## On products of integers. II

P. ERDÖS and A. SÁRKÖZY

1. Throughout this paper, $c_{1}, c_{2}, \ldots$ denote absolute constants; $k_{0}(\alpha, \beta, \ldots)$, $k_{1}(\alpha, \beta, \ldots), \ldots, x_{0}(\alpha, \beta, \ldots), \ldots$ denote constants depending only on the parameters $\alpha, \beta, \ldots ; v(n)$ denotes the number of the prime factors of the positive integer $n$, counted according to their multiplicity. The number of the elements of a finite set $S$ is denoted by $|S|$.

Let $k, n$ be any positive integers, $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ any finite, strictly increasing sequence of positive integers satisfying

$$
\begin{equation*}
a_{1}=1, a_{2}=2, \ldots, a_{k}=k \tag{1}
\end{equation*}
$$

(consequently, $|A|=n \geqq k$ ). Let us denote the number of integers which can be written in form

$$
\begin{array}{r}
\prod_{i=1}^{n} a_{i}^{\varepsilon_{i}} \quad\left(\varepsilon_{i}=0 \text { or } 1\right)  \tag{2}\\
a_{i} a_{j} \quad(1 \leqq i, j \leqq n)
\end{array}
$$

respectively by $f(A, n, k)$ and $g(A, n, k)$. Let us write

$$
F(n, k)=\min _{A} f(A, n, k) \quad \text { and } \quad G(n, k)=\min _{A} g(A, n, k)
$$

where the minimums are extended over all sequences $A$ satisfying (1) and $|A|=n$.
Starting out from a conjecture of $G$. Halász, the second author showed in the first part of this paper (see [4]) that

$$
G(n, k)>n \cdot \exp \left(c_{1} \frac{\log k}{\log \log k}\right) .
$$

Note that to get many distinct products of form $a_{i} a_{j}$, we need a condition of type (1); otherwise e.g. the sequence $A=\left\{1,2,2^{2}, \ldots, 2^{n-1}\right\}$ is a counterexample, namely for this sequence the number of the distinct products is $2 n-1=O(n)$.

[^0]Furthermore, $G(n, k) / n$ is not much greater for fixed $k$ and large $n$ than for $n=k$, i.e. for $A=B_{k}$.where

$$
B_{k}=\{1,2, \ldots, k\}
$$

This can be shown by the following construction: let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\}$ be the sequence of the integers of form $p^{i} j$ where $p$ is a fixed prime number greater than $k, i=1,2, \ldots, m, j=1,2, \ldots, k$, and $m$ is any positive integer. Clearly,

$$
\frac{g\left(A^{*}, n, k\right)}{n}<2 \frac{g\left(B_{k}, k, k\right)}{k}=2 \frac{G(k, k)}{k}
$$

thus

$$
\frac{G(n, k)}{n}<2 \frac{G(k, k)}{k} \text { for } k / n
$$

hence

$$
\frac{G(n, k)}{n}<4 \frac{G(k, k)}{k} \quad(=o(k)) \text { for every } n
$$

The authors conjectured that

$$
\begin{equation*}
\frac{G(n, k)}{n}>c_{2} \frac{G(k, k)}{k} \tag{3}
\end{equation*}
$$

for every $n \geqq k$, and furthermore, that for any $\omega>0, k>k_{0}(\omega)$ and $n \geqq k$, we have

$$
F(n, k)>n^{2} k^{\omega}
$$

or perhaps

$$
\begin{equation*}
n^{2} \exp \left(c_{3} \frac{k}{\log k}\right)<F(n, k)<n^{2} \exp \left(c_{4} \frac{k}{\log k}\right) \tag{4}
\end{equation*}
$$

for large $k$ and $n \geqq k$. (See [4], also Problem 9 in [3].)
The aim of this paper is to disprove (3) (Theorem 1) and to prove a slightly weaker form of (4) (Theorem 2).
2. In this section, we will disprove (3).
P. Erdös showed in [1] (see Theorem 1) that for any $\varepsilon>0$ and $k>k_{0}(\varepsilon)$,

$$
\frac{k^{2}}{\left(\log k^{2}\right)^{1+\varepsilon}}(e \log 2)^{\frac{\log \log k^{2}}{\log 2}}=g\left(B_{k}, k, k\right)=\sum_{\substack{m \leq k^{2} \\ m=x y \\ x \leq k, y \leq k}} 1<\frac{k^{2}}{\left(\log k^{2}\right)^{1-\varepsilon}}(e \log 2)^{\frac{\log \log k^{2}}{\log 2}}
$$

This inequality can be written in the equivalent form

$$
\frac{k^{2}}{(\log k)^{c_{5}+\varepsilon}}<G(k, k)<\frac{k^{2}}{(\log k)^{c_{5}-\varepsilon}}
$$

where

$$
c_{5}=1-\frac{1+\log \log 2}{\log 2}
$$

An easy computation shows that

$$
0,086<c_{5}<0,087
$$

Hence, for large $k$,

$$
\begin{equation*}
\frac{k}{(\log k)^{0,087}}<\frac{G(k, k)}{k}<\frac{k}{(\log k)^{0,086}} . \tag{5}
\end{equation*}
$$

Thus to disprove (3), it is sufficient to show that for large $k$, there exist a positive integer $n(\geqq k)$ and a sequence $A$ such that $|A|=n$, (1) holds and

$$
\begin{equation*}
\frac{g(A, n, k)}{n}<\frac{k}{(\log k)^{c_{6}}} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{6}>0,087 \tag{7}
\end{equation*}
$$

In fact, by (5) and the definition of the function $G(n, k)$, this would imply

$$
\begin{equation*}
\frac{G(n, k)}{n}<\frac{k}{(\log k)^{c_{0}}}<\frac{1}{(\log k)^{c_{7}}} \cdot \frac{G(k, k)}{k} \tag{8}
\end{equation*}
$$

where

$$
c_{7}=c_{6}-0,087>0
$$

by (7).
Let us write $\varphi(x)=1+x \log x-x$ and let $z$ denote the single real root of the equation

$$
\begin{equation*}
\varphi(x)=\varphi(1+x) \tag{9}
\end{equation*}
$$

A simple computation shows that

$$
\begin{equation*}
0,54<z<0,55 \tag{10}
\end{equation*}
$$

Theorem 1. For any $\varepsilon>0$ and $k>k_{1}(\varepsilon)$, there exist a positive integer $n(\geqq k)$ and a sequence $A$ such that $|A|=n$, (1) holds and

$$
\begin{equation*}
\frac{g(A, n, k)}{n}<\frac{k}{(\log k)^{c_{8}-\varepsilon}} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{8}=\varphi(z) \tag{12}
\end{equation*}
$$

(The function $\varphi(x)$ is decreasing for $0<x<1$. Thus with respect to (10), we obtain by a simple computation that

$$
c_{8}=\varphi(z)>\varphi(0,55)>0,121
$$

Hence, Theorem 1 yields that for large $k$, (6) holds with $c_{8}=0,121$ which satisfies (7). Thus in fact, (8) holds with $c_{7}=0,121-0,087=0,034$ which disproves (3).)

