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On products of integers. IT

P. ERDOS and A. SARKOZY

1. Throughout this paper, ¢;, c,, ... denote absolute constants; koq(a, j, ...),
ki(o, By .., ..., xo(t, B ...), ... denote constants depending only on the parameters
a, B, ...; v(n) denotes the number of the prime factors of the positive integer n,
counted according to their multiplicity. The number of the elements of a finite
set S is denoted by |S].

Let k,n be any positive integers, 4={a,, a,, ..., a,} any finite, strictly in-

creasing sequence of positive integers satisfying

(D) a,=1a,=2,...,a, =k

(consequently, |4dj=n=k). Let us denote the number of integers which can be
written in form

@ ITax =0 or 1)

or
aa; (1=i,j=n),

respectively by f(4,n, k) and g(4, n, k). Let us write
F(n, k) = min f(4,n, k) and G(n, k) = min (4, n, k)
where the minimums are extended over all sequences A satisfying (1) and |4|=n.

Starting out from a conjecture of G. Haldsz, the second author showed in
the first part of this paper (see [4]) that '

. logk
G(n~, k) > n-eXp [01 Toglgm] .

Note that to get many distinct products of form g;a;, we need a condition
of type (1); otherwise e.g. the sequence 4=1{l,2,2% ...,2"'} is a counterexample,
namely for this sequence the number of the distinct products is 2n—1=0(n).
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Furthermore, G(n, k)/n is not much greater for fixed k¥ and large » than for n=k,
i.e. for A=B, where
Bk = {1, 2, veey k}.

This can be shown by the following construction: let 4*={af,a;, ..., a}} be the
sequence of the integers of form p’j where p is a fixed prime number greater than
k,i=1,2,...,m, j=1,2,...,k, and m is any positive integer. Clearly,

g(A*’ n, k) - 2 g(Bk: k’ k) =2 G(k, k)
n k k

thus

Wm@<20%@ for kin,

hence

G(z’ k) <4 G(l]z’ k) (: o(k)) for cvery n.

The authors conjectured that

Gk _, Gk K
n Pk

3

for every n=k, and furthermore, that for any w=0, k>k,(w) and n=k, we have

F(n, k) > n%k®
or perhaps

oD (e g
2 2
©) n?exp [c3 Togk < F(n, k) < n%exp|c, Tog k
for large k and n=k. (See [4], also Problem 9 in [3].)
The aim of this paper is to disprove (3) (Theorem 1) and to prove a slightly
weaker form of (4) (Theorem 2). .

2. In this section, we will disprove (3). ,
P. Erpds showed in [1] (see Theorem 1) that for any &=>0 and k=>ky(z),

k2 log log k? , tog log &%
Gogiyes eloed) ™t =eBo k=" 2 1= Gy (cloeD ***
. m=xy
x=k, y=k

This inequality can be written in the equivalent form
k® k2 .
- Toghre = OB = Togr=s
where
1_1+log log2
log2

o
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An easy computation shows that

0,086 < ¢5 < 0,087.
Hence, for large k, -
k Gk, k k
) (k, k)

(log k)>% =- k = (log k)™ *

Thus to disprove (3), it is sufficient to show that for large k, there exist a positive
integer n (=k) and a sequence A such that |4|=n, (1) holds and

g(4,n, k) k
© n (logk)™
where
Q) ' g > 0,087.

In fact, by (5) and the definition of the function G(n, k), this would imply

® G(n, k) _ k B 1 . G(k, k)
n (log k)ce (log k) k
where
c; = cg—0,087 = 0
by (7).

Let us write @(x)=1+xlogx—x and let"z denote the single real root of
the equation

© o) = (1+x).
A simple computation shows that S
(10) 0,54 < z < 0,55.

Theorem 1. For any £€=0 and k=k,(s), there exist a positive integer n(=k)
and a sequence A such that |A|=n, (1) holds and

gld. n, k) _ k

an n Qog )™~
where _
(12) cs = @(2).

(The function ¢@(x) is decreasing for O<x<1. Thus with respect to (10),
we obtain by a simple computation that '

cg = ¢(z2) > ¢(0,55) = 0,121,

Hence, Theorem 1 yields that for lérge k, (6) holds with ¢s=0,121 which satisfies
(7). Thus in fact, (8) holds with ¢,=0,121—0,087=0,034 which disproves (3).)

