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1. Introduction and Summary 

Let T be an element of the algebra &(§>) of bounded linear operators on a 
complex Hilbert space § and let S T ( X ) = T X — X T be the corresponding inner 
derivation. There are two natural closed subalgebras of associated with T, 
namely the inclusion algebra <f(T) of operators A for which the range of 
bA is contained in the norm closure &(ST)~, and the multiplier algebra J{(T) = 
= { Z T % ( 5 ) ) \ Z M ( 5 T ) + ! % ( D T ) Z Q M ( 8 T ) - } . Most of the recent results [1, 3, 16, 19, 
20,21,22] about the range of a derivation can be interpreted as assertions about 
these algebras or the two algebras that are defined similarly by replacing 2%(ST)~ 
by t%(5T). In the finite dimensional case, Ji(T) = {T}' and J(T) = {T}" are the 
commutant and bicommutant of T. 

In this paper we study the situation in which either (and, therefore, both) 
of these-is a C*-subalgebra of The corresponding operators T, those for 
which &(ST)~—32(dT*)~ is a self-adjoint subspace of are called it-sym-
metric operators. Any isometry or normal operator is ¿/-symmetric and so is the 
image of a ¿/-symmetric operator under an irreducible representation of the C -
algebra C*(T) generated by T and the identity operator. However, if N is normal 
then 91 (5N) is itself self-adjoint only if the spectrum of N has empty interior [11, 
Theorem 4.1]. 

If T is ¿-symmetric then is determined by the T-central states on 
that is, linear functionals / with / ( / ) = 1 = | | / | | and f(TX)=f(XT) for all 
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X£ &(§>). In fact, á?(<5r)~ is even determined by those pure states of whose 
restrictions to J(T) are multiplicative. These satisfy f(AX)=f(XA)=f(A)/(X) 
for X£i%(!o) and so that in particular C*(T) must have a character. 

The C*-algebra C(T) of operators C for which is contained 
in @(5T)~ plays a fundamental role here. For example, T i s ¿-symmetric if and only 
if T*T—TT*£<8(T) and a ¿/-symmetric operator has the Fuglede property: 
TX-XT£<g(T) for some operator I o n § only if T*X-XT*£<§(T). For a ¿/-sym-
metric operator <g(T) coincides with the commutator ideal of J(T). It is non-
separable in general. 

The inclusion algebra - / (T) of a (/-symmetric operator T is identified in the 
two extreme cases in which T has no reducing eigenvalues (complex numbers X 
for which ker (T— XI) reduces T) and in which T has a spanning set of orthonormal 
eigenvectors (T is a diagonal operator). In the first case J?(T) = C*(T) + eg(T), 
while in the second J(T) is the C*-algebra generated by T and those projections 
onto eigenspaces corresponding to eigenvalues of finite multiplicity that are limit 
points of the spectrum of T. 

Various criteria for ¿/-symmetry are given in § 2 and the ideal <g(T) is studied 
in § 3. We study the T-central states in § 4, present examples, counterexamples 
and information about special cases in § 5, and mention several questions- we have 
been unable to resolve in the final section of the paper. 

2. Conditions for ¿/-symmetry 

The proof of our first result was inspired by ROSENBLUM'S proof [ 1 4 ] of the 
Fuglede theorem. 

T h e o r e m 2.1. For T in the following are equivalent: 

(a) T is d-symmetric, (b) T*T-TT*£<#(T), 

(c) T* 01 (<5T) + St (<5r) T*<g@ (<5r) - . 

P r o o f . The equivalence of (b) and (c) is a consequence of the identities: 

(T*T-TT*)X=T*5t(X)-5t(T*X), X(T*T-TT*) = 5T(X)T*-dT(XT*). 

Since T * Ó T T ( X ) = 5 T , ( T * X ) and 5 T * ( X ) T * = 5 T * ( X T % (a) implies (c). 
Now assume (c) holds. To prove that T is ¿/-symmetric it suffices to show that 

/(<%(<5T*))=0 for all / in 38(9))* satisfying f(®(,5r))=0. If Xi@(5)) then 
f(TX)=f(XT) and 

f(T*"TX) = f(T*n(TX-XT))+f(T*nXT) = 0+f(T*"XT) — f(TT*"X) 

since T*M(5T)<g@(ST)- by (c). By induction f(T*nTmX)=f{TmT*"X) for all 
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non-negative integers n and m. From this one obtains 

/ (exp ( a T + 0 T * ) X ) = / ( e x p ( a T ) exp (pT*)X) = / ( e x p (fiT*) exp (*T)X) 

for all complex numbers a and /? by imitating the standard proof of the. identity 
exp (A+2?)=exp (A) exp (B) (for commuting A and B) as given in [12, p. 397] 
for example. A similar argument, using &(5 t)T*Q!%(5 t)~, gives 

f(Xexp (uT+fiT*)) = / ( Z e x p ( a T ) exp (fiT*) = / ( X e x p (fiT*) exp (aT)). : 

Since f(TX)=f(XT), it follows by induction that f(TnX)=f(XT") for all n 
and hence / ( exp {*T)X)=f(X exy ( a J ) ) or / (exp (a T)Xexp (-v. T)) =f(X). 
These relations yield: 

/ (exp (iXT*)X exp ( - iXT j) = / ( e x p ( ¿ U ) exp ( i / i r * )* exp ( - ilT*) exp ( - ilT)) = 

= / ( e x p (¿2 Re (IT)) X exp ( - ¿2 Re (XT))) 

for any complex X. The right hand side of this equation is bounded, so by Liouville's 
theorem the entire function on the left hand side must be constant. In particular, 
the derivative vanishes at 2 = 0 . This gives f(T*X-XT*)=0. • 

C o r o l l a r y 2.2. Every normal operator is d-symmetric. 

T h e o r e m 2.3. Every isometry V is d-symmetric. 

