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On products of integers. II 

P. ERDŐS and A. SÁRKÖZY 

1. Throughout this paper, c l 5 c 2 , ... denote absolute constants; k0(a, fl, ...), 
&i(a, /?, ...), . . . , x0(a, /?, . . .) , . . . denote constants depending only on the parameters 
a, yS, ...; v(n) denotes the number of the prime factors of the positive integer n, 
counted according to their multiplicity. The number of the elements of a finite 
set S is denoted by |S|. 

Let k, n be any positive integers, A = {al5 a2, ..., a„} any finite, strictly in-
creasing sequence of positive integers satisfying 

(1) % = 1, a2 = 2, . . . , ak = k 

(consequently, \A\=n^k). Let us denote the number of integers which can be 
written in form 

where the minimums are extended over all sequences A satisfying (1) and \A\=n. 
Starting out from a conjecture of G. Halász, the second author showed in 

the first part of this paper (see [4]) that 

Note that to get many distinct products of form a ^ j , we need a condition 
of type (1); otherwise e.g. the sequence A = { 1, 2, 22, . . . , 2" - 1} is a counterexample, 
namely for this sequence the number of the distinct products is 2n — \ = 0(n). 
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Fiirthermore, G(n, k)[n is not much greater for fixed k and large n than for n=k, 
i.e. for A=Bk where 

Bt = {l,2,...,k). 

This can be shown by the following construction: let A* = {a*, a\, ..., a*} be the 
sequence of the integers of form p'j where p is a. fixed prime number greater than 
k,i= 1,2, ...,m, j= 1, 2, . . . , k, and m is any positive integer. Clearly, 

g(A*, n,k) ^ 2 g(Bk, k,k) = 2 G(k, k) 
n k k 

thus 
G(n, k) „ G(k, k) 

< 2 
n k 

hence 
G(n, k) G(k, k) 

for kjn, 

n k 

The authors conjectured that 

(= o(fc)) for every n. 

G(n, k) G(k, k) 

for every n^k, and furthermore, that for any eo>0, k>k0(co) and n^k, we have 

F(n, k) > n*k<° 
or perhaps 

(4) C X P [C> " F ( " ' k ) ^ n 2 £ X P {C* l ^ f c ) 

for large k and 
n=zk. (See [4], also Problem 9 in [3].) 

The aim of this paper is to disprove (3) (Theorem 1) and to prove a slightly 
weaker form of (4) (Theorem 2). 2. In this section, we will disprove (3). 

P . ERDOS showed in [1] (see Theorem 1) that for any E > 0 and k>k 0 ( s ) , 
log log k2 log log k2 

(log /c2) ̂ ( e l o g 2 ) - » =g(Bk,k,k)= m2 i ^ _ _ ( e i o g 2 ) , 
m = xy 

xsk, ysfc 

This inequality can be written in the equivalent form 

t 2 k2 

G(k, k) 
(log fc)C5+£ v ' y (log k)C5~e 

where 
1+log log 2 

c, = 1 - log 2 
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An easy computation shows that 

0,086 c c5 < 0,087. 
Hence, for large k, 
( 5 ) fc __ G(/c, k) 

(log fc)0'087 k (log fc)0'086 ' 

Thus to disprove (3), it is sufficient to show that for large k, there exist a positive 
integer n (=k) and a sequence A such that \A\=n, (1) holds and 

^ g(A, n, k) k 
W — — ' n (log ky* 
where 

(7) c6 ^ 0,087. 

In fact, by (5) and the definition of the function G(n, k), this would imply 

m G ( n > k ) < k - - 1 G { k > 
{ J n ^ (log fe)c" ^ (log k)01 ' k 
where 

c7 = c 6 -0 ,087 > 0 
by (7). 

Let us write <p(x) = 1 +JC log x—x and let ' z denote the single real root of 
the equation 

(9) <p{x) = q>{\+x). 

A simple computation shows that 

(10) 0,54 < z < 0,55. 

T h e o r e m 1. For any e > 0 and k (e), there exist a positive integer n( ^k) 
and a sequence A such that \A\=n, (1) holds and 

(11) k-K } n (log k)C8~e 

where 

(12) cs = <p(z). 

