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Dedicated to Professor Béla Szőkefalvi-Nagy on his 65th birthday 

1. Introduction 

By the classical theorem proved by A. M. LJAPUNOV [1] in 1892 the zero solu-
tion of the system x=f(t,x) (iSO, x£R"; f ( t , 0)=0) is asymptotically stable 
provided that there exists a positive definite scalar function V(t, x) tending to zero 
uniformly in i£[0, °o) as x—0 and having a negative definite derivative V(t, x) 
with respect to the system. Since the early days of stability theory numerous authors 
have dealt with weakening the conditions of this theorem. There are two main 
types of attempts. 

In theorems belonging to the first type special assumptions are required of 
the vector field / ( t , x) independently of the Ljapunov function V(t, x). The first 
theorem of this type is due to M. MARACKOV [2], who assumed f ( t , x) to be 
bounded for all t when x belongs to an arbitrary compact set instead of the con-
dition of V(t,x) tending to 0, uniformly with respect to t, as x—0. Considering 
autonomous systems E . A. BARBASIN and N . N . KRASOVSKII [3] generalized Ljapunov's 
theorem to the case when the function V(t, x) is not negative definite. By the method 
of several Ljapunov functions V . M . MATROSOV [4] extended this result to those 
non-autonomous systems whose right-hand side f(t, x) is bounded for all t when 
x belongs to an arbitrary compact set. For the systems of the same kind 
T. YOSHIZAWA [5] and J . P . LASALLE [6] gave sufficient conditions for the attractiv-
ity of closed sets. A given set HaR" is called attractive if every solution starting 
from some neighbourhood of H tends to H as In 1976 LaSalle extended 
his theorem by weakening the condition of boundedness of f(t,x) [7, Th. 1]. 

Results of the second type are characterized by the fact that the direct con-
ditions on the right-hand side f ( t , x) are omitted but certain relations between 
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the function V(t, x) and the norm \\f(t, JC)|| of the right-hand side are required. 
The most important theorems of this type are due to T. A . B U R T O N [8] and J . R . 

H A D D O C K [ 9 ] . 

The purpose of this paper is to improve some results of both types in the 
following two directions. On the one hand, we give the role of / ( / , x) to the deriva-
tive W{t, x) of a function W: R"—Rk with respect to the system. On the other hand, 
in the theorems of the first type we refine the estimates on V(t, x) so that we should 
be able to take into account the finer structure of the "dangerous set" defined by 
V(t, x ) = 0 , which depends on the time t in the non-autonomous case. At the end 
of our paper we give examples to illustrate how our results relate to the above 
mentioned ones, and applications are given to the study of the asymptotic behaviour 
of solutions of non-linear second order differential equations. 

2. Notations and definitions 

The basic differential equation is 

(2.1) x=f(t,x), 

where = and JC belongs to the «-dimensional Euclidean space R". The 
function / is defined and continuous on the set r*=R+xG*; G* is an open set 
in Rn. 

Denote by (x,y), ||JC|| and d(x,y) the scalar product, norm and distance in R", 
n 

respectively; namely (x, y)= 2 = (x , x)m and d(x, _y) = ||x—_y||. Let 
¡=i 

R"m denote the one-point compactification of R" and define d(x, o=)=l/||x||. For 
a set H<zR" we denote the complement of H by Hc, the closure of H by H, and 
the set H U in R1 by / / „ . For a set KaRn

m, define d(x, K)=inf{d(x, y) \y£K}. 
If d(u(t),K)~*0 as i—(u—0 for a continuous function u: [0, a))-*Rn, we shall 
say «(f)— K as r—co—0. 

For HczR", £ > 0 the set S(H, s) = {xeRn: d(x, H)<e) is called the ^neigh-
bourhood of H. We shall need another neighbourhood system. Let a set GczR" 
and a continuous function W:G—Rk be given. If p^G and we shall use 
the notation S*(p, g)= W~x\S(W(p), g)], where W~l[H] denotes the inverse 
image of H<z.Rk with respect to W. 