Proof. Let $k$ be a positive integer which is sufficiently large (in terms of $\varepsilon$ ) and let $m$ be any positive integer satisfying

$$
\begin{equation*}
m>k^{2} \tag{13}
\end{equation*}
$$

Let $D_{k}$ denote the set of those integers $d$ for which

$$
\begin{equation*}
1 \leqq d \leqq k \tag{14}
\end{equation*}
$$

and
(15) $\quad v(d)>\log \log k$
hold. Let $p$ be a prime number satisfying

$$
\begin{equation*}
p>k \tag{16}
\end{equation*}
$$

Let $E_{k}$ denote the set of those integers $e$ which can be written in form $p^{\alpha} d$ where

$$
\begin{equation*}
1 \leqq \alpha \leqq m \tag{17}
\end{equation*}
$$

and
(18)

$$
d \in D_{k}
$$

Finally, let

$$
A=E_{k} \cup B_{k} .
$$

We are going to show that for large enough $k$, this sequence $A$ satisfies (11).
Obviously,

$$
\begin{equation*}
n=|A|=\left|E_{k}\right|+\left|B_{k}\right| \leqq m k+k<2 m k \tag{19}
\end{equation*}
$$

Furthermore, by a theorem of P. Erdős and M. Kac [2], we have

$$
\left|D_{k}\right|>\frac{1}{3} k
$$

Thus (with respect to (16))

$$
\begin{equation*}
n=|A|>\left|E_{k}\right|=m \cdot\left|D_{k}\right|>\frac{1}{3} m k \tag{20}
\end{equation*}
$$

To estimate the number of the distinct products of form $a_{i} a_{j}$, we have to distinguish four cases.

Case 1. Assume at first that $a_{i} \in B_{k}, a_{j} \in B_{k}$. Since $B_{k}$ consists of $k$ elements, the pair $a_{i}, a_{j}$ can be chosen in at most

$$
k^{2}<m<n
$$

ways (with respect to (13) and (20)).
Case 2. Assume now that $a_{i}=p^{\alpha} d \in E_{k}$ (where (14), (15) and (16) hold),

$$
\begin{equation*}
a_{j} \in B_{k} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
v\left(a_{j}\right) \leqq z \log \log k \tag{22}
\end{equation*}
$$

Then

$$
\begin{equation*}
a_{i} a_{j}=p^{\alpha} d a_{j} \tag{23}
\end{equation*}
$$

Let $\pi_{i}(x)$ denote the number of those integers $u$ for which $u \leqq x$ and $v(u)=i$ hold. By a theorem of Hardy and Ramanujan, for any $\omega>0$ there exists a constant $c_{9}=c_{9}(\omega)$ such that for large $x$ and $1 \leqq i \leqq \omega \log x$, we have

$$
\begin{equation*}
\pi_{i}(x)<c_{9} \frac{x}{\log x} \frac{(\log \log x)^{i-1}}{(i-1)!} \tag{24}
\end{equation*}
$$

Choosing here $\omega=1$ and using Stirling's formula, we obtain that for $k>k_{2}(\omega)$, the number of the integers $a_{j}$ satisfying (21) and (22) is at most

$$
\begin{align*}
& <1+\sum_{1 \leqq i \leqq z \log \log k} c_{9} \frac{k}{\log k} \frac{\sum_{i \leq \log \log k} \pi_{i}(k)<}{(\log \log k)^{i-1}}(i-1)!
\end{aligned} \sum^{\left(i-1+c_{9} \frac{k}{\log k} \sum_{1 \leqq i \leqq z \log \log k} \frac{(\log \log k)^{[z \log \log k]-1}}{([z \log \log k]-1)!} \leqq\right.} \begin{aligned}
& \leqslant 1+c_{9} \frac{k}{\log k} z \log \log k \frac{(\log \log k)^{[z \log \log k]-1}}{([z \log \log k]-1)!}<  \tag{25}\\
& <1+c_{10} \frac{k}{\log k} \frac{(\log \log k)^{[z \log \log k]}}{([z \log \log k]-1)^{[z \log \log k]-1 / 2} e^{-[z \log \log k]-1}}< \\
& <1+c_{11} \frac{k}{\log k} \frac{(\log \log k)^{[z \log \log k]}}{(z \log \log k)^{[z \log \log k]-1 / 2} e^{-z \log \log k}}< \\
& <c_{12} \frac{k}{\log k} \frac{1}{(\log k)^{2 \log z}(\log \log k)^{-1 / 2}(\log k)^{-z}}<\frac{k}{(\log k)^{c_{8}-\varepsilon / 3}}
\end{align*}
$$

(where $c_{8}$ is defined by (12)) since $\frac{(\log \log k)^{i-1}}{i-1!}$ is increasing for $1 \leqq i \leqq \log \log k$.
By (14), (17) and (18), $\alpha$ and $d$ can be chosen in at most $m$ and $k$ ways, respectively. Thus the number of the products of form (23) is less than

$$
m \cdot k \cdot \frac{k}{(\log k)^{c_{8}-\varepsilon / 3}}<n \frac{k}{(\log k)^{c_{8}-\varepsilon / 2}}
$$

(with respect to (20)).
Case 3. Assume that $a_{i}=p^{\alpha} d \in E_{k}$ (where (14), (15) and (16) hold),

$$
\begin{equation*}
a_{j} \in B_{k} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
v\left(a_{j}\right)>z \log \log k \tag{27}
\end{equation*}
$$

Then

$$
\begin{equation*}
a_{i} a_{j}=\left(p^{x} d\right) a_{j}=p^{x}\left(d a_{j}\right) \tag{28}
\end{equation*}
$$

By (14), (15), (18), (26) and (27),

$$
d a_{j} \leqq k \cdot k=k^{2}
$$

and

$$
v\left(d a_{j}\right)=v(d)+v\left(a_{j}\right)>\log \log k+z \log \log k=(1+z) \log \log k
$$