(The function cp(x) is decreasing for 1. Thus with respect to (10), 
we obtain by a simple computation that 

c8 = cp{z) > <p(0,55) > 0,121. 

Hence, Theorem 1 yields that for large k, (6) holds with cg=0,121 which satisfies 
(7). Thus in fact, (8) holds with c7=0,121 -0 ,087=0,034 which disproves (3).) 

3 
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P r o o f . Let & be a positive integer which is sufficiently large (in terms of b) 
and let m be any positive integer satisfying 

(13) m > k2. 

Let Dk denote the set of those integers d for which 

(14) l ^ d ^ k 
and 

(15) - v(d) > log log k 

hold. Let p be a prime number satisfying 

(16) p > k . 

Let Ek denote the set of those integers e which can be written in form pId where 
(17) 1 si oc =2 m 
and 
(18) d£Dk. 
Finally, let 

A=EkUBk. ' 

We are going to show that for large enough k, this sequence A satisfies (11). 
Obviously, 

(19) n = \A\ = \Ek\ + \Bk\ ^ mk + k ^2mk. 

Furthermore, by a theorem of P. ERDOS and M. K A C [2], we have 

\Dk\>jk. 

Thus (with respect to (16)) 

(20) n = \A\^\Ek\ = m'\Dk\>jmk. 

To estimate the number of the distinct products of form a t a j , we have to 
distinguish four cases. 

Case 1. Assume at first that at^Bk, aj £ Bk. Since Bk consists of k elements, 
the pair at, aj can be chosen in at most 

k2 < m < n 

ways (with respect to (13) and (20)). 

Case 2. Assume now that ai=p*d£Ek (where (14), (15) and (16) hold), 

(21). aj£Bk 

and 
(22) v(iiy) = 2 log log k. 
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Then 
( 2 3 ) A I D J ^ P ' D C I J . 

Let 711(x) denote the number of those integers u for which u^x and v(u)=i 
hold. By a theorem of Hardy and Ramanujan, for any OJ>0 there exists a constant 
c9=c9(co) such that for large x and l s / ' ^ c o l o g x , we have 

( 2 4 ) * ( L ° 8 L 0 G X ) I " 1 

log x (i— 1)! ' 

Choosing here oj = 1 and using Stirling's formula, we obtain that for k>~k2((o), 
the number of the integers cij satisfying (21) and (22) is at most 

(25) 2 
z^z log logk 

^ k (log log ky-1 
< 1 + 

lSiSzloglogfc logic ( ¿ - 1 ) ! 

j fc y qoglogfey* 1 0 " 0 ««- 1 ^ 
logfc i s z log logic ( [ z log log fc ] - l ) ! -

fc , , , (log log /c)[-''°si°g«a-i 
l + c 9 - z log log k -

1 + C; 

1 + C n 

logfc 6 & ([zlog logfc] —1)! 

fc (log log fc)[z log Iogfc] 

10 logfc ([z log log fc] — 1 )[Z 108 - !/2 e - [z log log it] - 1 

fc (log log fcp108108 ^ 
log fc (z log log fc)[z 108108 «•-'1/2 e - •2108108 * ^ 

fc 1 fc 
12 logfc (logfc) z l 0 8 z(loglogfc)-1 / 2(logfc)- ' (logfc)C8-£/3 

(where cs is defined by (12)) since — ¡ s increasing for 1 ^z ' ^ log log fc. 

By (14), (17) and (18), a and d can be chosen in at most m and k ways, respect-
ively. Thus the number of the products of form (23) is less than 

fc fc m • fc • 
(logfc)c»-£/3 (logfc)C8-£/2 

(with respect to (20)). 

Case 3. Assume that ai=pxd^Ek (where (14), (15) and (16) hold), 

(26) a^ Bk 

and 
(27) v{aj) > z log log fc. 
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Then 
(28) a,aj = (,p*d)aj = p^daj). 

By (14), (15), (18), (26) and (27), 

• daj^k-k = k2 

and 
v(daj) — v(d) + v(cij) > log log k + z log log k = ( l + z ) l o g ! o g k. 