P r o o f . If Q=I-VV* then 5yt(X)=5v(-V* XV*)-QXV* so it suffices 

to show that QXe^(S y )~ for a\l ' X£ &(§>). Let T„ = 2" {k/n-l)VkQXV*<k+1> 

for « — 2, 3, Then 5v(Tn)-QX= -n'1 2 VkQXV*k. Since (VJQx,VkQy) = 0 
k = 1 

for j^k and x, y in 

2 VkQXV*kx Z\\VkQXV*kxr^n\\QX\\*\\xr. 

Hence n'^l £ V"QXV*k\\^n-1/2\\QX\\ and QXZ®(5V)-. 
k = 1 

R e m a r k . The proof of 2.3 shows that Q33(§)Q3i(8 v y. The closure cannot 
be deleted here, however, as ¡%(5V) contains no non-zero right ideal of [21]. 
But 0t(bv) does contain the left ideal of &(§>) generated by Q [18]. 

Let J f = J f (§) denote the compact operators on An operator T is essentially 
d-symmetric if it is ¿/-symmetric in the Calkin algebra &($>)/Jf, that , is, if 
[v(T'), (§) ) ]" is a self-adjoint subspace of the Calkin algebra. (Here v denotes 
the canonical homomorphism of &(£>) onto We now determine the 
relationship between ¿/-symmetric and essentially ¿/-symmetric operators. 

A closed subspace of is self-adjoint if and only if its annihilator J5" is 
self-adjoint in the sense t h a t / 6 ^ i m p l i e s / * where f*(X)=f(X*y. Now each 

i* 



214 Joel Anderson, John W. Bunce, James A. Deddens, and J. P. Williams 

has a unique representation f — f 0 + f j where f0 is a bounded linear 
functional on 38(5)) that vanishes on JT and / , is induced by an operator J in the 
trace class by the formula f j (X) =trace (XJ) for X in <0(f>). (See [9, 2.11.7 and 
4.1.2].) Moreover, f = f 0 + f j is T-central for an operator T if and only if. both /„ 
and f j are T-central, and fs is T-central if and only if TJ=JT [20, Theorem 3]. 
These facts give 

P r o p o s i t i o n 2.4. An operator T on § is d-symmetric if and only if 

(a) T is essentially d-symmetric, and 

(b) TJ—JT for an operator J in the trace class implies TJ*=J*T. 

C o r o l l a r y 2.5. (a) An essentially normal operator T is d-symmetric if and only 
if TJ=JT for an operator J in the trace class implies TJ*—J*T. 

(b) An operator in the trace class is d-symmetric if and only if it is normal. 

P r o o f . Since the proof of Theorem 2.1 is valid in any C*-algebra, any essen-
tially normal operator is essentially ¿/-symmetric. • 

C o r o l l a r y 2.6. The following are equivalent for a d-symmetric operator T: 

(a) X Q d T ( J i r ) ~ . 

(b) J f Q m ( 5 T ) - . 

(c) T has no reducing eigenvalues. 

P r o o f . If T has a reducing eigenvalue, then (Sx , x ) = 0 for all S in 3$(5T)~ 
and some non-zero H and jTnon Qi%(dT)~. Thus, (b) implies (c). If <5r(jT) is not 
dense in X, then since Jf"* is the trace class operators, there is a non-zero J in the 
trace class such that f } vanishes on bT(c/C), that is, TJ=JT. Since T is ¿/-symmetric 
TJ*=J*T by 2.4and Tcommutes with a non-zero self-adjoint trace class operator. 
Therefore T has a finite dimensional reducing subspace Jt. Clearly, any direct 
summand of a ¿/-symmetric operator is ¿/-symmetric so T\M is normal by 2.5(b). 
Hence T has a reducing eigenvalue and (c) implies (a). The remaining implication 
is obvious. • 

R e m a r k s , (a) If S and T are ¿/-symmetric operators with disjoint spectra, 
then an easy application of ROSENBLUM'S theorem [13] shows that S®T is d-
symmetric. 

(b) If X is an eigenvalue of T but 1 is not an eigenvalue of T*, then T®).f 
is not ¿/-symmetric, where / is the identity on any non-zero Hilbert space. In particular, 
if U+ denotes the unilateral shift and U+ © 1 / i s not ¿/-symmetric. However, 
if then 2.4(b) and. a calculation show that U+@XI is ¿/-symmetric. 
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(c) STAMPFLI [16] constructed a compact weighted shift K that commutes 
with no non-zero trace class operator and therefore 3k(bK)~ = .if. This operator 
K is then ¿-symmetric and quasinilpotent. As A ' ® « - 1 / is ¿-symmetric by (a) above 
and K®0 is not ¿-symmetric by (b), it follows that the set of d-symmetric operators 
is not norm closed. Stampfli has independently pointed out this same fact to us. 

The proof of our next theorem requires non-separable versions of two known 
results. We now present these (slight) generalizations. Let si denote a unital sepa-
rable C'-algebra of operators in 38(9)), where § is separable. In [17] Voiculescu 
showed that if n is a representation of si in 3#(?>J, where 9>K is separable and 
n(si P l J f ) = 0 , then there is a sequence of unitary transformations U„ of 
onto § such that A — U„(A®n(A))U* is compact for all A in si and 
lim \\A~Un(A®n(A))U*\\=0 for all A in si. (In symbols, id~id©7c). This fact 
was used in [2] to show that if / is a state on si that is zero on s f f ) X then f 
extends to a pure state on 38 (9>). 

P r o p o s i t i o n 2.7. Let si denote a unital separable C*-algebra of operators 
acting on a Hilbert space 9) (of any dimension). 

(a) If n is a representation of si in 38 (§>„), where is separable and 
n(sinJif) = 0, then id~id©7t. 

(b) If f is a state on si such that f vanishes on siCthen f extends to a pure 
state on 38(9)). 