3
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Proof. Let k be a positive integer which is sufficiently large (in terms of &)
and let m be any positive integer satisfying

(13) m > k2.

Let D, denote the set of those integers d for which
(14 l=d=k

and

(15) ‘ v(d) = loglog k

hold. Let p be a prime number satisfying

(16) p=>k.

Let E, denote the set of those integers e which can be written in form p*d where
an l=a=m

and

(18) : de D,.

Finally, let
A=E\UB,.

We are going to show that for large enough k, this sequence A satisfies (11).
Obviously, - : :

(19) n=|A| = |E]+|B = mk+k < 2mk.

Furthermore, by a theorem of P. ErRDSs and M. Kac [2], we have

]Dkl = %k-

Thus (with respect to (16))

(20) n=|A4|>|E|=m-|DJ]> %mk.

To estimate the number of the distinct products of form g;a;, we have to
distinguish four cases.

Case 1. Assume at first that a;€ B, a;¢ B,. Since B, consists of k elements,
the pair g;, a; can be chosen in at most
k*<m=<n
ways (with respect to (13) and (20)).
Case 2. Assume now that a;=p*d€ E; (where (14), (15) and (16) hola),

21). a;€B,
and
(22) v(a;) = zloglog k.
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Then
(23) a;a; = p*da;.
Let 7;(x) denote the number of those integers u for which u=x and v(u)=i

hold. By a theorem of Hardy and Ramanujan, for any w=0 there exists a constant
Cy=co(w) such that for large x and 1=i=wlogx, we have

x  (loglog x)i-*

9 M) = Gy T =)

Choosing here w=1 and using Stirling’s formula, we obtain that for k=k,(w),
the number of the integers a; satisfying (21) and (22) is at most

(25) ‘ > mk)<

O=i=zloglogk
k  (loglogk)i—*
Cpm——— ———
DN e T

(log log k)[z loglogk}-1 °

< 1+

< 1+4+¢g logk 1=i=zloglogk ([ZlOg log k]—l)' é»
k (log log k)L= leg logk1-1
< 1+09 logk Zlog logk ([ZlOg lOg k]—])' <
) k (log log k)= 1os logk]
< I'+¢49 logk ([zloglog k]— 1)[z o8 0gkI=172;~ [z fog loghT -1 <
. k (log lOg k)[z_log log k]

=< 1‘*“:11 log k (Z log log k)[z]oglogk]—llze—zloglogk =
- k ' 1 k
-

2 logk (log k)*'8% (loglog k)~Y2(log k)= ~ (log k)cs~¢/3
(log log k)i—*
i—~1!

By (14), (17) and (18), « and d can be chosen in at most m and k ways, respect-
ively. Thus the number of the products of form (23) is less than '

k -n: k
(lOg k)Cs—€/3. (lOg k cg—¢£/2

(where ¢ is defined by (12)) since is increasing for 1=i=loglogk.

m-k-

(with respect to (20)). .
Case 3. Assume that a,=p*dcE, (where (14), (15) and (16) hold),

(26) _ a;€ B,
and _
@7 v(a;) > zloglog k.

’
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Then
(28) a;a; = (p*d)a; = p*(da;).
By (14), (15), (18), (26) and (27),
da;=k-k = k*
and

v(da;) = v(d)+v(a;) > loglog k+zloglog k = (1 +z) loglog k.

Thus applying (24) with w=100, we obtain that for any 0<d6<z/2 and k=k,(9),
and writing r=[(14+z-0)loglogk?], the number of the distinct products of

form da; is at most :
(29) . 2 mkd) < 2> n,(k?) =
(+z)}oglogk<i (1+z-0d)loglogk2<i
= 2 mkH+ Y m(k) <
r<i=100loglogh? 100log log k2 <i

kr  (loglog k?-!

< . c -
r<i§10%:)g logk? * 10g k? Gi—1n!