Thus applying (24) with oj= 100, we obtain that for any 0<<5<z/2 and k>k3(5), 
and writing r = [ ( l +z—¿) log log k2], the number of the distinct products of 
form ddj is at most 
(29) 2 < 2 M k 2 ) = 

(1 + z) log log fc «= i (1 -{- z — 5) log log fc2 < i 

r«=i'S1001oglogfc2 100log logi:2-=i 
v k2 (log log fc2)1-1 , n n o x < 2 c 9 " i — T 2 n , +Jt(k2) < 

r < too log log fc2 l o g / C ( i — 1 ) ! 

k2 (log log fc2)r f l o g logfc 2 ) ' 
< c 

logfc rl 

fc2 (log log fc2/ 
log fc >•! 

fc2 (log logfc2 / 

J f f J s J s q W , . 
j=0 \ r J 

Mi-irhsi^-

where 

.ug n. , 
Cl5 logfc rl + j R ( f e ) 

100 log l o g x c j 

(30) 

Applying Stirling's formula, we obtain that for fc>fc4(<5), 

k2 (log logfc2)' 

c i6 

logfc r! 

k2 (log log k2f(1+Z~S) logfc2] 

log fc ( [ (1 +Z-<5) log log / c2])Kl + - - - ^ l o g l o g t 2 ] + l / 2 ( ? - [ C l + _--<5) log log fc2] 

k2 (log lOg fc2)[(1 + ̂ -<5)loslo8fc2j 
1 7 l o g k ( ( 1 + Z - 5 ) l o g l o g fc2) « 1 + = - « log logfc2] + — (1 + z - d ) log logfc 

fc2 1 
c 18 log fc ea+z~S) l 0 8 ( l + - - - « log log fc ( l o g l o g fc)l/2(log £ ) - ( 1 + = - « 

fc2 
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The function cp(x) is continuous at x= 1 +z. Thus if 8 is sufficiently small in terms 
of e then for k^k5(d)=k5(d(E))=k e(E), we obtain from (30) that 

(31) k2 (log log/c2)" fc2 . _ k2 

log k r! (log fc)"11+!)-!'3- (logfc)C8-e/3 

(since q>(l+z)=<p(z) = cs by the definition of z). 
Furthermore, P. ERDŐS proved in [1] (see formulae (5) and (6)) that for large x, 

(32) R(x) < 2 * 
(log x)2 ' 

(29), (31) and (32) yield that the number of the distinct products of form daj is 
at most 

k2 k2 k2 

( 3 3 ) ^ " Cl5 ( l o g k r " - s / 3 + 2 ~ ( h g k 2 ) r " C l 9 ( l o g / c ) — 

Finally, by (17), a in (28) can be chosen in m ways. Thus with respect to (20), we 
obtain that the number of the distinct products of form (28) is less than 

m • c19 -
fc2 

(logfc)c»-e/3 (log k)cs—E/2 

Case 4. Assume that ai=pxd1£Ek, aj =pfid2cEk where 

(34) 1 S a, P == m 
and 

(35) dlt d2£ Dk. 

Then the product a.o,- can be written in form 

(36) a t a j = (p* dx) (p" d2) =p'*fd1dt= p* d 

where by (34) and (35), 
(37) 2 ^ y ^ 2 m 
and 
(38) d = d^2 ^k-k = k2, v(d) = v ^ + v ^ > 2 log log k. 

By (37), y can be chosen in at most 2m — l < 2 w ways, while in view of (33), at 
most 

fc2 

2 2 7T,.(fc2) < C19 , , . y . - . / a 
2 log log ft-c/ (1 + 2) log log fc < i ( t og K) 

integers d satisfy (38). Thus the number of the distinct products «¡a,- of form (36) 
is less than 

k2 k 
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Summarizing the results obtained above, we get that for fc>fc7(e), 

g(A, n, k) < n + 3-n- (logfc^8-e/2 < (logfc)c8-e 

which completes the proof of Theorem 1. 

3. In this section, we will estimate F{n, k). 

T h e o r e m 2. There exist absolute constants c20, c21 such that for k>ka and 
n^k, . 