Thus applying (24) with $\omega=100$, we obtain that for any $0<\delta<z / 2$ and $k>k_{3}(\delta)$, and writing $r=\left[(1+z-\delta) \log \log k^{2}\right]$, the number of the distinct products of form $d a_{j}$ is at most

$$
\begin{align*}
& \quad \sum_{(1+z) \log \log k<i} \pi_{i}\left(k^{2}\right)<\sum_{(1+z-\delta) \log \log k^{2}<i} \pi_{i}\left(k^{2}\right)=  \tag{29}\\
& =\sum_{r<i \leqq 100 \log \log k^{2}} \pi_{i}\left(k^{2}\right)+\sum_{100 \log \log k^{2}<i} \pi_{i}\left(k^{2}\right)< \\
& <\sum_{r<i \leq 100 \log \log k^{2}} c_{9} \frac{k^{2}}{\log k^{2}} \frac{\left(\log \log k^{2}\right)^{i-1}}{(i-1)!}+R\left(k^{2}\right)< \\
& <c_{13} \frac{k^{2}}{\log k} \frac{\left(\log \log k^{2}\right)^{r}}{r!} \sum_{j=0}^{+\infty}\left(\frac{\log \log k^{2}}{r}\right)^{j}+R\left(k^{2}\right)< \\
& <c_{14} \frac{k^{2}}{\log k} \frac{\left(\log \log k^{2}\right)^{r}}{r!} \sum_{j=0}^{+\infty}\left(\frac{1}{1+z-\delta}\right)^{j}+R\left(k^{2}\right)< \\
& <c_{15} \frac{k^{2}}{\log k} \frac{\left(\log \log k^{2}\right)^{r}}{r!}+R\left(k^{2}\right)
\end{align*}
$$

where

$$
R(x)=\sum_{100 \log \log x<i} \pi_{i}(x)
$$

Applying Stirling's formula, we obtain that for $k>k_{4}(\delta)$,

$$
\begin{align*}
& \quad \begin{array}{l}
\frac{k^{2}}{\log k} \frac{\left(\log \log k^{2}\right)^{r}}{r!}< \\
<c_{16} \frac{k^{2}}{\log k} \frac{\left(\log \log k^{2}\right)^{\left[(1+z-\delta) \log \log k^{2}\right]}}{\left(\left[(1+z-\delta) \log \log k^{2}\right]\right)^{\left[(1+z-\delta) \log \log k^{2}\right]+1 / 2} e^{-\left[(1+z-\delta) \log \log k^{2}\right]}}< \\
<c_{17} \frac{k^{2}}{\log k} \frac{\left(\log \log k^{2}\right)^{\left[(1+z-\delta) \log \log k^{2}\right]}}{\left((1+z-\delta) \log \log k^{2}\right)^{\left[(1+-\delta) \log \log k^{2}\right]+1 / 2} e^{-(1+z-\delta) \log \log k}}< \\
<c_{18} \frac{k^{2}}{\log k} \frac{1}{e^{(1+z-\delta) \log (1+z-\delta) \log \log k}(\log \log k)^{1 / 2}(\log k)^{-(1+z-\delta)}}< \\
<c_{18} \frac{k^{2}}{(\log k)^{\varphi(1+z-\delta)}} .
\end{array} . \tag{30}
\end{align*}
$$

The function $\varphi(x)$ is continuous at $x=1+z$. Thus if $\delta$ is sufficiently small in terms of $\varepsilon$ then for $k>k_{5}(\delta)=k_{5}(\delta(\varepsilon))=k_{6}(\varepsilon)$, we obtain from (30) that

$$
\begin{equation*}
\frac{k^{2}}{\log k} \frac{\left(\log \log k^{2}\right)^{r}}{r!}<\frac{k^{2}}{(\log k)^{\varphi(1+z)-\varepsilon / 3}-}=\frac{k^{2}}{(\log k)^{c_{B}-\varepsilon / 3}} \tag{31}
\end{equation*}
$$

(since $\varphi(1+z)=\varphi(z)=c_{8}$ by the definition of $z$ ).
Furthermore, P. Erdős proved in [1] (see formulae (5) and (6)) that for large $x$,

$$
\begin{equation*}
R(x)<2 \frac{x}{(\log x)^{2}} . \tag{32}
\end{equation*}
$$

(29), (31) and (32) yield that the number of the distinct products of form $d a_{j}$ is at most

$$
\begin{equation*}
\sum_{(1+z) \log \log k<i} \pi_{i}\left(k^{2}\right)<c_{15} \frac{k^{2}}{(\log k)^{c_{8}-\varepsilon / 3}}+2 \frac{k^{2}}{\left(\log k^{2}\right)^{2}}<c_{19} \frac{k^{2}}{(\log k)^{c_{8}-\varepsilon / 3}} \tag{33}
\end{equation*}
$$

Finally, by (17), $\alpha$ in (28) can be chosen in $m$ ways. Thus with respect to (20), we obtain that the number of the distinct products of form (28) is less than

$$
m \cdot c_{19} \frac{k^{2}}{(\log k)^{c_{8}-\varepsilon / 3}}<n \frac{k}{(\log k)^{c_{8}-\varepsilon / 2}}
$$

Case 4. Assume that $a_{i}=p^{\alpha} d_{1} \in E_{k}, a_{j}=p^{\beta} d_{2} \in E_{k}$ where

$$
\begin{equation*}
1 \leqq \alpha, \beta \leqq m \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{1}, d_{2} \in D_{k} . \tag{35}
\end{equation*}
$$

Then the product $a_{i} a_{j}$ can be written in form

$$
\begin{equation*}
a_{i} a_{j}=\left(p^{\alpha} d_{1}\right)\left(p^{\beta} d_{2}\right)=p^{\alpha+\beta} d_{1} d_{2}=p^{\gamma} d \tag{36}
\end{equation*}
$$

where by (34) and (35),

$$
\begin{equation*}
2 \leqq \gamma \leqq 2 m \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
d=d_{1} d_{2} \leqq k \cdot k=k^{2}, \quad v(d)=v\left(d_{1}\right)+v\left(d_{2}\right)>2 \log \log k \tag{38}
\end{equation*}
$$

By (37), $\gamma$ can be chosen in at most $2 m-1<2 m$ ways, while in view of (33), at most

$$
\sum_{2 \log \log k<i} \pi_{i}\left(k^{2}\right)<\sum_{(1+z) \log \log k<i} \pi_{i}\left(k^{2}\right)<c_{19} \frac{k^{2}}{(\log k)^{c_{8}-\varepsilon / 3}}
$$

integers $d$ satisfy (38). Thus the number of the distinct products $a_{i} a_{j}$ of form (36) is less than

$$
2 m \cdot c_{19} \frac{k^{2}}{(\log k)^{c_{8}-\varepsilon / 3}}<n \frac{k}{(\log k)^{c_{8}-\varepsilon / 2}} .
$$

Summarizing the results obtained above, we get that for $k>k_{7}(\varepsilon)$,

$$
g(A, n, k)<n+3 \cdot n \cdot \frac{k}{(\log k)^{c_{8}-\varepsilon / 2}}<n \cdot \frac{k}{(\log k)^{c_{8}-\varepsilon}}
$$

which completes the proof of Theorem 1.
3. In this section, we will estimate $F(n, k)$.