Let x(t) be a solution of (2.1) defined on a maximal right interval [i„, co) 
( f 0 « a g t » ) . A point p is a positive limit point of x(t) if there exists a sequence 
{/m} such that fm—co—0 and x(tm)-^p as w — The positive limit set Q of x(t) 
is the set of all its positive limit points. If x(t) is bounded and QaG*, then ca=°°, 
Q is nonempty, compact, connected and is the smallest closed set that x(t) approaches 
as / —oo. 
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Denote by C^DiR") the family of all functions W: D(<zRm)^Rk whose 
components have continuous first partial derivatives. For a function u£C1(R+XR"; R) 
define the function 

. •. \ du(t, x) du(t, x) 
u ( ! > x ) = £ — t o T - x ) + — d T ~ 

which is said to be the derivative of u with respect to equation (2.1). The derivative 
of a vector-function U£Cl(R+XR"-, R*) with respect to (2.1) is the vector of the 
derivatives of the components of U with respect to (2.1). 

System (2.1) is non-autonomous, so its solutions x(t) can be represented by 
the graph (t, x(t)) in Rn+1. A solution x(t) is said to be in T c T * if (t, x(t))£T 
for all t£[t0,co). For a given set TczT* we shall use the notations 

G(t) = {x:(t,x)€r), G = U G ( i ) . 
ISO 

Denote by [a]+ and [a]_ the positive and negative part of the real number a, 
respectively. 

D e f i n i t i o n 2.1. Let T be a subset of T*. We say that VeC1^; R) is a Ljapunov 
function on r if there exists a continuous function r\: R+—R+ such that 

fr,(t)dt^<~, [V{t,x)]+^n(t) ((t,x)er). 
0 

Let A be a property concerning the functions V and V. "Property A is satisfied 
on the set tesT, xeH(czRny' if it is satisfied on the subset of [T, where the 
Ljapunov function is defined, i.e. on the set {(t, x): t^T, x£Hr\G(t)}. 

i 
3. Theorems and proofs 

In this section we study attractivity conditions of a given set with respect to 
system (2.1). Namely, we seek conditions assuring that the set contains the positive 
limit sets of solutions of (2.1). 

Assume that we have a Ljapunov function V on R and an auxiliary function 
WiC1(Gf)G*; Rk). 

L e m m a 3.1. Let x(t) be a solution with maximal right-interval of definition 
[t0,w), and let MczG be a set such that x(t)£M for /6[i0 , co). 

Suppose that for a point paGOG* there exist S, 0 and T such that 

(i) V(t, x) is bounded from below and 
(3.1) (ii) V(t,x)^S\\W(t,x)\\+tl(t) 

on the set t^T,X^S*(p, Q)P\M. 
Then either a) p§Q or b) a)=oo and i2flG+c: W''[W(p)]. 

i 
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P r o o f . Suppose the contrary of a), i.e. p£Q. Since p£G* and G* is open, 
according to the theorem of continuation of solutions co = °° holds. Suppose b) 
is false, too. Then there exist q£QC\G* and a ( 0 ^ a ^ g H k ) such that 

S*(p, i~k(j). Because of p, Q there exist a natural number / ( l s / s f e ) and 
two sequences {t'm}, {t'^} with the following properties: 

(3.2) i i m / ; = o o ; m — 

(3.3) \\w(p)-w(x(t))\\ < oYk O; 

(3.4) ' Hx(0)-Wl{x(0)\=^; (m = 1 ,2, . . . ) . 

By assumption (ii), for the function v(t)=V(t, x(t)) the estimation 

(3.5) v ( Q - v ( t ' J * - 8 j + j m r i ( t ) d t (m = 1 ,2 , . . . ) 
'm 

is satisfied, from which it follows that 

a 'm 
v(Q^v(tQ-mS y + f ti(t)dt~-°o (m 

z T 

and this contradicts assumption (i). 
The lemma is pro.ved. 

R e m a r k 3.1. If either the function W is scalar ( k = 1) or assumptions (i)—(ii) 
are required on the set t=T, x£ M, then assumption (ii) may be required of the 
function [W]+ instead of W. In the first case the statement is unchanged; in the 
second case it can be stated that either a) Qf)G* is empty or b) cu= and there 
exists a peMnG* such that QC\G*czW-1[W(p)\. 

Indeed, if either the function W is scalar or property (3.3) is not required, then 
we may also assume property (3.4) is true without the absolute value sign. Then 
for deduction of inequality (3.5) it is sufficient to require assumption (ii) of the 
function [W]+ instead of W. 

T h e o r e m 3.1. Let the sets HcR", MczG be given and suppose that for any 
p£Hc there exist £>(/?) >0, <5(/?)>0 and T(p) such that assumptions (/)—(ii) in 
Lemma 3.1 are satisfied on the set t^T(p), x£S*(p, g(p))C\M. 