(39) n> exp (c20 j J ^ ) < F(n, k) < n* exp (c21 - J L - ) . 

P r o o f . First we prove the upper estimate. We will show at first that 

(40) F(k, k) = f{Bk ,k,k)^ exp (c22 . 

In case A=Bk={ 1, 2, . . . , k) (and n—k), all the products of form (2) are divisors 
of / : ! . Thus applying Legendre's formula and the prime number theorem (or a more 
elementary theorem), we obtain that 

F(k,k)^d(k\)= tfil+2° [ A l ) ^ 

pSk V a = l LP I) 

psk v X=1 IP i) psk Vot=l p > pmk p—i psk P 
rlogfc~| rlog In Llog 2 J Ab Llog 2 J 1J = n n n n 4 / c . f ^ j = l k k P j=1 k k K 

2J r 2J-1 2J * 2j-l 
rlogfc-I I" login 
Llog 2J n(—) ( /Llog2j k \ 
n (4-2;) exp c23 2 ^ r - 1 — - l o g 4 - 2 ' U 

I 2 J) 

r l logfc"| rlog 
f /L2k,g2J k 1 L l^J k 

< expfc24 2 — ] = - J + Z — J < 
A V 7=1 2J log j/fe , 2J 

J L2 log2J 

which proves (40). 

Assume now that Let p denote a prime number satisfying p>k and let 

A = {1,2, ...,k,p,p\ ...,pn~k}. 
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For this sequence A, \A\=n, and the products (2) can be written in form 

(41) ]J / 7 " p i ' j = a-f 
¡=i j=i 

where £¡=0 or 1 and <5j=0 or 1. Here a may assume F(k,k) different values, 
and obviously, /? may assume any integer value (independently of a) from the 
interval 

Q g , S 2 l = ^-k)(n-k+l) 
j=i 

(n _ /A (n — k + 1) 
of length - . Furthermore, the prime factors of a are less than 

p, thus for different pairs a, /?, we obtain different products of form (41). Thus 
with respect to (40), 

(n-k)(n-k+1) F(n, k) ^ f(A, n, k) = F(k, k) • 
2 

e x p ( c - i 3 | l ) - T < n 2 e x p ( c - i ^ f c ) logfe; 2 " ~ " T 2 2 l o g ; 

which completes the proof of the second inequality in (39). 

Now we are going to prove that the first inequality in (39) holds with c20 = ^ , 
in other words,. 

(42) 

Let us assume at first that 

n ~ e x p ( y k^nr)' logi 

Then for large k, the right hand side of (42): 

( I k \ ( 2 k I k ) 
" e X P 192 T ^ J = C X P U IoiI+92 Tog2!; ^ 

(43) 
(2 k _L k ] _ ( 6 8 Ic ) 

" C X P 13 log k+ 100 log k) - C X P 1100 logX; • 

On the other hand, let A denote any sequence satisfying (1). Let us form all 
those products of form (2) for which 

0 or 1 if a( is a prime numbes and at ^ k, 
otherwise. 

By (1), A contains all the n(k) prime numbers p^k, thus the number of these 
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products is 2~(k). Hence, by the prime number theorem, we have 

(44) ( F ( n > k ) k ) ~ = e x p ( l o g 2 n ( f c ) ) " 

(43) and (44) yield (42) in this case. 
Let us assume now that 

(45) " > e X p ( j i ^ ) -
Let 

1 k 
7 log2 k 

Denote the itb prime number by pt ( / ; 1 =2 ,p 2 =3 , ...) and let qt=pi+1 for 
i = l , 2, . . . , / , Q={q1,qi, ...,qt}, R= {ft , 2 f t , q2, 2q2, ..., q,, 2q,}. Obviously, (45) 
implies that Rc{aly a2, ..., a(n/2]). Let us define the sequence £ = {eL, e2, ..., em} by 

{ax.fla,..., aMa} = EUR, EC\R = Q. 

For i = l , 2 , . . . , +1 , we denote the interval [ « - 2 [ « / 4 ] - l + 2s, n] by /s, 

and let Fs denote the set of those products of form (2) for which 

£, = 0 if R, £ ei = 2> 

£. = 0 if [ y ] < i 3= n-2[n/4]-2 + 2s, 
and 

£, = 1 if i'€ Ts (i.e. n - 2 [ n / 4 ] - l + 2 s i =a n). 