+R(k?») <

- k2 (loglog k¥ += [ log log k2 ]j .
= logk r! j=0 r +R(k ) =
k?  (loglog k2 +°°( 1 ]f .
= 4 ogk r! “oll4+2-6 +R(K) <
k?  (loglog k2
= s logk = r!g ) +R() ~

where

Rx)= 2 m(x)

100log log x <i

Applying Stirling’s formula, we obtain that for k=>k,(5),
2 2\
k®  (loglog k?) -

o log k r!
k? (log log k2)t(1+z-9) log logk?)
< Cg logk ([(1+2z—0)log log kFJ)I1+== 91108 oK+ 172 g~ [(1 +:~0) log og k%] -
k* (log log k2)[(1+z—6) log log k2]
< ¢y logk ((1+2z—0)loglog K?)((T+=-3) g IogRT+ 172 (17 -3) log logk -
k? 1
< C18 lOg k e(1+:-6) log(1+:-96) loglogk(log lOg k)1/2(10g k)‘(1+=-5) -

k2
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The function ¢(x) is continuous at x=1+z. Thus if d is sufficiently small in terms
of ¢ then for k=>k;(6)=k;(6(c))=ks(e), we obtain from (30) that
k* (loglogk?y k? L k?
logk ~— rl ~ (logk)Pm 7B~ (logk)*—*7
(since @(1+2)=@(z)=cs by the definition of z).
Furthermore, P. ERDGs proved in [1] (see formulae (5) and (6)) that for large x,

(3D

- _ x

(29), (31) and (32) yield that the number of the distinct products of form da; is

at most :
) 2 : 2 5 k2 - k2

(33) (1+z)l(§ogk<i ni( ) < (15 (log k)cg—e/.'i + » (log k2)2 < Cy9 (log k)cg —-&3 "

Finally, by (17),  in (28) can be chosen in m ways. Thus with respect to (20), we

obtain that the number of the distinct products of form (28) is less than

k? -n k
(log k)es—#/3 (log k)cs—¢/2"
Case 4. Assume that .a,=p*d\€E,, a;=p’d,€ E, where

m '. 019

(34) l=a, f=m

and

(35) ' d,, d.€ D,.

Then the product g;a; can be written in form

(36) a;aj = (Padl)(Padz) = pu+Bd1d2 =p'd

where by (34) and (35),

(37) 2=y=2m

and

(38) d=dd,=k-k=k? v(d)=v(d,)+v(d,) = 2loglogk.

By (37), y can be chosen in at most 2m—1<2m ways, while in view of (33), at
most ’
k2
(k?) < 7. (k2 Crg m———————
2logé’k<iﬂl( )<(1+z)l(§ogk<i (k) < (log k)cs—#3
integers d satisfy (38). Thus the number of the distinct products a;a; of form (36)
is less than
e k? k
. - .
"9 g k=7 = " (log kyrs—

'
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Summarizing the results obtained above, we get that for k=>k,(e),
k — Tk
(logk)yes—#/? (log k)ee—*

g(4,n,k)<n+3-n-

which completes the proof of Theorem 1.
3. In this section, we will estimate F(n, k).

Theorem 2. There exist absolute constants c,y, cyy such that for k=ky and
nzk, .

) - (e 1557)
2 < n? ,
(39) n?exp (czol oy F(n, k) < n%exp|cy Togk

Proof. First we prove the upper estimate. We will show at first that

k
(40) Fllk, 1) = By k) = exp (e logk )

Incase A=B,={1,2,...,k} (and n=k), all the products of form (2) are divisors
of k!. Thus applying Legendre s formula and the prime number theorem (or a more
elementary theorem), we obtain that

F(k, k) = d (k) = (l+ 2 H]

A1 A gt g

=k =1 D* p=k D
logk log k .
log2 4k log2 ]] e % =
logk logk
fog2 K. _k_ [logz] k R
.0 (4-2)) &) eXP{Czs[ 2 5T '—lk'log.4'2j]} =
= = log 5=
of logk ’
< expjc —_—— —jlt =
I_) 2 jgl 24 ]og Vk 1 Togk J

2’ log2

k ' k
= P {025 (log kt ﬂ)} = P [026 log k)

which proves (40).
Assume now that n=k. Let p denote a prime number satisfying p=k and let

A={1,2, ..,k p,p ..., P"*}
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For this sequence 4, {4]=n, and the products (2) can be written in form

k n—k
(41) I ] phi=a-p?
=1 j=1
where ;=0 or 1 and ;=0 or 1. Here a may assume F(k, k) different values,
and obviously, § may assume any integer value (independently of «) from the
interval
n—k —
0sa=31 (n k)(r; k+1)
j=1
n-kyn—-k+1)
-2
p, thus for different pairs a, §, we obtain different products of form (41). Thus
with respect to (40), '