Theorem 2. There exist absolute constants $c_{20}, c_{21}$ such that for $k>k_{\mathrm{s}}$ and $n \geqq k$,

$$
\begin{equation*}
n^{2} \exp \left(c_{20} \frac{k}{\log ^{2} k}\right)<F(n, k)<n^{2} \exp \left(c_{21} \frac{k}{\log k}\right) \tag{39}
\end{equation*}
$$

Proof. First we prove the upper estimate. We will show at first that

$$
\begin{equation*}
F(k, k)=f\left(B_{k}, k, k\right)<\exp \left(c_{22} \frac{k}{\log k}\right) \tag{40}
\end{equation*}
$$

In case $A=B_{k}=\{1,2, \ldots, k\}$ (and $n=k$ ), all the products of form (2) are divisors of $k!$. Thus applying Legendre's formula and the prime number theorem (or a more elementary theorem), we obtain that

$$
\begin{aligned}
& F(k, k) \leqq d(k!)=\prod_{p \leqq k}\left(1+\sum_{\alpha=1}^{+\infty}\left[\frac{k}{p^{\alpha}}\right]\right) \leqq \\
& \leqq \prod_{p \leqq k}\left(2 \sum_{\alpha=1}^{+\infty}\left[\frac{k}{p^{\alpha}}\right]\right)<\prod_{p \leqq k}\left(\sum_{\alpha=1}^{+\infty} \frac{2 k}{p^{\alpha}}\right)=\prod_{p \leqq k} \frac{2 k}{p-1} \leqq \prod_{p \leqq k} \frac{4 k}{p}= \\
& =\prod_{j=1}^{\left[\frac{\log k}{\log 2}\right]} \prod_{\frac{k}{2^{j}}<p \leqq \frac{k}{2^{j-1}}} \frac{4 k}{p}<\prod_{j=1}^{\left[\frac{\log k}{\log 2}\right]} \prod_{\frac{k}{2^{j}}<p \leqq \frac{k}{2^{j-1}}} 4 k \cdot \frac{2^{j}}{k} \leqq \\
& \leqq \prod_{j=1}^{\left[\frac{\log k}{\log 2}\right]}\left(4 \cdot 2^{j}\right)^{\pi\left(\frac{k}{2^{j-1}}\right)}<\exp \left\{c_{23}\left(\sum_{j=1}^{\left[\frac{\log k}{\log 2}\right]} \frac{k}{2^{j-1}} \cdot \frac{1}{\log \frac{k}{2^{j-1}}} \cdot \log 4 \cdot 2^{j}\right)\right\}< \\
& <\exp \left\{c_{24}\left(\sum_{j=1}^{\left[\frac{1}{2} \cdot \frac{\log k}{\log 2}\right]} \frac{k}{2^{j}} \cdot \frac{1}{\log \sqrt{k}} \cdot j+\underset{j=\left[\frac{1}{2} \cdot \frac{\left[\frac{\log k}{\log k} 2\right.}{\log 2}\right]+1}{\log ^{j}} \frac{k}{\log ^{j}} \cdot j\right)\right\}< \\
& <\exp \left\{c_{25}\left(\frac{k}{\log k}+\sqrt{k}\right)\right\}<\exp \left(c_{26} \frac{k}{\log k}\right)
\end{aligned}
$$

which proves (40).
Assume now that $n>k$. Let $p$ denote a prime number satisfying $p>k$ and let

$$
A=\left\{1,2, \ldots, k, p, p^{2}, \ldots, p^{n-k}\right\}
$$

For this sequence $A,|A|=n$, and the products (2) can be written in form

$$
\begin{equation*}
\prod_{i=1}^{k} i^{\varepsilon_{i}} \prod_{j=1}^{n-k} p^{j \delta_{j}}=a \cdot p^{\beta} \tag{41}
\end{equation*}
$$

where $\varepsilon_{i}=0$ or 1 and $\delta_{j}=0$ or 1 . Here $a$ may assume $F(k, k)$ different values, and obviously, $\beta$ may assume any integer value (independently of $\alpha$ ) from the interval

$$
0 \leqq \alpha \leqq \sum_{j=1}^{n-k} 1=\frac{(n-k)(n-k+1)}{2}
$$

of length $\frac{(n-k)(n-k+1)}{2}$. Furthermore, the prime factors of $a$ are less than $p$, thus for different pairs $a, \beta$, we obtain different products of form (41). Thus with respect to (40),

$$
\begin{aligned}
& F(n, k) \leqq f(A, n, k)=F(k, k) \cdot \frac{(n-k)(n-k+1)}{2}< \\
& \quad<\exp \left(c_{22} \frac{k}{\log k}\right) \cdot \frac{n^{2}}{2}<n^{2} \exp \left(c_{22} \frac{k}{\log k}\right)
\end{aligned}
$$

which completes the proof of the second inequality in (39).
Now we are going to prove that the first inequality in (39) holds with $c_{20}=\frac{1}{92}$, in other words,

$$
\begin{equation*}
F(n, k)>n^{2} \exp \left(\frac{1}{92} \frac{k}{\log ^{2} k}\right) . \tag{42}
\end{equation*}
$$

Let us assume at first that

$$
n \leqq \exp \left(\frac{1}{3} \frac{k}{\log k}\right)
$$

Then for large $k$, the right hand side of (42):

$$
\begin{align*}
& n^{2} \exp \left(\frac{1}{92} \frac{k}{\log ^{2} k}\right) \leqq \exp \left(\frac{2}{3} \frac{k}{\log k}+\frac{1}{92} \frac{k}{\log ^{2} k}\right)<  \tag{43}\\
& <\exp \left(\frac{2}{3} \frac{k}{\log k}+\frac{1}{100} \frac{k}{\log k}\right)=\exp \left(\frac{68}{100} \frac{k}{\log k}\right)
\end{align*}
$$

On the other hand, let $A$ denote any sequence satisfying (1). Let us form all those products of form (2) for which

$$
\varepsilon_{i}= \begin{cases}0 & \text { or } 1 \text { if } a_{i} \text { is a prime numbes and } a_{i} \leqq k \\ 0 & \text { otherwise }\end{cases}
$$

By (1), A contains all the $\pi(k)$ prime numbers $p \leqq k$, thus the number of these
products is $2^{\pi(k)}$. Hence, by the prime number theorem, we have

$$
\begin{gather*}
(F(n, k) \geqq) f(A, n, k) \geqq 2^{\pi(k)}=\exp (\log 2 \pi(k))>  \tag{44}\\
>\exp \left(\frac{69}{100} \pi(k)\right)>\exp \left(\frac{68}{100} \frac{k}{\log k}\right) .
\end{gather*}
$$

(43) and (44) yield (42) in this case.