In other words, Fs denotes the set of those numbers which can be written in form 

( II 
nil, 

where 1 ^i, j=m, i^j. Let /"denote the set of those numbers which can be written 
in form 

e tej where 1 ^ i, j ^ m, i ^ j. 
Then obviously, 
(46) = |F|, 
independently of s. 
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Furthermore, for s = l , 2, ..., +1, let Gs denote the set of those products 

of form (2) for which 
8f = 0 or 1 if a£R, 2 et= 1, 

i'.at(.B 

£; = 0 if 

and 

[ j ] < i ^ n - 2 [ « / 4 ] - 2 + 2 s 

£ ¡ = 1 if i£ls (i .e. n - 2 [ n / 4 ] - l + 2 s i == n ) . 

In other words, Gs denotes the set of those numbers which can be written in form 

IJqy IJ(2q,r 
fih J=i '=i 

(where Ej=0 or 1, <pt=0 or 1). Then |(7J is equal to the number of the products 
of form 

(47) et [[ q)i n(2qty = 2"ei JJ qsj> 
j=i r=i j=i 

where 
(48) Sj = 0, 1 or 2 
and 
(49) 0 s a i l . 

I 
Let G denote the set of those numbers which can be written in form 

ei n $ 
j=i 

where (48) holds. Obviously, for any product of this form, there exist exponents 
Ej, q>, and a, satisfying (47), (49), e y =0 or 1 and q>,=0 or 1. A product of form 
(47) can be obtained from at most / + 1 distinct elements of G; namely, by (49), 
a may assume only at most / + 1 distinct values. Thus 

(50) |Gj ^ J f L 
(again, independently of s). 

We are going to show that for s ^ t , 

(51) (F sUG s )n(F tUC,) = 0. 

In fact, assume that s > t . Then for y£F,UGt, 
y^ II a* = II an' II an — ^ fiilc n-2[n/4]-l+2fS/i<n-2[il/4]-l + 2s nil, 

= a„-2[„/4i-i + 2<«„-2[„/4] + 2I • IJ > (aw2])2 U an (for y 6 F,U Gt). 
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On the other hand, for z£Fs, 

(53) 2 = e,ej IJ an = («h/2])2 77 a„ (for z€ Fs). 

Finally, i fu€G ( , then we have 

(54) ' . S e, n IJ2g,- II a^ a [n /2] • 2' ( U q,) • ft a,. 
j=l t = l V=1 ' f i l , 

By the prime number theorem, 

'og [.¿Pi\ ~xlogx. 

Thus if k (and consequently /) are sufficiently large then with respect to (45) we have 

2' [ n = 2' [ n p)2- 2' (exp (/ +1) log (/ + 1 ) } ) < 

^ e x p ( t Wk'log 2 ) e x p ( 4 ' f l ) ' ° 8 ( 4 Wk + 1)} " 

< e X p ( l ^ k ) e X p ( l l l ^ I l 0 g f c ) = 

( k 5 k \ 1 C 5 k \ 1 i n l 
= e x p i W k + T6 i^fcJ T e x p i l 5 T3pJ ^ y n ^ LTJ -

Putting this into (54), we obtain that 

(55) v ^ (tf[„/2])2 / 7 (for Gs); 

(52), (53) and (55) yield (51). 
By (46), (50) and (51), we have 

[n/4]+l 
U (FSUGS) j=I 

[n/4]+l 

5=1 
(56) I (A, n, k) 

[n/4] + l ["/4]+l f I/7I I 
* 2 max {|F,|, |GS|} £ 2 max { 1 * 1 , 7 ^ } = 

= ( f W / 4 ] + l ) m a x { m J £ L } > l - ^ - L - m a x d F l , |G|}. 

