right) \oplus\left(T_{2}^{\prime n} h_{2}\right)=$ $=\left(T_{1}^{\prime} \oplus T_{2}^{\prime}\right)^{n} X(h \oplus 0)=X\left(T_{1} \oplus T_{2}\right)^{n}(h \oplus 0)=X\left(T_{1}^{n} h \oplus 0\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus $T_{2}^{\prime n} h_{2} \rightarrow 0$ as $n \rightarrow \infty$. Since T_{2}^{\prime} is of class C_{1}., this implies that $h_{2}=0$, and hence that $X(h \oplus 0) \in H_{1}^{\prime}$. Thus with respect to the decompositions $H_{1} \oplus H_{2}$ and $H_{1}^{\prime} \oplus H_{2}^{\prime}, X$ is triangulated as

$$
X=\left[\begin{array}{ll}
X_{1} & Z \\
0 & X_{2}
\end{array}\right]
$$

By considering the adjoint, a similar argument as above shows that $Z=0$. Hence we obtain quasi-affinities $X_{1}: H_{1} \rightarrow H_{1}^{\prime}$ and $X_{2}: H_{2} \rightarrow H_{2}^{\prime}$ such that $X_{1} T_{1}=T_{1}^{\prime} X_{1}$ and $X_{2} T_{2}=T_{2}^{\prime} X_{2}$, that is, $T_{1} \prec T_{1}^{\prime}$ and $T_{2}<T_{2}^{\prime}$. By the uniqueness of the Jordan model for C_{0} contractions, we infer that T_{1} is quasi-similar to T_{1}^{\prime} ($c f$. [1], Theorem 1). On the other hand, that T_{2} is unitarily equivalent to T_{2}^{\prime} follows from [4], Lemma 4.1.

Lemma 4. The operator $S_{\varphi} \oplus M_{E}$ on the space $\left(H^{2} \ominus \varphi H^{2}\right) \oplus L^{2}(E)$ is cyclic.
Proof. Let f be an essentially bounded function in $L^{2}(E)$, which is cyclic for M_{E}. If $E \neq C$, such is the identity function $1\left(e^{i t}\right)=e^{i t}$ on E. If $E=C$ then it is well known that the cyclic vectors for the bilateral shift are those functions $f \in L^{2}$ for which $|f|>0$ a.e. and $\int \log |f|=-\infty$; we may assume that f is essentially bounded, for otherwise let $F=\left\{e^{i t}:\left|f\left(e^{i t}\right)\right| \geqq 1\right\}$. Consider $\chi_{C \backslash_{F}} f+\chi_{F}$. Let P be the (orthogonal) projection of H^{2} onto $H^{2} \ominus \varphi H^{2}$, and let 1 also denote the identity function in H^{2}. We want to show that $P(1) \oplus f$ is a cyclic vector for $S_{\varphi} \oplus M_{E}$.

Let $K=\bigvee_{n=0}^{\infty}\left(S_{\varphi} \oplus M_{E}\right)^{n}(P(1) \oplus f)$. For each $h \in H^{2}$, let $\left\{p_{n}\right\}$ be a sequence of polynomials such that $p_{n} \rightarrow \varphi h$ in L^{2}-norm. Since f is essentially bounded, we have $p_{n} f \rightarrow \varphi h f$, and hence $P\left(p_{n}\right) \oplus p_{n} f \rightarrow P(\varphi h) \oplus \varphi h f=0 \oplus \varphi h f$. This shows that $0 \oplus \varphi h f$ is in K for any $h \in H^{2}$.

Now let g be an arbitrary function in $L^{2}(E)$. Since f is a cyclic vector for M_{E}, there exists a sequence of polynomials $\left\{q_{n}\right\}$ such that $q_{n} f \rightarrow \bar{\varphi} g$ in L^{2}-norm. Then $\varphi q_{n} f \rightarrow \varphi \bar{\varphi} g=g$. By what we proved before, we conclude that $0 \oplus g \in K$ for any $g \in L^{2}(E)$. On the other hand, since it is clear that $P(h) \oplus h f \in K$ for any $h \in H^{2}$, we have $P(h) \oplus 0=(P(h) \oplus h f)-(0 \oplus h f) \in K$. Hence we obtain $\left(H^{2} \ominus \varphi H^{2}\right) \oplus L^{2}(E)=K$, which completes the proof.