P r o o f . Choose a dense sequence {An} of operators in si and select unit vectors 
in 9> as follows. For each n choose an infinite orthonormal sequence {e„k} such that 
M J e = l i m \\A„e„k\\ and choose a sequence {xnJ} such that M J = lim \\Anxnj\\. 
(Here, \\A„\\e denotes the norm of An + X in 39(9))/Jf.) Write 9ft for the subspace 
of § generated by {sienk}U {sixnJ}. Then the restriction map <P induced by the 
projection P of 9> onto M is an isometric isomorphism. Furthermore, an operator 
A in s4 is compact if and only if <P(A) is compact. Now suppose n is a representa-
tion of si as in (a) above. Then it'=no$>~x is a representation of <P{si) which 
satisfies the hypotheses of Voiculescu's theorem. (If <P(A) is compact, then 
7i'(4>(A))=n(A)=0 since A is compact.) Hence i d m ^ ^ i d ^ ) ® ^ . Let denote 
the restriction of si to P±9>. Then 

id^ - ¥®<P ~ f e O d ^ © ? ! ' ) = id 

and (a) is established. 
Now suppose that / is a state on si that is zero on siCThen f'= fo&~r 

is a state on <P(si) that is zero on 4>(si)nJf(991) and so by [2] there is a pure 
state g' on 38 (Wi) which extends f . Define g" on 38(PS9,)®38(W) by g"(X® Y) = 
=g'(Y). Then g" is a pure state on 38(PL9))®38{W) and if A^sé, A=A1®<P(A) 
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and g"(A)=g'{<t>(A))=f'{4>{A))=f(A). Thus g" is a pure state that extends / , 
so we may choose a pure state on 08(5)) that extends g". • 

Recall that a representation ^ ( S j J of a C*-algebra s i into the oper-
ators on the Hilbert space is called cyclic if there is a vector x in such that 
n(stf)x is dense in §>„. 

T h e o r e m 2.8. If T is a d-symmetric operator on a Hilbert space § and 
is a cyclic representation such that either 

(a) N ( C * ( T ) C \ ^ R ) = Q , or (b) N { C * ( T J ) is irreducible, then N ( T ) is d-symmetric. 

P r o o f . Assume that 7 i (C*(T )n J f ) = 0 . Then by Proposition 2.7(a) there 
is a unitary transformation U mapping onto § such that T — U ( T ® k ( T ) ) U * 

is compact. Since T is ¿/-symmetric, U ( T ® N ( T ) ) U * is essentially ¿/-symmetric 
and so T ® N ( T ) is essentially ¿/-symmetric. Therefore N ( T ) is essentially ¿/-symmetric. 
Let / denote a 7r(T)-central bounded linear functional on We must show 
that / * is 7r(r)-central. Write f=f0+fw where / 0 vanishes on and fw is 
ultraweakly continuous (that is, induced by a trace class operator.) Then f0 and 
fw are 7r(T)-central [20] and /0* is 7r(7>central because N(T) is essentially ¿/-sym-
metric. We need only show that f* is N(7>central. Fix a cyclic vector x for N ; ( C * ( T ) ) 

and define a state oj on C*(T) by a>(A)=(n(A)x, x). Since C*(T) is separable 
and co vanishes on js/D^C there is a pure state q on 38(?>) that extends co by 
Proposition 2.7(b). It follows (as in [9, 2.10.2]) that there is a Hilbert space 
containing 9)K and an irreducible representation n ' of 3&{9)) in such that the 
projection P of onto reduces N ' ( C * ( T ) ) and Pn'(A)\9yn = n(A) for all A 
in C * ( T ) . Define a linear functional g on by g(X)=fw(Pn'(X)P\§K)) Then 

g(TX) =fw(Pn'(TX)P\?>n) =fw(n(T)PK'(X)P\9>!t) = 

=fw{(Pn'{X)P\$n)K(T)) =fw{Pn'(XT)P\9yn) = g(XT), 

since fw is 7r(r)-central. Thus g is T-central; so, since T is ¿/-symmetric, g is T*-
central. Therefore, for all X in we have 

fw{(Pn'(X)p I § j n ( T f ) = f M T ) * MVO p I S«)-

Since it' is irreducible and fw is ultraweakly continuous, fw is 7t(r)*-central. 
Now suppose that n is irreducible. By the first part of the proof, we may assume 

that 7t is not zero on C*(T)CiJfr. Then n0=n\C*(T)C\is irreducible 
[9, 2.11.3] and by [5, 1.4.4] there is a subspace 9Jt of such that n0 is unitarily equiv-
alent to the restriction to 9)1 of the identity representation of C*(T)C\M'. Since 
C*(T ,)fl X is irreducible on 931, 9Jt must reduce T. A similar argument shows that 
n(C*(T)) is unitarily equivalent to C*(r)|9M. Thus n{T) is unitarily equivalent 
to a direct summand of T and n(T) is ¿/-symmetric. • 



C* -algebras and derivation ranges 217 

R e m a r k s , (a) The operator T@n(T) in the proof of Theorem 2.8 need not 
be ¿-symmetric. Indeed, let K denote the compact ¿-symmetric operator in Remark 
(c) following 2.6 and define n on C*(K)=JT(§)+C7 by n(K1+lI)=L Then 
K@n(K)=K® 0 is not a ¿-symmetric operator. 

(b) If T is ¿-symmetric and n is an irreducible representation of C*(T) then 
is either infinite dimensional or one dimensional. For n(T) is ¿-symmetric by 

2.8 and if §>„ has dimension «<«=, then n{T) is normal (2.5(b)), and irreducible, 
hence n = 1. Thus, if T is essentially n-normal and d-symmetric, then T is essentially 

'' (c) We shall show (3.6) that if T is ¿-symmetric, then C*(T) has a character. 
Hence C'(ji(T)) has a character for every irreducible representation n of C*{T). 

As noted prior to Proposition 2.4 ¿-symmetry of an operator is equivalent 
to the condition that the annihilator of its derivation range be 'a self-adjoint sub-
space of &(§>)*. We now show that the annihilator is actually determined by the 
states it contains. 

Let E(T) denote the set of all T-central states on J? (§); that is, the set of states 
/ o n such that f(TX)=f(XT) for all X in £ ( § ) . 

T h e o r e m 3.1. If Tis a d-symmetric operator, then = fl (ker ( / ) : /£ i s ( r )} . 