Let us assume now that

$$
\begin{equation*}
n>\exp \left(\frac{1}{3} \frac{k}{\log k}\right) \tag{45}
\end{equation*}
$$

Let

$$
l=\left[\frac{1}{7} \frac{k}{\log ^{2} k}\right]
$$

Denote the $i^{\text {th }}$ prime number by $p_{i}\left(p_{1}=2, p_{2}=3, \ldots\right)$ and let $q_{i}=p_{i+1}$ for $i=1,2, \ldots, l, Q=\left\{q_{1}, q_{2}, \ldots, q_{l}\right\}, R=\left\{q_{1}, 2 q_{1}, q_{2}, 2 q_{2}, \ldots, q_{l}, 2 q_{l}\right\}$. Obviously, (45) implies that $R \subset\left\{a_{1}, a_{2}, \ldots, a_{[n / 2]}\right\}$. Let us define the sequence $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ by

$$
\left\{a_{1}, a_{2}, \ldots, a_{[n / 2]}\right\}=E \cup R, \quad E \cap R=\emptyset
$$

For $s=1,2, \ldots,\left[\frac{n}{4}\right]+1$, we denote the interval $[n-2[n / 4]-1+2 s, n]$ by $I_{s}$, and let $F_{s}$ denote the set of those products of form (2) for which

$$
\begin{gathered}
\varepsilon_{i}=0 \quad \text { if } \quad a_{i} \in R, \quad \sum_{i: a_{i} \in B} \varepsilon_{i}=2, \\
\varepsilon_{i}=0 \quad \text { if }\left[\frac{n}{2}\right]<i \leqq n-2[n / 4]-2+2 s,
\end{gathered}
$$

and

$$
\varepsilon_{l}=1 \quad \text { if } \quad i \in I_{s} \quad \text { (i.e. } n-2[n / 4]-1+2 s \leqq i \leqq n \text { ). }
$$

In other words, $F_{s}$ denotes the set of those numbers which can be written in form

$$
\left(\prod_{\mu \in I_{s}} a_{\mu}\right) \cdot e_{i} e_{j}
$$

where $1 \leqq i, j \leqq m, i \neq j$. Let $F$ denote the set of those numbers which can be written in form

$$
e_{i} e_{j} \quad \text { where } \quad 1 \leqq i, \quad j \leqq m, \quad i \neq j .
$$

Then obviously,

$$
\begin{equation*}
\left|F_{s}\right|=|F|, \tag{46}
\end{equation*}
$$

independently of $s$.

Furthermore, for $s=1,2, \ldots,\left[\frac{n}{4}\right]+1$, let $G_{s}$ denote the set of those products of form (2) for which

$$
\begin{gathered}
\varepsilon_{i}=0 \text { or } 1 \quad \text { if } a_{i} \in R, \quad \sum_{i: a_{i} \in B} \varepsilon_{i}=1, \\
\varepsilon_{i}=0 \quad \text { if }\left[\frac{n}{2}\right]<i \leqq n-2[n / 4]-2+2 s
\end{gathered}
$$

and

$$
\varepsilon_{i}=1 \quad \text { if } \quad i \in I_{s} \quad \text { (i.e. } n-2[n / 4]-1+2 s \leqq i \leqq n \text { ). }
$$

In other words, $G_{s}$ denotes the set of those numbers which can be written in form

$$
\left(\prod_{\mu \in I_{s}} a_{\mu}\right) \cdot e_{i} \prod_{j=1}^{l} q_{j}^{\varepsilon_{j}} \prod_{t=1}^{l}\left(2 q_{t}\right)^{\varphi_{t}}
$$

(where $\varepsilon_{j}=0$ or $1, \varphi_{t}=0$ or 1 ). Then $\left|G_{s}\right|$ is equal to the number of the products of form

$$
\begin{equation*}
e_{i} \prod_{j=1}^{l} q_{j}^{\varepsilon_{j}} \prod_{t=1}^{l}\left(2 q_{t}\right)^{\varphi_{t}}=2^{\alpha} e_{i} \prod_{j=1}^{l} q_{j}^{\delta_{j}} \tag{47}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{j}=0,1 \quad \text { or } 2 \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leqq \alpha \leqq l \tag{49}
\end{equation*}
$$

Let $G$ denote the set of those numbers which can be written in form

$$
e_{i} \prod_{j=1}^{l} q_{j}^{\delta_{j}}
$$

where (48) holds. Obviously, for any product of this form, there exist exponents $\varepsilon_{j}, \varphi_{t}$ and $\alpha$, satisfying (47), (49), $\varepsilon_{j}=0$ or 1 and $\varphi_{t}=0$ or 1 . A product of form (47) can be obtained from at most $l+1$ distinct elements of $G$; namely, by (49), $\alpha$ may assume only at most $l+1$ distinct values. Thus

$$
\begin{equation*}
\left|G_{s}\right| \supseteqq \frac{|G|}{l+1} \tag{50}
\end{equation*}
$$

(again, independently of $s$ ).
We are going to show that for $s \neq t$,

$$
\begin{equation*}
\left(F_{s} \cup G_{s}\right) \cap\left(F_{t} \cup G_{t}\right)=\emptyset \tag{51}
\end{equation*}
$$

In fact, assume that $s>t$. Then for $y \in F_{t} \cup G_{t}$,

$$
\begin{gather*}
y \geqq \prod_{\mu \in I_{t}} a_{\mu}=\prod_{n-2[n / 4]-1+2 t \leq \mu<n-2[n / 4]-1+2 s} a_{\mu} \cdot \prod_{\mu \in I_{s}} a_{\mu} \geqq \\
\left.\geqq a_{n-2[n / 4]-1+2 t} a_{n-2[n / 4]+2 t} \cdot \prod_{\mu \in I_{s}} a_{\mu}>\left(a_{[n / 2]}\right)^{2} \prod_{\mu \in I_{s}} a_{\mu} \quad \text { (for } y \in F_{t} \cup G_{t}\right) . \tag{52}
\end{gather*}
$$

On the other hand, for $z \in F_{s}$,

$$
\begin{equation*}
\left.z=e_{i} e_{j} \prod_{\mu \in I_{s}} a_{\mu} \leqq\left(a_{[n / 2]}\right)^{2} \prod_{\mu \in I_{s}} a_{\mu} \quad \text { for } z \in F_{s}\right) \tag{53}
\end{equation*}
$$