F(n, k) =f(4, n, k) = F(k, k)-

of length

. Furthermore, the prime factors of g are less than

(n—k)(n—k+1)
2 -

k n? ) k
< €Xp sz@ -—2—<n €Xp 622m

which completes the proof of the second inequality in (39).
1

Now we are going to prove that the first mequahty in (39) holds with ceq= == 53°

in other words, .
T
42) . : F(n, k) > n?exp (92 logz T
Let us assume at first that

= oo 5 15
"= exp 3 logk

Then for large k, the right hand side of (42):

S R
P92 Togtk) = P T Togk " 92 TogPk

ol
P 700 logk)®

On the other hand, let 4 denote any sequence satisfying (1). Let us form all
those products of form (2) for which -

(43)

<< eXx [ k +L_k_)—
P13 Togk " 700 Togk) =

{0 or 1 if a; is a prime numbes and a; = k,
! 0 otherwise.

" By (1), A contains all the n(k) prime numbers p=k, thus the number of thesé
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products is 2®. Hence, by the prime number theorem, we have

(aa) (F(n, k) =)f(4, n k) = 2*® = exp (log 2n (k)) >

69 68 k
> exp (m”(")] > exp (1—03 fogk k]'

(43) and (44) yield (42) in this case.
Let us assume now that

@3) n>exp5
Let

Bt
T L7 logzkl” -

Denote the i*® prime number by p; (p1=2,p.=3, ..) and let g;=p;,, .for
i=1,2,....0L O0={q1,92 ---» 41}, R=1{4q1,24;, 45,295, ..., 41, 2q;}. Obviously, (45)
implies that RC {a,, s, ..., ap;;}. Let us define the sequence E={e,, e, ..., e,} by

{al, Ao,y ..., a["/2]}=EUR, EﬂR:-ﬂ

For s=1,2,..., [—Z—] +1, we denote the interval [n—2[n/4]—1+2s,n] by I,

and let F, denote the set of those products of form (2) for which :

=0 if a;€R, 2 g=2,

itq;€B
g=0 if [—;—] <i=n-2[n/4—-2+2s,
and

6=1 if i€l (ie. n—2[nfdl—142s=i= n).

In other words, F; denotes the set of those numbers which can be written in form
(T a,)-eie;
el

where 1=i, j=m, i=j. Let F denote the set of those numbers which can be written
in form
e;e; where 1=i, j=m, i#].

_ Then obviously, .
(46) [F} = | Fl,
independently of s.
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Furthermore, for s=1, 2, ..., [%] +1, let G, denote the set of those products
of form (2) for which
g=0o0rl if a€R 2 ¢g=1,

ita;€B

g =0 if [%]<i§n—2[n/4]—2+2s

and
g=1 if icl, (le. n—2[n/4]—1+2s=i=n).

In other words, G, denotes the set of those numbers which can be written in form
] c i
(H a,‘)-e,- IT g7 1] 2g)*
el i=1 t=1

(where ¢;=0 or 1, ¢,=0 or 1). Then |G| is equal to the number of the products
of form

1 1 i

47 e I 47 IT @)™ = 2e; [] q¥
j=1 t=1 ji=1

where

(48) 6;=0,1 or 2

and

49) O=a=1l

!
Let G denote the set of those numbers which can be written in form

Los
e"gquj

where (48) holds. Obviously, for any product of this form, there exist exponents
&;, ¢, and a, satisfying (47), (49), ¢;=0 or 1 and ¢,=0 or 1. A product of form
(47) can be obtained from at most /+1 distinct elements of G; namely, by (49),
o may assume only at most /4-1 distinct values. Thus

.. 6]
(50) Gy = 1
(again, independently of s).

We are going to show that for s¢,

(51) (F,UG)NFUG) = 0.
In fact, assume that s>t. Then for yc F,UG,,
yé]]au: a”-[]auz
pnel, n—2[nf4]l—1+2t=p<n—2[n/d]—1+2s uely

(52)

= Ap_onjal-1+2% % —2ln/al+2: * g a, >(a[n/2])2 g a, (for ye FUG,).
pelg . Belg
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On the other hand, for z¢ F,,

(53) z=ee; [[ a, = (a2 [ a, (for z¢ F).
uel, el

Finally, if v€G,, then we have

. 1 ! ! 2
(54) V=g ']qu‘]]l2q,- ga,,éa[,,m-Z’(_[[qj]- Il a,.
i= = nel,

j=1 pely

By the prime number theorem,
log(]]p,-] ~ xlog x.
i=1

Thus if k& (and consequently /) are sufﬁciently large then with respect to (45) we have