P r o o f . Fix / = / * in the annihilator of M(dT). Then there are unique positive 
linear functionals / + and f~ o n ^ ( § ) such that / = / + - / - and | | / | | = | | / + | | + | | /~| | 
[9, 1 2 . 3 . 4 ] . To prove the theorem, it suffices to show that / + and / " are T-cen-
tral. To do this we use an argument due to EFFROS and H A H N [10, p. 24] . 

Since / is self-adjoint, the set f(AX)=f(XA) for all X in <£(§)} 
is a C* -algebra containing T. Fix a unitary owerator U in C*(T) and write 
gl(X)=f+{U*XU), g2(X)=f~(U*XU) for X in £ ( § ) . Then g l and g2 are posi-
tive linear functionals with g1(X)-gz(X)=f(U*XU)=f(X) and + | | f t | | = 

= So, by the uniqueness of the decomposition of / , f+—gi 
and f~=g2- Hence f+ and f~ are {/-central for every unitary U in C*(T). 
Since the unitaries in C*(T) span C*(T), f+ and / " are T-central. • 

R e m a r k . The proof of Theorem 3.1 shows that an operator T has a T-central 
state if and only if the commutator subspace [C*(7), i s 'not norm dense 
in (See [6].) This is.equivalent to the non-density of 3#(ST)+3$(5Tt) or to 
the condition that 0 belong to the closure of the numerical range of every com-
mutator TX—XT [19]. The mere existence of a central state, however, does not 

imply ¿-symmetry as the example T= shows. 

normal. 

3. The inclusion and multiplier algebras 
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C o r o l l a r y 3.2. If T is a d-symmetric operator, then: 
(a) 3&(8T)~ is an hereditary subspace of &(§>): that is, if 0 a n d 

Y£@(ST)-, then X£@(8T)-. 
(b) for all A in C*(T). 
(c) <&(T) is the linear span of the positive elements in 3l(8T)~ and (€(T) is 

hereditary in 3S(§>). 
(d) Jf(§>) Q <g(T) if and only if T has no reducing eigenvalues. 

P r o o f . Parts (a) and (b) are clear from 3.1. We prove part (c). If C is a positive 
operator in @(ST)~, then / ( C ) = 0 for each ^-central state / , and so, \f(XCin)\* ^ 
^f(XX*) / ((C1 /^)2)=0. Similarly, f(C1/2X)=0. Hence, by Theorem 3.1, 
C^'eVCT) and so C = C 1 / 2 C 1 / 2 i ^ ( r ) . On the other hand, if C ^ ( T ) is self-
adjoint with spectral measure E(-), then C=CE([0, ° ° ) ) + £ ( ( - » , 0))C is a 
linear combination of positive operators in <%(5T)~. <&(T) is a hereditary sub-
space of 8$(5)) by (a). Part (d) follows from (c) and 2.6. • 

We now study the sets ^ ( T ) , ^ ( T ) , and J t ( T ) in more detail. 

T h e o r e m 3.3: If T is a d-symmetric operator, then: 
(a) <&(T), J(T), and Jt(T) are C*-algebras. 
(b) ^(T) is a norm closed two-sided ideal in Jt (T) which is properly contained 

in J(T). Furthermore, J(T)QJ(T) + {T}'<gJ((T). 
(c) J(T)/<#(T) is contained in the center of Jt(T)\(g(T). 
(d) ^ ( T ) = { Z e « ( S ) : [ Z , J(T)\^(T)}={Zi®(?)y.[Z, T]c<S(T)} = 

= { Z £ ^ ( § ) : [ Z , T]iJ(T)}. 
(e) <8(T)=J?(T)f\M(5T)- = Ji(T)C]®{dT)-. 

P r o o f . As m(5T)- is self-adjoint it is clear that Ji(T) and <$(T) are C*-al-
gebras. It is also clear that <g(T)QJ(T) and that {T},(=Ji(T). 

If A £ uf(T) then A 5T (X)=5T (AX)+5JTX)- T8A (X) is in M(5T)~. Hence 
A@(5T)Qgt(5T)-. Similarly @(ST)Ag@(ST)~ so that J(T)^Ji(T). There-
fore if A^A^JiT) then A1A2X-XA1A2^A1(A2X-XA2) + (A1X-XA1)A2e 
£@(8T)~ and A1A2£J(T). Hence J(T) is a norm closed subalgebra of @(9j). 
Since &t(bT)~ is self-adjoint, J ( J ) is a C*-algebra. 

If Z$.Jl(T), C£<$(T), and X is any operator then 

X(CZ) = (XC)Zt a(ST)~Z g « ( ¿ T ) " and (CZ)X = C(ZX)€ £(ST)-. 

Hence <8(T) is right ideal of Jt(T). Since <tf(T) is a C*-algebra, it is a norm closed 
two sided ideal of Ji(T). Also, I ^ ( T ) because m(ST)~ ^33(§>) [16, Theorem 1], 
so <6(T) is properly contained in J(T). This proves (a) and (b). 

If Z£Jt(T),A^J(T), and X is any operator, then 

SZ(A)X = Z5A(X)-SA(ZX)€@(dT)~ and XSZ(A) = 5A(X)Z-SA(XZ)e %(ST)~. 
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Hence 8Z(A)^(T). This proves (c). It also shows that 

Jt(T) g {Z€ : [Z, J(T)] i <$(T)} g {ze : [Z, ^ (T )} g 
E : [Z, T]€ 

Before showing the reverse inclusions, we establish (e). Suppose that A £ Jt (T) f | 
n « ( 5 T ) ~ . Then AA*+A*A€A&(ST)-+SlXdT)-AQ&(5T)-. Hence both AA* 
A* A belong to e£(T) as ^(T) is hereditary. By considering the polar decompositions 
of A and A* one gets A£<g(T). Thus Ji(T)C\m(5T)- g ^ C O and the inclusions 
<S(T)^J(T)Ci3t(ST)-QJl(T)f\3t(ST)- are trivial. 