Finally, if $v \in G_{t}$, then we have

$$
\begin{equation*}
v \leqq e_{i} \prod_{j=1}^{l} q_{j} \prod_{t=1}^{l} 2 q_{t} \cdot \prod_{\mu \in I_{s}} a_{\mu} \leqq a_{[n / 2]} \cdot 2^{l}\left(\prod_{j=1}^{l} q_{j}\right)^{2} \cdot \prod_{\mu \in I_{s}} a_{\mu} \tag{54}
\end{equation*}
$$

By the prime number theorem,

$$
\log \left(\prod_{i=1}^{x} p_{i}\right) \sim x \log x
$$

Thus if $k$ (and consequently $l$ ) are sufficiently large then with respect to (45) we have

$$
\begin{aligned}
& 2^{l}\left(\prod_{j=1}^{l} q_{j}\right)^{2}=2^{l}\left(\prod_{i=2}^{l+1} p_{i}\right)^{2}<2^{l}\left(\exp \left\{\frac{35}{34}(l+1) \log (l+1)\right\}\right)^{2}< \\
< & \exp \left(\frac{1}{7} \frac{k}{\log ^{2} k} \cdot \log 2\right) \exp \left\{\frac{35}{17}\left(\frac{1}{7} \frac{k}{\log ^{2} k}+1\right) \log \left(\frac{1}{7} \frac{k}{\log ^{2} k}+1\right)\right\}< \\
< & \exp \left(\frac{k}{\log ^{2} k}\right) \exp \left(\frac{5}{16} \frac{k}{\log ^{2} k} \log k\right)= \\
= & \exp \left(\frac{k}{\log ^{2} k}+\frac{5}{16} \frac{k}{\log k}\right)<\frac{1}{3} \exp \left(\frac{5}{15} \frac{k}{\log k}\right)<\frac{1}{3} n<\left[\frac{n}{2}\right] \leqq a_{[n / 2]} .
\end{aligned}
$$

Putting this into (54), we obtain that

$$
\begin{equation*}
v \leqq\left(a_{[n / 2]}\right)^{2} \prod_{\mu \in I_{s}} a_{\mu} \quad\left(\text { for } v \in G_{s}\right) ; \tag{55}
\end{equation*}
$$

(52), (53) and (55) yield (51).

By (46), (50) and (51), we have

$$
\begin{align*}
& f(A, n, k) \geqq\left|\bigcup_{s=1}^{[n / 4]+1}\left(F_{s} \cup G_{s}\right)\right|=\sum_{s=1}^{[n / 4]+1}\left|F_{s} \cup G_{s}\right| \geqq  \tag{56}\\
& \geqq \sum_{s=1}^{[n / 4]+1} \max \left\{\left|F_{s}\right|,\left|G_{s}\right|\right\} \geqq \sum_{s=1}^{[n / 4]+1} \max \left\{|F|, \frac{|G|}{l+1}\right\}= \\
& =([n / 4]+1) \max \left\{|F|, \frac{|G|}{l+1}\right\}>\frac{n}{4} \frac{1}{l+1} \max \{|F|,|G|\} .
\end{align*}
$$

Thus to complete the proof of Theorem 2, we need a lower estimate for $\max \{|F|,|G|\}$. In the next section, we will prove the following lemma (using the same method as in [4]):

Lemma 1. Let $Q=\left\{q_{1}, q_{2}, \ldots, q_{l}\right\}$ be any set consisting of $l$ (distinct) prime numbers. Let $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ (where $e_{1}<e_{2}<\ldots<e_{m}$ ) be any sequence of positive
integers. Let $F$ and $G$ denote the sets consisiting of those integers which can be respectively written in form

$$
e_{i} e_{j} \quad(1 \leqq i, j \leqq m, i \neq j) \quad \text { and } \quad e_{i} \prod_{j=1}^{i} q_{j}^{\delta_{j}} \quad\left(\delta_{j}=0,1 \text { or } 2\right) .
$$

Then for

$$
\begin{equation*}
l>l_{0} \tag{57}
\end{equation*}
$$

we have

$$
\begin{equation*}
\max \{|F|,|G|\}>m \exp \left(\frac{2}{25} l\right) . \tag{58}
\end{equation*}
$$

Let us suppose now that Lemma 1 has been proved. Then the proof of Theorem 2 can be completed in the following way:

For large $k$, (57) holds by the definition of $l$. Thus we may apply Lemma 1 . We obtain that (58) holds. Putting this into (56), we get that for large $k$ and any sequence $A$ (satisfying (1) and $|A|=n$ ),

$$
\begin{equation*}
f(A, n, k)>\frac{n}{4} \frac{1}{l+1} m \exp \left(\frac{2}{25} l\right) . \tag{59}
\end{equation*}
$$

With respect to (45),

$$
\begin{aligned}
m & =|E|=[n / 2]-|R|=[n / 2]-2 l=\left[\frac{n}{2}\right]-2\left[\frac{1}{7} \frac{k}{\log ^{2} k}\right]> \\
& >\frac{n}{3}-\frac{2}{7} \frac{k}{\log ^{2} k}>\frac{n}{3}-\frac{1}{3} \frac{k}{\log k}>\frac{n}{3}-\log n>\frac{n}{4} .
\end{aligned}
$$

Thus we obtain from (59) that for large $k$,

$$
\begin{aligned}
& f(A, n, k)>\frac{n}{4} \frac{1}{l+1} \frac{n}{4} \exp \left(\frac{2}{25} l\right)>\frac{n^{2}}{16} \exp \left(\frac{2}{26} l\right)= \\
& \quad=\frac{n^{2}}{16} \exp \left\{\frac{1}{13}\left[\frac{1}{7} \frac{k}{\log ^{2} k}\right]\right\}>n^{2} \exp \left(\frac{1}{92} \frac{k}{\log ^{2} k}\right)
\end{aligned}
$$

which proves (42) and thus also Theorem 2.
4. To complete the proof of Theorem 2, we still have to give a

Proof of lemma 1. Let us write every $e € E$ in form

$$
\begin{equation*}
e=\left(r s^{2}\right)\left(q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \ldots q_{l}^{q_{i}}\right)=b d \tag{60}
\end{equation*}
$$

where $r, s$ are positive integers, $\varepsilon_{i}=0$ or 1 (for $i=1,2, \ldots, l$ ), $p / r$ implies that $p \notin Q, p / s$ implies that $p \in Q$ (also $r=1$ and $s=1$ may occur) and $b=r s^{2}$, $d=q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \ldots q_{l}^{\varepsilon_{i}}$. Let us denote the occuring values of $b$ by $b_{1}, b_{2}, \ldots, b_{z}\left(b_{i} \neq b_{j}\right.$
for $i \neq j$ ), let $B=\left\{b_{1}, b_{2}, \ldots, b_{z}\right\}$ and let us denote the set of those numbers $e \in E$ for which $b=b_{i}$ in (60) (for fixed $i, 1 \leqq i \leqq z$ ), by $E\left(b_{i}\right)$. Then obviously,

$$
E=\bigcup_{i=1}^{2} E\left(b_{i}\right) \quad \text { and } \quad E\left(b_{i}\right) \cap E\left(b_{j}\right)=\emptyset \quad \text { for } \quad i \neq j
$$

thus

$$
\begin{equation*}
m=|E|=\sum_{i=1}^{z}\left|E\left(b_{i}\right)\right| . \tag{61}
\end{equation*}
$$