1) If x(t) is a solution and x(t)£M for t£[t0,co), then either a) QC\G*(^H 
or b) co = °° and there exists a d£Rk such that the set W~l[d]PiHc is non-empty 
and i 2HG*c W~x[d]. 

2) If also assumption G c G * is satisfied, then either a) x(t) — Hm as t — 
—03 — 0 or b) co=°o and there exists a d£Rk such that the set W~l[d]C\Hc is 
non-empty and x(t)-~ W/_1[i/]00 as t-*-<*>. 
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In the case of a scalar function W (k—\) the statements remain true after 
replacing function W with [M/]+ in assumption (3.1). 

P r o o f . 1) If the set £2f)G* is empty, then a) is true. Suppose that it is not 
empty, and there exists a pdQC\G* such that p£Hc. Then, by Lemma 3.1 (and 
Remark 3.1) b) is true, namely d=W(p). 

2) The statements follow from those under 1) and from the fact that QaG*. 

T h e o r e m 3.2. Let the set McG be given, and suppose that there exist <5>0, 
7^0 such that 

(i) V(t, x) is bounded from below and 

(ii) V(t, x)^-5\\[W(t,x)U\\+r1(t) 

on the set t^T, x£M. 
If x(t) is any solution and x(t)£M for i€[i0, then either a) the set QC\G* 

jS empty or b) cu=°°, and there exists a d£Rk such that QC\G*cz W-^d]. 

P r o o f . Applying Lemma 3.1 and Remark 3.1, the theorem can be proved 
in the same manner as Th. 3.1. 

Our theorems can be used not only for studying stability properties of sets 
but also for establishing various kinds of asymptotic properties of solutions. For 
example, let us take G*=R", H={0}, W(x) = (x,x); furthermore, let V(t,x) be 
a Ljapunov function on the set R+XR" bounded from below for all t£R+ when 
x belongs to an arbitrary compact set: Suppose that for any point p^O there exist 
¿ > 0 , ¡?>0, T such that 

?(t,x)*-5[(f(t,x),x)\H-)+ri(t) 
for t ^ T , |||x|| —1|/>|||<£>, where the symbol [ • ] + ( _ ) means that either the pos-
itive part [•]+ or the negative part [•]_ is considered for all (i, x). By Th. 3.1 these 
assumptions imply that for any solution jc(/) either a) the function | |x( /) l l has a 
finite limit as f — <» or b) x(i) —°° as t-+a>—0. 

From Th. 3.1 by the choice of W(x)=x an important result mentioned in 
the Introduction follows. 

C o r o l l a r y 3 . 1 . (J . HADDOCK [9, Th. 3]). Let G* = R", HaR" be a closed set, 
and V(t, x) be a Ljapunov function on R+XR" bounded from below for all t£R+ 

when x belongs to an arbitrary compact set. Suppose that for any e > 0 and any 
compact set KczR" there exist <5(e, K)>0, T(s,K) such that 

(3.6) , V(t,x)^-5\\f(t,x)\\+r1(t) 
on the set t^T, x£KC\Sc(H, e). 

If x(t) is any solution, then either a) xit)-*!!^ as t-oj—Q or b) x(t)—p 
as t — f o r some p£Hc. 

5 
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In certain cases the fact that assumption (3.6) contains the non-monotonic 
function || • || can cause difficulties. This can be avoided by means of the last state-
ment of Th. 3.1 in the following way: Suppose that V(t, x) is a Ljapunov function 
on R+XRn, and for any e > 0 and any C > 0 there exist <5(e, C ) > 0 and T(e, C) 
such that V(t, JC) is bounded from below and 

(3.7) V(t,x)S-5[fi(t,x)]n.)+r}(t) (¿ = 1 ,2 , . . . ) 

on the set T^T, X£ SC(H, e)fl Then the statement of Cor. 3.1 
is true. If (3.7) is satisfied only for a fixed i, then instead of b) it can be stated only 
* ; ( 0 - * P t a s I - o o ( see T h . 3 .1 , W(x)= + ( - ) J C , ) . 

Having certain "a priori" (independent of the function V(t, x)) informations 
about the function W(t, JC), we can replace assumption (ii) in Lemma 3.1 with another 
one to improve the previous theorems in some respects. 

D e f i n i t i o n 3.1. A measurable function cp:R+—R is said to be integrally 

positive (see [4], [11]) if f <p(t)dt=<*> holds on every set 1= Q [<xm, /?m] such 
j m = l 

that 

«m < ftn < am+i, 0 m - a m S < 5 > O (m = 1, 2, ...). 