To finish the proof of (d), suppose ST(Z)cJ(T) and A'is an operator. Then 
ST(Z)£<g(T) by (e) and so 

Z5T(X) = 8T(ZX)-SAZ)Xe®(dT)~ and ST(X)Z = 8T(xZ)-X8T(Z)£0l(dT)-. 

Hence Z$_Jl(T). • 
The following is a version of the Fuglede theorem for ¿-symmetric operators. 

C o r o l l a r y 3.4. Let T be d-symmetric and let If TX—XT£%>(T) 
then TX*-X*T^(T). 

E x a m p l e . Let K denote, an irreducible compact operator that does not com-
mute with any trace class operator (as in remark (c) following 2.6, for example.) 
Then <g(K)=m(8K)- = Jir so that Jt(K)=38(§) and J(K) = X+CI by [7, The-
orem 2.9]. 

We now show that ^(T) is the commutator ideal of ¿?(T) if T is a ¿-symmetric 
operator. 

Recall [4, §3.3] that the commutator ideal C o m m ( j ^ of a C*-algebra si is 
the smallest closed two-sided ideal of si containing all of the commutators A1A2~ 
—A2A1 for A1, A2 in si. Comm (si) is also the smallest closed ideal # such that 
s i l i s commutative and, furthermore, Comm si= Pi ker (q>), where the inter-
section is taken over all the characters (non-zero complex homomorphisms) of si. 
If T is an operator, then Comm (C* (T)) = Comm C * (7") is the ideal generated 
by T*T-TT*. 

We make use of the fact that i f f is a state on a C*-algebra 38 whose restriction 
(p to a C *-subalgebra si is a character, then f is si-multiplicative on 8% in the sense 
that / ( X A ) =f (X) f (A) =f(AX) for all X in 38 and all A in si. Indeed, A-f(A)I 
belongs to the left kernel of / because <p((A — <p(A))*(A — <p(A)))=0. 

T h e o r e m 3.5. If T is a d-symmetric operator, then: 
(a) <g,(r) = Comm(j r (T)) . 
(b) Comm C*(T) = C*(T)nM(5T)- = C*(T)№(T). 
(c) The map a of C*(T)/Gomm C*(T) into J(T)I<$(T) given by 

a(y4 + Comm C*(T))=A+C&(T) is an isomorphism. 



220 Joel Anderson, John W. Bunce, James A. Deddens, and J. P. Williams 

P r o o f . Let <p be a character on J(T) and let / b e any extension of cp to a state 
on £?(§). Then / i s ^-central by the remark preceding the statement of the theorem, 
hence (p(<g(T)) = f(<g(T))=0 as 5T)~. Thus V{T)QComm J(T). The 
reverse inclusion is clear from Theorem 3.3(c). 

The same remark shows that any character of C*(T) vanishes on C*(T)D 
n@(Sr)- so that C*(r)m%(ST)-gCommC*(r)QC*(T)n<<f(T)gC*(T)n 
C\i%(dT)~ by the first part of the argument. This proves (b) and (c) is then clear. • 

C o r o l l a r y 3.6. If T is a d-symmetric operator, then C*(T) has a character. 

P r o o f . Since (3.3(b)), Comm C*(T)^C*(T) by 3.5(b). 

R e m a r k . Note that C*(T) may have only one character, however. For ex-
ample, this is the case for the compact operator considered in the example follow-
ing 3.4. 

We now derive additional results about the inclusion and multiplier algebras 
under the additional hypothesis that 7has no reducing eigenvalues. Then J f 
by 2.6 and so 

T h e o r e m 3.7. If T is a d-symmetric operator that has no reducing eigenvalues, 
then 

(a) J(T) = C*(T)+(g(T), (b) The center of Jt(T)l<8(T) is J(T)/<£(T). 

P r o o f . Suppose there is an operator S in J(T) such that S$C*(T)+(g(T). 
Then the commutative C*-algebra (C*(S, T)+^(T))M(T) properly contains 
(C*(T)+(£(T))/'g(T) and so by the Stone—Weierstrass theorem, there are distinct 
characters <pl and <p2 on C*(S, T)+(£(T) that vanish on ^(T) and agree on C *(T) + 
+<#(T). Hence there are one-dimensional representations % and n2 of C*(S,T) + X 
such that ^ ( S ^ T ^ S ) , % and n2 agree on C*(T) + J#~, and % and n2 vanish on 
Jf" (since ¿CQ'tfiT)). Let n denote the direct sum of copies of % and n2 . By 
Proposition 2.7(a) id is unitarily equivalent to id©7t modulo the compacts and it 
follows that there are infinite dimensional projections Px and P2 on Sj such that 
PiA-(pi(A)Pi and APi — q>i(A)Pi are compact for / = 1 , 2 and all A in C*(S, T) + X. 
Choose orthonormal bases {e„} and {/„} for and P25), respectively and define 
W in ¿3(§) by We.=fB, n=1,2, .. . , and Wx=0 for x in ( P ^ ) 1 . If 
then for n = 1 , 2 , . . . , {(TX-XT)en, f^^P.TX-XTPJe,,, f„)=(<pa(T)-
— (p1(T))(Xen, fn)+(Ken, /„), where K is a compact operator. Since (p1(T)=(p2(T) 
and \\Ke„\\ - 0 , || W-(TX-XT)\\ s i and ®(5T)~. On the other hand, SW- WS= 
= SP2W-WP1S={cp2(S)-(p1(S))fV+K, where K is a compact operator. Since 
<p1(S)^cp2(S) and S£S(T), + a contradiction. This proves 

part (a) of the theorem. 
Now suppose that Z+Jf(T) is in the center of J/(T)/V(T) but Z^J(T) = 