Proof of Theorem 3. Let $T=U \oplus T^{\prime}$ be the decomposition of T into the direct sum of its unitary part U and its c.n.u. part ${ }^{\prime} T^{\prime}$. Since T^{\prime} is also a weak contraction, we may consider its C_{0} part T_{0} and C_{11} part T_{1}. It was proved in [16] that T^{\prime} is quasi-similar to $T_{0} \oplus T_{1}$. Hence T is quasi-similar to $T_{0} \oplus T_{1} \oplus U$. By Theorem 1, Lemma 3 and the multiplicity theory of normal operators [5], we conclude that T is quasi-similar to a uniquely determined Jordan operator (2).

If T is quasi-similar to (2), then T^{*} is quasi-similar to

$$
S_{\varphi_{\tilde{1}}} \oplus \ldots \oplus S_{\varphi_{\tilde{m}}} \oplus \ldots \oplus M_{E \tilde{1}} \oplus \ldots \oplus M_{E \tilde{n}} \oplus \ldots
$$

where $\varphi_{j}^{\sim}(\lambda)=\overline{\varphi_{j}(\bar{\lambda})}(j=1,2, \ldots)$ and $E_{k}^{\sim}=\left\{e^{i t}: e^{-i t} \in E_{k}\right\} \quad(k=1,2, \ldots)$. Hence it is clear that to show that $\mu_{T}=\mu_{T^{*}}=\max \{m, n\}$, we have only to show that $\mu_{T}=\max \{m, n\}$. For convenience, we assume that $n \leqq m$. Let $d_{T_{0}}$ and $d_{T_{1}}$ denote the defect indices of T_{0} and T_{1}, respectively. By Theorem 1 and Lemma 1 we have $m=\mu_{T_{0}} \leqq \mu_{T_{0} \oplus T_{1} \oplus U}=\mu_{T}$. If $m=\infty$ then we have already had the result. Hence
we may assume that $m<\infty$. Since (2) is unitarily equivalent to

$$
\left(S_{\varphi_{1}} \oplus M_{E_{1}}\right) \oplus \ldots \oplus\left(S_{\varphi_{n}} \oplus M_{E_{n}}\right) \oplus M_{E_{n+1}} \oplus \ldots \oplus M_{E_{m}},
$$

using Lemmas 1 and 4 we have $\mu_{T} \leqq \underbrace{1+\ldots+1}_{n}+\underbrace{1+\ldots+1}_{m-n}=m$. Thus $\mu_{T}=m=$ $=\max \{m, n\}$. The case $m<n$ is similarly proved.

Now we assume that T is c.n.u., that is, $T=T_{0} \oplus T_{1}$. We show that the Jordan model (2) is a weak contraction. Indeed, it is enough to show that $S \equiv S_{\varphi_{1}} \oplus \ldots \oplus S_{\varphi_{m}} \oplus \ldots$ is weak. But S is the Jordan model of T_{0}, which is a weak C_{0} contraction, so the assertion follows from the results of $\S 8$ of [2]. By Theorems 1 and 2 we have $m=\mu_{T_{0}} \leqq d_{T_{0}}$ and $n=\mu_{T_{1}} \leqq d_{T_{1}}$. Since $d_{T_{0}} \leqq d_{T}$ and $d_{T_{1}} \leqq d_{T}$ (cf. [9] p. 302) we obtain $\max \{m, n\} \leqq d_{T}=d_{T^{*}}$, completing the proof.

We make some remarks to conclude this section.
By Theorem 3 and Lemma 3 we infer that for weak contractions T_{1}, T_{2}, if T_{1} is a quasi-affine transform of T_{2} then T_{1} and T_{2} are quasi-similar to each other.

For c.n.u. weak contractions the unitary part of the Jordan model has an absolutely continuous spectrum.