For $b \in B$, let $F(b)$ denote the set of those numbers which can be written in form

$$
e_{x} e_{y} \text { where } e_{x} \in E(b), \quad e_{y} \in E(b), \quad e_{x} \neq e_{y}
$$

Furthermore, for fixed $b \in B$ and for each $e_{x}=b q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \ldots q_{l}^{\varepsilon_{1}}$, let us form all the products of form

$$
\begin{equation*}
e_{x}\left(q_{1}^{\gamma_{1}} \dot{q}_{2}^{\gamma_{2}} \ldots q_{l}^{\gamma_{1}}\right)=\left(b q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \ldots q_{l}^{\varepsilon_{i}}\right)\left(q_{1}^{\gamma_{1}} q_{2}^{\gamma_{2}} \ldots q_{l}^{\gamma_{1}}\right) \tag{62}
\end{equation*}
$$

where

$$
\gamma_{i}=\left\{\begin{array}{lllll}
0 & \text { or } & 1 & \text { if } & \varepsilon_{i}=1 \\
1 & \text { or } & 2 & \text { if } & \varepsilon_{i}=0
\end{array}\right.
$$

and let us denote the set of these products by $G(b)$.
Obviously,

$$
\begin{equation*}
F \supset \bigcup_{i=1}^{\tilde{j}} F\left(b_{i}\right) \tag{63}
\end{equation*}
$$

and

$$
\begin{equation*}
G \supset \bigcup_{i=1}^{z} G\left(b_{i}\right) . \tag{64}
\end{equation*}
$$

We are going to show that
and

$$
\begin{equation*}
F\left(b_{i}\right) \cap F\left(b_{j}\right)=\emptyset \quad \text { for } \quad i \neq j \tag{65}
\end{equation*}
$$

$$
\begin{equation*}
G\left(b_{i}\right) \cap G\left(b_{j}\right)=\emptyset \quad \text { for } \quad i \neq j \tag{66}
\end{equation*}
$$

In fact, let us assume that

$$
\begin{gather*}
b_{i}=r_{i} s_{i}^{2} \neq b_{j}=r_{j} s_{j}^{2},  \tag{67}\\
e_{x}=b_{i} q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \ldots q_{l}^{\varepsilon_{l} \in E\left(b_{i}\right), \quad e_{y}=b_{i} q_{1}^{\varphi_{1}} q_{2}^{\varphi_{2}} \ldots q_{l}^{\varphi_{1}} \in E\left(b_{i}\right),} \\
e_{u}=b_{j} q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \ldots q_{l}^{\alpha_{1}} \in E\left(b_{j}\right) \quad \text { and } e_{v}=b_{j} q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \ldots q_{l}^{\beta_{1}} \in E\left(b_{j}\right) .
\end{gather*}
$$

Then

$$
\begin{equation*}
e_{x} e_{y}=r_{i}^{2} s_{i}^{4} q_{1}^{\varepsilon_{1}+\varphi_{1}} q_{2}^{\varepsilon_{2}+\varphi_{2}} \ldots q_{l}^{\varepsilon_{1}+\varphi_{i}} \quad\left(\in F\left(b_{i}\right)\right) \tag{68}
\end{equation*}
$$

and
(69)

$$
e_{u} e_{v}=r_{j}^{2} s_{j}^{4} q_{1}^{\alpha_{1}+\beta_{1}} q_{2}^{\alpha_{2}+\beta_{2}} \ldots q_{l}^{\alpha_{1}+\beta_{l}} \quad\left(\in \dot{F}\left(b_{j}\right)\right)
$$

If $r_{i} \neq r_{j}$ then there exists a prime power $p^{\gamma}$ such that $p \notin Q$ and $p^{\nu} / e_{x} e_{y}$ but $p^{\gamma} \nmid e_{x} e_{y}$, or conversely; this implies that $e_{x} e_{y} \neq e_{u} e_{v}$. If $r_{i}=r_{j}$ then by (67), $s_{i} \neq s_{j}$ must hold. Thus there exists a prime power $q_{t}^{\mu}$ such that $q_{t} \in Q$ and $q_{t}^{\mu} / s_{i}$ but $q_{t}^{\mu} \backslash s_{j}$ (or conversely). Then the exponent of $q_{t}$ is at least $4 \mu+\varepsilon_{i}+\varphi_{i} \geqq 4 \mu$ in the canonical form of $e_{x} e_{y}$ and at most $4(\mu-1)+\alpha_{i}+\beta_{i} \leqq 4 \mu-2$ in the canonical form of $e_{u} e_{v}$, thus $e_{x} e_{y} \neq e_{u} e_{v}$ holds also in this case, which proves (65).

In order to prove (66), note that we may write the product (62) in form

$$
r\left(s^{2} q_{1} q_{2} \ldots q_{l}\right) q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \ldots q_{l}^{\alpha_{1}} \text { where } \alpha_{i}=0 \text { or } 1 \text { for } i=1,2, \ldots, l .
$$

Obviously, a number of this form uniquely determines each of the factors $r, s$, $q_{1}^{\alpha_{1}}, \ldots, q_{l}^{\alpha_{l}}$, which proves (66).
(63), (64), (65) and (66) imply that

$$
\begin{gather*}
\max \{|F|,|G|\} \geqq \max \left\{\left|\bigcup_{i=1}^{z} F\left(b_{i}\right)\right|,\left|\bigcup_{i=1}^{z} G\left(b_{i}\right)\right|\right\}=  \tag{70}\\
=\max \left\{\sum_{i=1}^{z}\left|F\left(b_{i}\right)\right| ; \sum_{i=1}^{z}\left|G\left(b_{i}\right)\right|\right\} \geqq \frac{1}{2}\left(\sum_{i=1}^{z}\left|F\left(b_{i}\right)\right|+\sum_{i=1}^{z}\left|G\left(b_{i}\right)\right|\right\}= \\
=\frac{1}{2} \sum_{i=1}^{z}\left(\left|F\left(b_{i}\right)\right|+\left|G\left(b_{i}\right)\right|\right) \geqq \frac{1}{2} \sum_{i=1}^{z} \max \left\{\left|F\left(b_{i}\right)\right|,\left|G\left(b_{i}\right)\right|\right\} .
\end{gather*}
$$

Thus in order to prove (58), it suffices to show that for $b \in B$, $\max \{|F(b)|,|G(b)|\}$ is large.