1+1 2

2 2
2( 11 ) =2 (1T p) <2 (exo {35 0 D102 04 D)) <
(3 e t0g2)e {ﬁ[liﬂ]lo (3 i)} <
= XP\T Togek 87 P 177 (T logik E\7 Togik

(L]ex [——S-Llo k]—
P\ Togz k) *P |16 Togek 2% =

= ¢€X ( k +—-— > _k ] ! —€X (——5—
= ©*p logzk ~ 16 logk P73
Putting this into (54), we obtain that
(55) . v = (Agy2)? g a, (for veGy;
acls

(52), (53) and (55) yield (51).
By (46), (50) and (51), we have

(s6) fdm k) = u ‘U6 ="3 " IFUG =
[nja)+1 .
=2 max{(EL 16 = 2 max {17, 2L =

_ . 6] } n 1 '

= ([n/4]+1) max{|F], T 1)~ 7 TET mex {IF], |G|}

Thus to complete the proof of Theorem 2, we need a lower estimate for
max {|F|, |G|}. In the next section, we will prove the following lemma (using the
same method as in [4]):

Lemma 1. Let O={qy, qs, ---, q,} be any set consisting of 1 (distinct) prime
numbers. Let E={e,, e, ..., e,} (where e,<e,<...<e,) be any sequence of positive
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integers. Let F and G denote the sets consisting of those integers which can be re-
spectively written in form

1
ee;, (1=i,j=m izj) and e [Jq¥ (5,=0,1 or 2).
_ AL

Then for

(57) =1,
we have '

(58) max {|F|, |G|} > mexp (225 )

Let us suppose now that Lemma 1 has been proved. Then the proof of Theorem
2 can be completed in the following way:

For large k, (57) holds by the definition of /. Thus we may apply Lemma 1. ‘
We obtain that (58) holds. Putting this into (56), we get that for large k and any
sequence A (satisfying (1) and |4|=n),

1 2
| (59) f({4,n, k)>— 7750 mexp(25 l)
With respect to (45),

n 1 k-
n 2 k n 1 k . n lozn = 1
—_————— > - ——— - -
T3 Tlogk 3 3logk 3 B"T 73
Thus we obtain from (59) that for large k,

2

ex (zlJ
16 P26

SEINTHIS T
= 16 “PI3 17 ok *PLl92 Togtk

which proves (42) and thus also Theorem 2.

n 1 n 2
f(4, "”‘)>IT+TZ“P(E’]

4. To complete the proof of Theorem 2, we still have to give a
Proof of lemma 1. Let us write every ecFE in form
(60) e =(rs(qi*qs*...qi") = bd

where r, s are positive integers, -g;=0 or 1 (for i=1,2,...,[), p/r implies that
pé0Q, p/s implies that pcQ (also r=1 and s=1 may occur) and b=rs?,
d=ghg2...qf". Let us denote the occuring values of b by b,,b,, ..., b, (b;=b;
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for i=j), let B={by,b,,...,b.} and let us denote the set of those numbers e€ £
for which b=5; in (60) (for fixed i, 1=i=z), by E(b;). Then obviously,

E=U E®) and EG)NE(b)=9 for isj,
i=1
thus

(61 m = |E| = 3 |EG)|

For b€ B, let F(b) denote the set of those numbers which can be written in
form :
e,e, where e, €E(b), e, cE(b), e, e,.
Furthermore, for fixed b¢B and for each e,=bgf1g;2...q;, let us form all the
products of form

(62) ex(ql gt ... a) = (bai g5 ... gi) (al* qd* ... g

where
Oorl if g=1
-

1 or 2 if =0

and let us denote the set of these products by G(b).

Obviously,
63) F> U F(b)
i=1
and
(64) ‘ 6> U Gb).
i=1
We are going to show that
(65) Fb)NF(b)=9 for i
and ;
(66) GBING(b) =0 for ij.