. Thus to complete the proof of Theorem 2, we need a lower estimate for 
max {|.F|, |G|}. In the next section, we will prove the following lemma (using the 
same method as in [4]): 

Lemma 1. Let Q={qi,q2, •••,q;} be any set consisting of I (distinct) prime 
numbers. Let E= {el5 e2, ..., em) (where et < <?2 <... < em) be any sequence of positive 



On products of integers. II .255 

integers. Let F and G denote the sets consisting of those integers which can be re-
spectively written in form 

etej (1 S i, j =s m, i ^ j) and et ¡J qSjJ (<5, = 0, 1 or 2). 
y=i 

Then for 

(57) / > / „ , 

we have 

(58) max{|F|, | G | } > m e x p [ A ; J . 

Let us suppose now that Lemma 1 has been proved. Then the proof of Theorem 
2 can be completed in the following way: 

For large k, (57) holds by the definition of I. Thus we may apply Lemma 1. 
We obtain that (58) holds. Putting this into (56), we get that for large k and any 
sequence A (satisfying (1) and \A\=n), 

(59) f ( A , n , k ) > j j ~ m c x p / ) . 

With respect to (45), 

m = = [ n m - l R l = [ „ / 2 1 - 2 / = > 

n 2 k n l k . n n > y _ T I o g 2 I > y " " . T T ^ I > y _ o g n > T' 
Thus we obtain from (59) that for large k, 

f(4, n, k) > j e x P ( A / ) - ^ e x p ^ / j = 

= ^ e x p { l l [ T I ^ ] } " 2 e x p ( i i ^ l ) 
which proves (42) and thus also Theorem 2. 

4. To complete the proof of Theorem 2, we still have to give a 

P r o o f of l e m m a 1. Let us write every e £ E in form 

(60) e = (rs^iq^qi-... q f ) = bd 

where r, s are positive integers, e ,=0 or 1 (for / = 1 , 2 , . . . , / ) , plr implies that 
p$Q, pjs implies that p£Q (also / '=1 and 5 = 1 may occur) and b = rs2, 
d=ql1ql2...qfl. Let us denote the occuring values of b by b1, b.2, ..., bz (b^bj 
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for i ^ j ) , let B= {bi, b.,,..., b,} and let us denote the set of those numbers e£E 
for which b=bi in (60) (for fixed i, l ^ i ' ^ z ) , by E(b,). Then obviously, 

E = U £(6.) and £(£>,) fl £(*>,) = 0 for i * j, 
/=1 

thus 

(61) m = \E\ = Z\E(bi)\. 
;=i 

For b£B, let F(b) denote the set of those numbers which can be written in 
form 

exey where ex£E(b), ev€ E(b), ex ^ ey. 

Furthermore, for fixed b£B and for each ex=bq^q^...q'', let us form all the 
products of form 

(62) ex(ql>qi*... qj>) = (bq?q?... cfi>){q? q? ... q}>) 

where 
r 0 or 1 if £; = 1 

= 11 or 2 if £( = 0 
and let us denote the set of these products by G(b). 

Obviously, 

(63) £ 3 U' £(6,.) 
¡=i 

and 

(64) G D U G(bd-
¡=1 

We are going to show that 

(65) £(b,) fl F(bj) = 0 for i ^ j 
and 

(66) G(bdC\G(bj) = 0 for is* j. 

In fact, let us assume that 

(67) bt = r;s? * bj = rjs2j, 

e* = b-, qf... qf € £(6,), e„ = b, qqV... qf £ £(fc;), 

e„ = bj qf>q?... q f t E(b}) and eu = bj q{> qt-. qf' € E(bj). 
Then 
(68) e z = rfsf + + ... qf+<"' (6 F(bJ) 
and 
(69) eueu=r]S*Jq°1i+l>>qi>+ll*...qf'+l>' (g F(bj)). 
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If r^rj then there exists a prime power p' such that pi Q and pytexey but p'\exey, 
or conversely; this implies that exey^euev. If r—rj then by (67), must 
hold. Thus there exists a prime power qt" such that q,£Q and qf/si but qtfsj (or 
conversely). Then the exponent of q, is at least 4n+si+<pi^4n in the canonical 
form of exey and at most 4(ji — l)+a,+0^4(1 — 2 in the canonical form of euev, 
thus exey9£euev holds also in this case, which proves (65). 