Let us assume that $b \in B$. We have to distinguish two cases.
Case 1:

$$
\begin{equation*}
(0<)|E(b)| \leqq 2^{\frac{7}{8} l-1} \tag{71}
\end{equation*}
$$

We are going to show that in this case $|G(b)|$ is large (in terms of $|E(b)|$ ). Let us fix an element $e_{x}$ of $E(b)$ and for this $e_{x}$, form all the products of form (62). Obviously, the factor $q_{1}^{\gamma_{1}} q_{2}^{\gamma_{2}} \ldots q_{l}^{\gamma_{1}}$ can be chosen in $2^{l}$ ways thus the number of these products is $2^{l}$. Hence, with respect to (71),

$$
\begin{equation*}
|G(b)| \geqq 2^{l}=2^{\frac{1}{8} l+1} \cdot 2^{\frac{7}{8} t-1}=2^{\frac{1}{8} t+1}|E(b)| \tag{72}
\end{equation*}
$$

Case 2:

$$
\begin{equation*}
|E(b)|>2^{\frac{7}{8} l-1} \tag{73}
\end{equation*}
$$

In this case, we shall need the following lemma:
Lemma 2. Let @ be any real number, satisfying

$$
\begin{equation*}
0<\varrho<\frac{1}{2} \tag{74}
\end{equation*}
$$

and

$$
\begin{equation*}
f(\varrho) \stackrel{\text { def }}{=}-\varrho \log \varrho-(1-\varrho) \log (1-\varrho)-\left(1-\frac{\varrho}{2}\right) \log 2<0 \tag{75}
\end{equation*}
$$

and let $l$ be any integer, sufficiently large depending on $\varrho$ :

$$
\begin{equation*}
l>l_{1}(\varrho) \tag{76}
\end{equation*}
$$

Put

$$
\varphi(l)=2^{-\frac{\rho}{2} l-1}
$$

Let $S$ denote the set of the $2^{l}$ l-tuples $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{l}\right)$, satisfying $\mu_{h}=0$ or 1 for $h=1,2, \ldots, l$. Let $R$ be any subset of $S$ for which

$$
\begin{equation*}
|R|>\varphi(l) 2^{l} . \tag{77}
\end{equation*}
$$

Then the number of the distinct sums of form

$$
\begin{equation*}
\left(\mu_{1}+v_{1}, \ldots, \mu_{l}+v_{l}\right)=\left(\mu_{1}, \ldots, \mu_{l}\right)+\left(v_{1}, \ldots, v_{l}\right) \tag{78}
\end{equation*}
$$

where $\left(\mu_{1}, \ldots, \mu_{l}\right) \in R$ and $\left(v_{1}, \ldots, v_{i}\right) \in R$, is greater than $(\varphi(l))^{-1}|R|$.
This lemma is identical with Lemma 2 in [4].
Using Lemma 2, we are going to show that (73) implies that $|F(b)|$ is large.
Let us choose $\varrho=\frac{1}{4}$ in Lemma 2. Then (74) holds trivially, and a simple computation shows that

$$
f\left(\frac{1}{4}\right)=\frac{3}{8}(\log 8-\log 9)<0
$$

thus $\varrho$ satisfies also (75). Furthermore, we choose $R$ as the set of those $l$-tuples $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{l}\right)$ (where $\varepsilon_{i}=0$ or 1) for which $b q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \ldots q_{l}^{\varepsilon_{l}} \in E(b)$ holds. Then by (73), also (77) holds:

$$
|R|=|E(b)|>2^{\frac{7}{8} l-1}=2^{-\frac{1}{8} l-1} \cdot 2^{l}=\varphi(l) 2^{l}
$$

Thus we may apply Lemma 2. We obtain that the number of the distinct sums of form (78) (where $\left(\mu_{1}, \ldots, \mu_{l}\right) \in R$ and ( $\left.v_{1}, \ldots, v_{l}\right) \in R$ ) is greater than $(\varphi(l))^{-1}|R|$. But distinct sums of form (78) determine distinct products of form

$$
e_{x} e_{y}=\left(b q_{1}^{\mu_{1}} \ldots q_{l}^{\mu_{1}}\right)\left(b q_{1}^{v_{1}} \ldots q_{l}^{v_{l}}\right)=\dot{b}^{2} q_{1}^{\mu_{1}+v_{1}} \ldots q_{l}^{u_{l}+v_{1}}
$$

and with at most $|E(b)|$ exception, also $e_{x} \neq e_{y}$ holds. Thus

$$
\begin{gather*}
|F(b)|>(\varphi(l))^{-1}|R|-|E(b)|=\left(2^{-\frac{1}{8} t-1}\right)^{-1}|E(b)|-|E(b)|=  \tag{79}\\
=\left(2^{\frac{1}{8} t+1}-1\right)|E(b)|>2^{\frac{1}{8} t}|E(b)| .
\end{gather*}
$$

(72) and (79) yield that for any $b \in B$.

$$
\max \{|F(b)|,|G(b)|\}>2^{\frac{1}{8} t}|E(b)| .
$$

Putting this into (70), we obtain (with respect to (61)) that

$$
\begin{aligned}
& \max \{|F|,|G|\} \geqq \frac{1}{2} \sum_{i=1}^{z} \max \left\{\left|F\left(b_{i}\right)\right|,\left|G\left(b_{i}\right)\right|\right\}> \\
& >\frac{1}{2} \sum_{i=1}^{z} 2^{\frac{1}{8} l}\left|E\left(b_{i}\right)\right|=2^{\frac{1}{8} l-1} \sum_{i=1}^{z}\left|E\left(b_{i}\right)\right|=m 2^{\frac{1}{8} l-1}= \\
& =m \exp \left\{\log 2\left(\frac{1}{8} l-1\right)\right\}>m \exp \left\{\left(\frac{\log 2}{8}-\frac{1}{1000}\right) l\right\}>m \exp \left(\frac{2}{25} l\right)
\end{aligned}
$$

which completes the proof of Lemma 1.

## References

[1] P. Erdős, An asymptotic inequality in the theory of numbers, Vestnik Leningrad. Univ., 15: 13 (1960), 41-49 (Russian).
[2] P. Erdös and M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions, Amer. J. Math., 62 (1940), 738-742.
[3] P. Erdős and A. SÁrközy, Some solved and unsolved problems in combinatorial number theory, Mat. Slovaca, to appear.
[4] A. SÁrközy, On products of integers, Studia Sci. Math. Hung., 9 (1974), 161-171.

MATH. INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
REÁltanoda U. 13-15.
1053 BUDAPEST, HUNGARY


[^0]:    Received June 10, 1977.