In fact, let us assume that
(67) by=rst#b; =r;sl,
e, = bigi'q... g€ E(b), e, = b;g¥*¢3*... g7'€ E(b),

e, = b;qi'qs*... g€ E(b)) and e, =b;qf qf>... gf'c E(b)).
Then
(68) ece, =risiqptergRt e git e (€ F(by)
and
(69) e, = risigithigptb: gutb (¢ F(b)).
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If r;#r; then there exists a prime power p” such that p¢ Q and p’/e, e, but p’fe,e,,
or conversely; this implies that e,e,=e,e,. If r;=r; then by (67), 5;#58; must
hold. Thus there exists a prime power g/ such that ¢,€ Q- and g//s; but g/{s; (or
conversely). Then the exponent of g, is at least 4pu+¢;+¢;=4u in the canonical
form of e,e, and at most 4(u—1)+a,+p;=4u—2 in the canonical form of e,e,,
thus e,e;e,e, holds also in this case, which proves (65).

In order to prove (66), note that we may write the product (62) in form

r(s%q:1qs ..- q) g qs®... ¢t where a;,=0or 1 for i=1,2,..,1L

Obviously, é number of this form uniquely determines each of the factors r, s,
g, ..., g, which proves (66).
(63), (64), (65) and (66) imply that

(70) max {|F|, |G|} = max{

b=

max {2 Fb)l 3 166ol} = (3 1FGi+ Z160i) =

U Fea). |0 66

— 5 2 (FG)I+I6®) = 5 3 max {IF®, 16

Thus in order to prove (58), it sufﬁces to show that for b€ B, max {|F(d)|, |G(b)|}
is large.
Let us assume that b€ B. We have to distinguish two cases.

Case 1:
7
(71) (O<)|E(b)| = 25"~

'We are going to show that in this case |G(b)| is large (in terms of |E(b){). Let us
fix an element e, of E(b) and for this e, , form all the products of form (62). Obviously,
the factor ¢1g22...q/" can be chosen in 2' ways thus the number of these products
is 2. Hence, with respect to (71),

1.

1 7 1
(72) IG(b)| = 2 = 2‘s?’f1-2€’ = 23" EW®)).
Case 2:
7
(73) _ |E®)| = 28"~

In this case, we shall need the following lemma:

Lemma 2. Let o be any real number, satisfying

(74) 0<g<%_
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and
as) f@ = ~elogo—(1—0)log(1—0)—{1 —2 tog2 <0,
and let | be any integer, sufficiently large depending on ¢:
(76) . 1> 1L(o).
Put o
-2y
p(D=272 _.

Let S denote the set of the 2 l-tuples (uy, ps, ..., 1), satisfying pu,=0 or 1 for
h=1,2,...,1. Let R be any subset of S for which

an . |R| = @()2".
Then the number of the distinct sums of form
(78) (/11+V1, RERE #1+Vz) = (#la s -”l)+(vla LA ] V,),-

where (4y, ..., 1)ER and (vy, ..., v)ER, is greater than (¢(1))"*|R|.

This lemma is identical with Lemma 2 in [4].
Using Lemma 2, we are going to show that (73) implies that |F(b)] is large.

Let us choose Q=% in Lemma 2. Then (74) holds trivially, and a simple

computation shows that '
1 3
f(z) = §(10g8—log9) =<0,

thus ¢ satisfies also (75). Furthermore, we choose R as the set of those [-tuples
(&1, &35 -..» &) (Where &=0 or 1) for which bgrgs:...q7*€ E(b) holds. Then by
(73), also (77) holds:

|R| = |E(b)| =2 2= (2" _
Thus we may apply Lemma 2. We obtain that the number of the distinct sums of
form (78) (where (i3, ..., g)€R and (v, ..., V)€R) is greater than (¢(/))~*[R|.
But distinct sums of form (78) determine distinct products of form -

exe, = (bgi*... gi)(bgit... qiY) = brg{r*™ .. g+,

and with at most |E(b)| exception, also e,>e, holds. Thus
1

(79) |F®)| > (D)~ R|—[E®)| = (273 ) E®)| - |E®)| =
| = @1 E®) = 25 |EG).
(72) and (79) yield that for any b¢B.
max {|F(8)|, [G(B)]} > 25" |E(b)].

1

l—1: 2— 3 -1 .

ool-1
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Putting this into (70), we obtain (with respect to (61)) that

max {|F, (Gl =5 3 max {IFG), 661} =

Tz 1 l _ z l _
~ 2 22 |Eb) = 557 3 Eb)] = m2*' =
i i=1

=1

= mexp{logZ(%l—l]}> mexp{[%—l—o%ﬁ] l}> mexp[%l]

which completes the proof of Lemma 1.
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