= C*(T)+<g(T). Then by the argument given in the first part of the proof, there 
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are characters <px and <p2 on C*(Z, T) + Jf such that (¡£)1(Z)?i(p2(Z), <pt and <p2 

vanish on j f , and q>y and cp2 agree on C*(T) + J f . Also, there are orthogonal in-
finite dimensional projections P1 and P2 on § such that PiA — (pi(A)Pi and 
APi-ViWPt are compact for all A in C*(Z, T) + J f and / = 1 , 2 . If 'X£3S($), 
then {P1 + P2)(TX~XT)(P1 + P2) = {(p1(T)-(p^T))(PiXP2-P2XP1) + K=K, for 
some compact operator K, since (py(T)^(p2(T). Thus (Pl+P2)3i(<5r)"(P1+P2) = 
= .^ ( (P 1 + />

2)§). Let W denote a partial isometry of Px9) onto P2§> as in the 
first part of the proof. Then W8T(X)-8T(WX) =-8T(W)X= -(TP2W- WP1T)X= 
= ( < P i { T ) - ( P 2 ( T ) ) W X + K = K , for some compact operator K , since c p I ( T ) = 

= <p2(T) and so W3$(öT)Q3t(öT) + $TQ3i(öT)-. A similar argument shows that 
äl(ST)W£äl(8T)- so that W£Ji(T). Hence, ZW-WZ£<g(T)Q®(8T)-. But 
P2(ZW-]VZ)P1=(cp2(Z)-<p1(Z))W+K for some compact operator K and since 
(p2(Z)7£(p1(Z), P2(ZW— WZ)P1 is not compact, a contradiction. • 

C o r o l l a r y 3.8. If T is a d-symmetric operator that has no reducing eigenvalues, 
then C*(r)/Comm C*(T) s J(T)/V(T). 

In the concluding result of this section we show that ITF(T) can be quite large. 

T h e o r e m 3.9. Supposse § is separable and that T is a d-symmetric operator 
with no reducing eigenvalues. If T is not essentially normal, or if T is essentially normal 
with uncountable spectrum, then r€(T) contains a C*-algebra that is spatially iso-
morphic to 38 (§) © Jf (§). 

P r o o f . It is enough to show that 3$(8T)~ contains a projection P of infinite 
rank. For then, since P is positive, P ^ ( T ) by 3.2(c) and P 3 8 ( § ) P + P L ^ R ( 9 ) ) P 1 -

is the desired subalgebra of T). 
If 3$(5T)~ fails to contain a projection of infinite rank, then by 

3.2(c) and spectral theory. Hence T is essentially normal. Since X Q 0 t ( 8 T ) ~ , 
Remark 1 of [22] implies that the spectrum of T is countable. • 

4. The ^-central states 

The set E(T) of all T-central states on 38 (Jo) is convex and weak*-compact. 
We begin this section by examining the extreme points of E(T). Recall that a state 
/ on a C*-algebra 38 is ^-multiplicative if f(AX) =f(A) f ( X ) =f(XA) for all 
X in 38 and all A in s/ and that the extreme points in the set of all states on 38 are 
also called pure states. 

T h e o r e m 4.1. If T is a d-symmetric operator and f is an extreme point of E(T), 
then f is J(T)-multiplicative on 38(9)) and f is a pure state on 38(§>). 
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P r o o f . Fix a self-adjoint element A in J(T) with 0<e</4<7— e, for some 
£ > 0 . Define / i and / 2 on <39(§) by f1(X)=f(A)-'Lf(XA) and f2(X) = 
=/{I-A)-1f(X(I-A)). Then f(XA)=f(XAll2All2)=f(All2XA112) as Al,2£ 
£J(T). Hence fx and (similarly) f2 are states on Since TA-AT£<g(T) 
by 3.3(c), 

f[A)fx(XT) =f{XTA) = f(X(TA-AT))+f(XAT) = 0 +f(XAT) = 

= f(TXA) =f(A)f1(TX). 

Thus, / j and (similarly) / 2 are ^-central. Since f=f(A) fi+f(I—A)f2 is an extreme 
point of E(T), f=fi and so / is ^-multiplicative. Since <?(T) is the linear span 
of operators of this form, the first assertion is proved. 

Now suppose that there are states _/i and / 2 on and 0 < a < 1 such that 
f=ctf1 + (\ —a)/2 , where / is an extreme point of E(T). Since / is multiplicative 
on J(T) by the first part of the proof, / is a pure state on J(T) and so / , / x , 
and /2 agree on J(T). In particular, each / is multiplicative on C*(T). It follows 
(see our remark preceding 3.5) that each f is T-central. Hence, f=f1=f2- • 

C o r o l l a r y 4.2. If T is a d-symmetric operator, then each character on C*(T) 
extends to a character on ./(T). 

P r o o f . Fix a character q> on C*(T) and let / be a pure state on SS(9>) that 
extends cp. Then / is T-multiplicative since it extends <p and, therefore, f is an 
extreme point of E(T). Hence / is multiplicative on J(T) by the theorem. • 

R e m a r k . It follows from 4.1 that if T is ¿-symmetric then 3&(5T)~ is the inter-
section of the kernels of the ^-multiplicative states on 88($&). Also, ^ ( T ) is the set 
of operators A such that every extreme point of E(T) is ^-multiplicative. 

It is natural at this point to ask: Which states on C*(T) extend to ^-central 
states on The answer is what one might expect. 

T h e o r e m 4.3. If T is a d-symmetric operator, then: 
(a) A state f on C*(T) extends to a T-central state on 38(9)) if and only if 

/ (Comm C * ( r ) ) = 0. 
(b) A state g on £(T) extends to a T-central state on 3ft(5>) if and only if 

g(V(T))=0. 

P r o o f . Since r€(T)<g3&(ST)-, each 7-central state on vanishes on ^ ( T ) 
and so on Comm C*(T) (by 3.5(b)) so that the conditions / ( C o m m C*(T)) = 
=g(<£(T))=0 are necessary. Now suppose g is a state on J(T) such that 
g(^(Tj) — 0. Then g may be viewed as a state on the commutative C*-algebra 
J(T)I^(T). Hence, g is the weak*-limit of a net of convex combinations of charac-
ters on -$(T). Each of the characters appearing in these convex combinations has 
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an extension to a pure state on which is ^-multiplicative by 4.1. By taking 
the same convex combinations of the extended states, we obtain a net of T-central 
states that has a subnet that converges to a T-central extension of g. The proof of 
sufficiency in part (a) is the same. • 

5. Examples 

In this section we consider the C*-algebras ^(T), T), and Ji(T) for special 
¿-symmetric operators. 