In order to prove (66), note that we may write the product (62) in form 

r(s2q1q2 ... qdqpqZ2... qf> where a ; = 0 or 1 for i = 1, 2, . . . , I. 

Obviously, a number of this form uniquely determines each of the factors r, s, 
q"l,...,q"', which proves (66). 

(63), (64), (65) and (66) imply that 

(70) 

= max 

max {|n \G\} ^ max | | U w l , U G(*J} = 
u ¡=i I ¡=x I) 

{ 2 № 1 , 2 S \ f i \F(bd\+2 = 
1-1=1 i= i > v = i ¡=1 > 

= \ 2 ( № 1 + \G(bd\) ^ 4 i max {|F(ft,.)|, \G(bd\). 
¡ = 1 ¡ = 1 

Thus in order to prove (58), it suffices to show that for b£B, max {|.F(6)I> \G(b)\} 
is large. 

Let us assume that b£B. We have to distinguish two cases. 

Case 1: 

(71) ( 0 < ) | £ ( & ) | S 2 ^ _ 1 : 
We are going to show that in this case |G(6)| is large (in terms of |ii(6)|). Let us 
fix an element ex of E(b) and for this ex, form all the products of form (62). Obviously, 
the factor ql^ql*•••qj1 can be chosen in 2' ways thus the number of these products 
is 21. Hence, with respect to (71), 

(72) |G(6)| 2' = 2^'+1\E(b)\. 

Ai-i 

Case 2: 

(73) \E(b)\ =» 2*' 

In this case, we shall need the following lemma: 

L e m m a 2. Let o be any real number, satisfying 

(74) 0 < q < j 
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(75) f(e) = - e i o g e - ( i - £ ) i o g ( i - e ) - [ i — i o g 2 < o, 

and let I be any integer, sufficiently large depending on Q: 

(76) I > h(e). 
P u t - 1 , - 1 

Let S denote the set of the 2' I-tuples (jix, ..., pt), satisfying ph = 0 or 1 / o r 
/ 2 = 1 , 2 , . . . , / . Z.e/ be any subset of S for which 

(77) |i?| > V ( 0 2 ' . 

Then the number of the distinct sums of form 

(78) 0ii + v l5 - - •, A«/ + vj) = {px, ...,'p,) + (yi, v,), 

where (ji1, ...,pi)£R and (v1? . . . , vt)£R, is greater than (<p(/))-1 |/?|. 

This lemma is identical with Lemma 2 in [4]. 

Using Lemma 2, we are going to show that (73) implies that \F(b)\ is large. 

Let us choose Q = in Lemma 2. Then (74) holds trivially, and a simple 

computation shows that 
f [ j ) = | ( l o g 8 - l o g 9 ) < 0 , 

thus e satisfies also (75). Furthermore, we choose R as the set of those /-tuples 
(ex, e 2 , . . . , e,) (where e ( = 0 or 1) for which bql1qli...qt

l
l£E(b) holds. Then by 

(73), also (77) holds: 

|J?| = \E(b)\ > 1 - 1 . 2 ' = <p(l)2'. 

Thus we may apply Lemma 2. We obtain that the number of the distinct sums of 
form (78) (where . . . , and (v l5 . . . , vt)£R) is greater than (cp(/))_1[/?|. 
But distinct sums of form (78) determine distinct products of form ' 

exe, = № . . . qt')(bqV... qj') = b~q 

and with at most \E(b)\ exception, also ex?±ey holds. Thus 

(79) |F(6)| > (<p(Q) - 1 | ^H£( i>) l = ( 2 ^ ' - 1 ) - 1 | £ ( f > ) | - | £ ( t ) | = 

= l)|£(fa)| > \E(b)\. 

(72) and (79) yield that for any b£B, 



On products of integers. II .259 

Putting this into (70), we obtain (with respect to (61)) that 

max (in ¿ m a x {1^)1, |G(bf)|} > 

> 1 2 = I | E ( M = M 2 * L _ 1 = 
z i = 1 1 = 1 

= m exp (log 2 ( { / - 1 ) } > m exp { ( J ^ i - /} > m exp I) 

which completes the proof of Lemma 1. 
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