If T is a c.n.u. weak contraction with finite defect indices, then in the Jordan model of T we have $E_{k}=\left\{e^{i t}: \operatorname{rank} \Delta\left(e^{i t}\right) \geqq k\right\}(k=1,2, \ldots, n)$, where $\Delta\left(e^{i t}\right)=$ $=\left[I-\Theta\left(e^{i t}\right)^{*} \Theta\left(e^{i t}\right)\right]^{1 / 2}$ and $\Theta(\lambda)$ denotes the characteristic function of T. Indeed, since the characteristic function $\Theta_{1}(\lambda)$ of the C_{11} part T_{1} is the purely contractive part of the outer factor $\Theta_{e}(\lambda)$ of $\Theta(\lambda)$, if $\Delta_{1}\left(e^{i t}\right)=\left[I-\Theta_{1}\left(e^{i t}\right) * \Theta_{1}\left(e^{i t}\right)\right]^{1 / 2}$ then $\operatorname{rank} \Delta\left(e^{i t}\right)=\operatorname{rank} \Delta_{1}\left(e^{i t}\right)$ a.e.. Thus the assertion follows from [9] Theorem VI. 6.1. In particular, $E_{1}=\left\{e^{i t}: \Theta\left(e^{i t}\right)\right.$ is not isometric $\}$ and $n=$ ess sup rank $\Delta\left(e^{i t}\right)$.
3. Multiplicity-free operators. A C_{0} contraction T is called multiplicity-free if $\mu_{T}=1$, or equivalently, T has a cyclic vector. Some of the equivalent conditions for multiplicity-free C_{0} contractions are gathered in the next theorem (cf. [10] and [13]).

Theorem 4. Let T be a C_{0} contraction on a separable Hilbert space. Then the following conditions are equivalent to each other:
(i) T is multiplicity-free;
(ii) T is quasi-similar to S_{φ} for some inner function φ;
(iii) $\{T\}^{\prime}$ is commutative.

Here $\{T\}^{\prime}$ denotes the commutant of T.
We generalize this to the following
Theorem 5. Let T be a c.n.u. weak contraction on a separable Hilbert space. Let T_{0} and T_{1} denote the C_{0} and C_{11} part of T, respectively. Then the following conditions are equivalent to each other:
(i) T admits a cyclic vector;
(ii) T_{0} and T_{1} admit cyclic vectors;
(iii) T is quasi-similar to $S_{\varphi} \oplus M_{E}$ for some inner function φ and some measurable subset E of C (here φ may be constant and E may have measure zero);
(iv) $\{T\}^{\prime}$ is commutative;
(v) $\left\{T_{0}\right\}^{\prime}$ and $\left\{T_{1}\right\}^{\prime}$ are commutative.

This theorem suggests the following
Definition. A c.n.u. weak contraction T is called multiplicity-free if it satisfies the equivalent conditions (i)-(v) in Theorem 5.

Note that Clark [3] also defined multiplicity-free operators among operators of class $\left[C_{0} . \cup C_{1}\right] \cap\left[C_{\cdot} \cup C_{\cdot 1}\right]$. It is clear that our definition is consistent with his.

Proof of Theorem 5. The equivalence of (i), (ii) and (iii) follows from Theorems 1,2 and 3. The implication (i) \Rightarrow (iv) and the equivalence (ii) \Leftrightarrow (v) were proved by Sz.-NaGY and Foiaş (cf. [11], [12] or [7], [13]). Thus to complete the proof we have only to show that (iv) implies one of the other conditions. Let us prove the implication (iv) \Rightarrow (iii). Let $S \oplus M$ denote the Jordan model of T, where $S=S_{\varphi_{1}} \oplus S_{\varphi_{2}} \oplus \ldots$ and $M=M_{E_{1}} \oplus M_{E_{2}} \oplus \ldots$, and let X, Y be two quasi-affinities such that $\quad T X=X(S \oplus M)$ and $\quad(S \oplus M) Y=Y T$.
Then, from (iv) it follows that the relation

$$
(X A Y)(X B Y)=(X B Y)(X A Y)
$$

holds whenever $A, B \in\{S \oplus M\}^{\prime}$ and hence

$$
A(Y X) B=B(Y X) A
$$

Now by Lemma 3 it follows that $Y X=Z \oplus V$ where $Z \in\{S\}^{\prime}, V \in\{M\}^{\prime}$ and we have

$$
\begin{equation*}
A Z B=B Z A, \quad A^{\prime} V B^{\prime}=B^{\prime} V A^{\prime} \tag{3}
\end{equation*}
$$

for any $A, B \in\{S\}^{\prime}, A^{\prime}, B^{\prime} \in\{M\}^{\prime}$. Taking $B=I, B^{\prime}=I$ in (3), it follows that $Z \in\{S\}^{\prime \prime}$ and $V \in\{M\}^{\prime \prime}$ such that, again by (3), we infer that $\{S\}^{\prime}$ and $\{M\}^{\prime}$ are commutative. From the implication (v) \Rightarrow (ii) it follows that $S=S_{\varphi_{1}}$ and $M=M_{E_{1}}$ and (iii) follows.