I. Normal operators without eigenvalues. Let N denote a normal operator 
without eigenvalues. Then the spectrum a of N is uncountable, N is ¿-symmetric, 
and j r g # ( A 0 ( 2 . 2 and 3.2(d)). Hence ^(N) is nonseparable by 3.9. Also, J(N) = 
= C*(N) + (tf(N) by 3.7(a) and if C(er) denotes the continuous functions on a, 
then is the center of J/(N)/V(N) by 3.7(b). Further, Ji(N) 
contains the von Neumann algebra {N}' by 3.3(b). 

Recall [15, 4.4.19] that there is a norm one projection & of onto {A^}' 
such that 0>(AXB) = A0>(X)B for A and B in {#} ' and X in <0(§). Thus, 
0>(®{ÖN)-)=O and so if ^{AT} ' and X^{dN)~, \\A\\=\\0>(A+X)\\^\\A+X\\ 
and {N}' + (i(N) is an orthogonal direct sum in Ji(N). However, {N}' 
^Ji(N). Otherwise the center of Ji(N)lri(N) would be isomorphic to {yV}'. 
This is not the case. In fact, as noted above, the center of Ji (N)jt>(N) is isomorphic 
to C*(N). 

II. Diagonal operators. In this example and the next all operators will be 
assumed to be acting on separable Hilbert space. An operator D is diagonal if there 
is a sequence {£"„} of orthogonal projections such that I E n = I and a bounded 
sequence {¿„} of distinct complex numbers such that D=Id„En. 

P r o p o s i t i o n 5.1. The following are equivalent for a d-symmetric operator T: 

(a) T is a diagonal operator, (b) is commutative, (c) (£(T) = Q. 

(d) Ji(T) = {T}'. 

P r o o f . Since ^ ( T ) = Comm J ( T ) by 3.5(a), (b) and (c) are equivalent. By 
2.1(b) and 3.2(c), the condition ^(T) = 0 is equivalent to the conditions that T 
be normal and £%(öT)~ contain no nonzero positive operator. Therefore (c) and 
(a) are equivalent by [22]. Finally (c) and 3.3(d) imply (d), and if (d) holds, then 
{T}' is self-adjoint and T is normal. Hence r€(T) = Ji (T) f l ?A (<5r)" = {T}' f l 
n ^ ( < 5 T ) - = 0 . (This latter intersection is 0 for any normal operator T as shown 
in example 1. See also [1]). 



224 Joel Anderson, John W. Bunce, James A. Deddens, and J. P. Williams 

Thus, for a diagonal operator D, <£(D) and M(D) are easily described. The 
C*-algebra ^ ( D ) is more complicated. Before describing it we need a preliminary 
result. 

L e m m a 5.2. If D = IdnEn is a diagonal operator, then C*(D)<gJ(D)<g 

P r o o f . The first inclusion is trivial. Also <tf(D)=0 as D is a diagonal operator, 
hence {£>}'= J?(D) = j?(D)' by 3.3(d). Therefore ¿?(D)<g(D)". To finish the 
proof, fix a diagonal operator D'=Ia„En in {D}" that is not in C*(D, Ex, E.,, •••)• 
We must show that D' $ Choose a sequence {e„} of unit vectors in § such that 
E„e„=e„ for each n, and let co„ denote the vector state induced by en (so that 
a>n(X)—(Xe„, e„)). Then each co„ is a character on si = C*(D,D',E1, ...) and if 
q> is a character on si then either <p (En)=1 for some unique integer n and <p=o)„, 
or else q>(En)=0 for all n and (p — \imco„M is the weak*-limit of a subsequence 
of the co„'s induced by an injective map a of the natural numbers N into N. Since 
C*(D, Et, ...) is a proper C*-subalgebra of si, there are distinct characters <p 
and \j/ on si that agree on C*(D, E1, Ei, ...) by the Stone—Weierstrass theorem. 
If <p(E„)=1 for some n, then \p(E„) = l and (p=ij/=o}n because E„£C*(D, Et, ...). 
Hence, (p(E„)=\p(En)=0 for all n and <p = lim cuo(n), \j/ = lim cot(n) are weak*-
limits of disjoint subsequences of {o>„} induced by injective maps a and t of N into 
disjoint subsets of N. Write 

a = (p (D') = lim (D' e„(n), ea(n)) = lim a„(n), 

P = = lim CD'e z M , el(n)) = lim a t ( n ) 

and y = (p(D) = i[/(D) = lim da(n) = lim dl(n) 
ft It 

so that a^p. Define an operator W by WeaW=erin) for « = 1 ,2 , . . . and lVx=0 
if x£{ea(1),ea(2), ...}±. Then if X is any operator, \\D', W\-[D, X]\\ s 
a lim \([D', W] ea(n), eT(n))-([£>, X]eaM, em)\ = lim \ax(n)-a„M)(Wea(n), e r ( n ) ) -
-(dt(n)-da(n)){XeaM,ex(n))\ = \p-a\. Thus [ D ' , W ] ^ ( 5 D y and D'zJ(D). • 

T h e o r e m 5.3. Suppose D—ldnEn is a diagonal operator and write 

A = {n£N: E„ has finite rank and dn is not an isolated point of the spectrum of D). 

Then J(D) = C*(D,{En}niA)-

P r o o f . First note that if d„ is an isolated point of the spectrum, then En£C*(D) 
by the Gelfand theory. Now fix an eigenvalue d„ of D that is a limit point of the 
spectrum of D. By 5.2 it suffices to show that En£J(D) if and only if En has finite 
rank. Suppose that En has infinite rank and choose an orthonormal basis 
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{e1, e2, ...} for E„. Since d„ is a limit point, there are projections En and unit vectors 
f j such that dnj~dn and EnJj=fj. Define W in by We]'=fi and Wx=0 
if x6(£'„§) J-. Then if X is any operator, 

||[En, W] — [D, X]\\ lim \([En, W]ej, fj)-([D, X]ej, f ) \ = 

= Hm I ( f j , f j ) ~ 0 - (d„ - d„) (Xej, /,) | = 1. 