We remark that conditions (i)-(v) in Theorem 5 are equivalent to the corresponding conditions for T^{*}. (This follows from Theorem 3 that $\mu_{T}=\mu_{T^{*}}$.) Also note that if the defect indices of T are finite, then these conditions are equivalent to:
(vi) The minors of order $d_{T_{0}}-1$ of the matrix of $\Theta_{* i}(\lambda)$ have no common inner divisor, and rank $\Delta\left(e^{i t}\right) \leqq 1$ a.e. (cf. [9], pp. 267 and 271). In particular, we have

Corollary 1. If T is a c.n.u. contraction with scalar-valued characteristic function $\varphi(\lambda) \not \equiv 0$, then T is cyclic and $\{T\}^{\prime}$ is commutative.

Proof. T is certainly a c.n.u. weak contraction which satisfies condition (vi). The assertion follows from the remark we made above.

Part of the previous result was obtained earlier by Sz.-NAGY and Foiaş [14].
Corollary 2. Let T be a c.n.u. multiplicity-free weak contraction on H. If K is an invariant subspace for T such that $T \mid K$ is also a weak contraction, then $T \mid K$ is multiplicity-free.

Proof. Since T is multiplicity-free, we have $\mu_{T^{*}}=1$, so that $\mu_{(T \mid K)^{*}}=1$. Therefore, if $T \mid K$ is a weak contraction, it follows that it is multiplicity-free.

The author wishes to express his gratitude to Dr. H. Bercovici for suggesting several improvements, especially the simplification of the proof of Theorem 5.

References

[1] H. Bercovici, C. Foias and B. Sz.-Nagy, Compléments à l'étude des opérateurs de classe C_{0}. III, Acta Sci. Math., 37 (1975), 313-322.
[2] H. Bercovici and D. Voiculescu, Tensor operations on characteristic functions of C_{0} operators, Acta Sci. Math., 39 (1977), 205-231.
[3] D. N. Clark, On invariant subspaces of operators without nultiplicity, Indiana Univ. Math. J., 25 (1976), 553-563.
[4] R. G. Douglas, On the operator equation $S^{*} X T=X$ and related topics, Acta Sci. Math., 30 (1969), 19-32.
[5] N. Dunford and J. T. Schwartz, Linear operators. Part II, Interscience (New York, 1963).
[6] P. R. Halmos, A Hilbert space problem book, D. Van Nostrand (Princeton, 1967).
[7] B. Sz.-Nagy, Cyclic vectors and commutants, Linear operators and approximation, Birkhäuser (Basel-Stuttgart, 1972), 62-67.
[8] B. Sz.-Nagy and C. Folaş, Opérateurs sans multiplicité, Acta Sci. Math., 30 (1969), 1-18.
[9] B. Sz.-NaGy and C. Foias, Harmonic analysis of operators on Hilbert space, Akadémiai Kiadó (Budapest, 1970).
[10] B. Sz.-Nagy and C. Foias, Compléments à l'étude des opérateurs de classe Co, Acta Sci. Math., 31 (1970), 287-296.
[11] B. Sz.-Nagy and C. Foias, Vecteurs cycliques et commutativité des commutants, Acta Sci. Math., 32 (1971), 177-183.
[12] B. Sz.-Nagy and C. Foias, The "Lifting Theorem" for intertwining operators and some new applications, Indiana Univ. Math. J., 20 (1971), 901-904.
[13] B. Sz.-Nagy and C. Foias, Compléments à l'étude des opérateurs de classe Co. II, Acta Sci. Math., 33 (1972), 113-116.
[14] B. Sz.-Nagy and C. FoIAs, On the structure of intertwining operators, Acta Sci. Math., 35 (1973), 225-254.
[15] B. Sz.-Nagy and C. Foiaş, Jordan model for contractions of class C.0, Acta Sci. Math., 36 (1974), 305-322.
[16] P. Y. Wu, Quasi-similarity of weak contractions, Proc. Amer. Math. Soc., to appear.
DEPARTMENT OF APPLIED MATHEMATICS
NATIONAL CHAO TUNG UNIVERSITY
HSINCHU, TAIWAN, CHINA

[^0]: Received February 20, in revised form May 25, 1977.