Thus, [En, IV]$&(SD)~ and E„$ <?(D). Now suppose En has finite rank. Fix vectors 
x in En9) and y in Em§>, where n^m. Let x<g>y denote the rank one operator given 
by x®y(z) = (z, y)x. Then [D, x®y]=Dx®y-x®D*y=(d„ — d„)x®y. Since 
dm^dn, x®y£®(5D)~. If ZCJEJI)1-, then z = 2 an,ym, where Emym=ym, and 

2>ml2 = MI2. Thus, x®z=Zam(x®ym) is in M(dD)~ for all xeE„§> and 
26(^„S) 1 . It follows that E„XE^m{5D)- for all X in and so since M{dD)-
is self-adjoint 0t(bE )=®(dE =En<%{$)E^3&($)E„<g@(5D)-. Thus, 
En£J(D). • " " . 

C o r o l l a r y 5.4. If D = ZdnE„, where each E„ has infinite rank, then 
J(D) = C*(D). 

C o r o l l a r y 5.5. If D = ZdnE„, where each En has rank one and {dn} is an 
enumeration of the rationals between 0 and 1, then: 

(a) EA C*(D), n = 1, 2, . . . , (b) J{D) = C*(D, Eu E2, ...). 

R e m a r k s , (a) Let D be the diagonal operator defined in 5.5. Then 
{D}'={D}"=Jt(D) (5.2(d)) so that Jt(D) is commutative, <S{D)=0 by 5.2(c) 
and C * ( D ) = C * ( D ) + V ( D ) t ± JT(D) by 5.5. Thus, if the condition T h a s no reduc-
ing eigenvalues is omitted, Theorems 3.7 and 3.9 and Corollary 3.8 are no longer true. 

(b) Let {£"„} denote a sequence of orthogonal rank one projections with 
lEn—I and write 

n=1 n = 2 

Then C*(D) = C*(E1, E2, ...)7±C*(D')=C*(E2, Es, ...). However, by Theorem 
5.1, J(D) = J:(D') = C*(D) and by (the last part of) the proof of 5.4, ¡%(8D)~ = 
=0t{bD.)~. Thus, in general, neither the includion algebra nor the derivation 
range determines C*(T). 

(c) If T is an essentially normal ¿-symmetric operator with countable spectrum, 
then ; and <$(T)=0 if and only if T is normal. Indeed, since the 
spectrum is countable, there is a non-zero representation n of ^(§>) on a Hilbert 
space 9)K such that ker n=Jf(S)) and n(T) is a diagonal operator on [22]. 
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Then <$(n(T))=0 by 5.2(c), and by 3.2(c) we have n(<g(T))QV(n(T)). Hence 
tf(T)Qker (n) = Jii. The spectral theorem and 5.1(c) imply that <g(T)=0 if and 
only if 7* is normal. 

III. Pure isometries. Let V denote a pure isometry (that is, an isometry with 
no unitary direct summand). Then V is ¿/-symmetric by 2.3 and has no reducing 
eigenvalues; hence, by 3.2(d) and so J(V) = C*(V)+V(V) and 
the center of Jt(V)IV(V) is C*(F)/Comm C*(F)s=C (unit circle), 
the continuous functions on the unit circle by 3.5, 3.7 and [8, Theorem 3]. Also, 
by 3.9 (€(V) contains a subalgebra that is spatially isomorphic to 
We now.show that Ji(V)I^(V) is also large. 

P r o p o s i t i o n 5.6. An operator Z is in Ji(V) if and only if V*ZV-Z^(V). 
Hence Ji(V)^4(V)®STy, where $~y={X£i%(§l):V*XV= X} is the set of 
Toeplitz operators associated with V. Thus J/(V)/%?(V) is non-separable. 

P r o o f . If Z^Ji(V) then V*ZV-Z= V*(ZV- VZ)^(V) by 3.3(d). Con-
versely, suppose that V*ZV-Z^(V). Then Z(VX-XF) = Sv(ZX) + 
+(I-VV*)ZVX+V(V*ZV-Z)X belongs to ®(5V)- for any operator X because 
I-VV* = [V*V], £<#(V). Also, V*Z*V~Z*^{V) so that Z*<%(<5K»)_ = 
=Z*M(5v)-<g0l(5y)- and this implies 0l(bV)ZQM(8V)- on taking adjoints. 
Thus Z is a two-sided multiplier of 8&(5V)~ and therefore J{{V). 

That the subspaces ^ (V) and 9~v have trivial intersection and are in fact 
"orthogonal" follows from the existence of a norm one projection of &($)) onto 
STV that vanishes on M(8V). (See [21]). • 

6. Some open problems 

(a) If T is a ¿/-symmetric operator, must C*(T) be a postliminaire or GCR 
C*-algebra [9, Paragraphe IV]? If T is ¿/-symmetric and C*(T) is GCR, then by 
direct integral theory and Theorem 2.8 T would be a direct integral of irreducible 
¿/-symmetric operators. Which irreducible operators are ¿/-symmetric? We do not 
know when a direct integral of ¿/-symmetric operators is ¿/-symmetric. 

(b) The example in Remark (c) following Corollary 2.6 raises the question: 
Is the set { T + K : T ¿/-symmetric, K compact} norm-closed? 

(c) It follows from Proposition 5.2 that there does not exist a normal operator 
N such that M(5N)~=3%(5K)~, where K is the compact ¿/-symmetric operator of 
Remark (c) following Corollary 2.6. If V is the simple unilateral shift does there 
exist a normal operator N such that J(N) = J(V)1 If N is normal must = 
— J(A) for some self-adjoint operator A? 

(d) Is there a property of 8 T as an element of the Banach algebra 3S{SS(9y)), 
which characterizes when T is ¿/-symmetric? 
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