A function q>(t) is said to be integrally negative if —<p(t) is integrally positive. 
L e m m a 3.2. Let x(t) be a solution and let M<zG be an arcwise connected 

set such that x(t)£M for all i€[f0, a»)-
Suppose that for a point p£GClG* there exist £?>0 and T such that for any 

continuous function u:[T, ^)—L = S*(P, Q)C\M the following conditions are 
satisfied: 

t 
(i) J\V(s,u(s))ds is uniformly continuous, 

T 

(ii) V(t, u(t)) is integrally negative, and 

(iii) V(t, u(t)) is bounded from below on the interval [T, 

Then p$Q. 

L e m m a 3.3. The statement of Lemma 3.2 remains true if conditions (i)-^(ii) 
are replaced with the following: for any continuous function u:[T, 

(i'J \\f \W(t,u(t))\dt\\^~, 
T 
oo 

(ii'J f V(t,u(t))dt=-~. 
T 

I 

\ 
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P r o o f of Lemmas 3.2 and 3.3. Assume the contrary, i.e. p£Q. Then co=°°, 
and there exists a sequence {?m} such that tm—°° and x(tm)—p as m — O n 
the other hand, however large the time T* may be, the set S*(p, q) must not con-
tain the point x(t) for all t^T* because of assumptions (ii) ((ii'), respectively) 
and (iii). Consequently, in the same manner as in the proof of Lemma 3.1, there 
are <7>0, 7 (l^lmk) and sequences {t'm}, with properties (3.2)—(3.4). Then 
we have 

<m 
(3.8) || f W(t, x(t))dt\\ 3 — (m = 1 ,2 , . . . ) . 

'm 

This contradicts (i'); therefore Lemma 3.3 is proved. 
To prove Lemma 3.2 we show that (3.8) contradicts assumptions (i)—(iii), 

too. Indeed, (3.8) and (i) imply that t"m — t'm^6 for all m with some ¿ > 0 . The 
function V(t, x(t)) is integrally negative, consequently 

t'i m * 

V{x(Q) ^ const. + 2 f y{t, x(t)) dt^-oo (m — 

which contradicts the boundedness f rom below of the function V(t, x(t)). 
The proof of both lemmas is complete. 

R e m a r k 3.2. If the function J^ is scalar (k = 1) then assumption (i) (assumption 
(i'), respectively) may be required of the function [H /]+ instead of W (\W\, respec-
tively); the statements remain true. 

Now suppose that for the derivative of the Ljapunov function V an inequality 

(3.9) / V(t,x) s <p(t)U(x)+ti(t) ((t,x)er) 

holds with continuous functions <p: R+^R+, U:GC\G*-^R_, t]:R+-*R+ (the 
function r¡ is integrable on [0,°°) by Def. 2.1). Denote by F the so called 
"dangerous set": 

F = {*(E G Pi G*: U(x) = 0}, 

which is closed with respect to G*. 

T h e o r e m 3.3. Let M c G be an arcwise connected set, and suppose that for 
any p£Fc there exist g(p)>0, T(p) such that: 

(i) sup{t / (x) : x£L(p) = S*(p, Q)(~)M}< 0; 

(ii) <p(t) is integrally positive; 
moreover, for any continuous function u: \T{p), £(/>) 

t 
(iii) J u(s))ds is uniformly continuous, and 
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(iv) V(t, u(t)) is bounded from below 
on the interval \T(j>), <=°). 

If x(t) is any solution and x(t)£M (i0ii<co), then QC\G*czF. 
If also assumption GczG* is satisfied, then x(t)—F„ as t-~<o—0. 

T h e o r e m 3.4. The statements of Th. 3.3 remain true if assumptions (ii)—(iii) 
are replaced with the following ones: 

oo 
(ii') f <p(t)dt=c°; 

o 

(iW) ||/ \w(t, u(o)|^|| <». 
T 

P r o o f of Theorems 3.3 and 3.4. Suppose the contrary, i.e. the set i2 f lG* 
contains a point p not belonging to the set F. Then, by assumptions, there are 
Q(p)>0, <5(/>)>0, T(p) such that inequality 

V(t, x) S - d c p ( t ) + r , ( t ) (f ^ T(p), x€ L(p)) 

holds. Hence, using Lemma 3.2 (and Lemma 3.3, respectively) we get p<$ Q, which 
contradicts our earlier assumption on p. 

GczG* implies inclusion QczG*. Consequently we have Q c F , so x(t)—Fm 

as /—co—0. 
The proof is complete. 

R e m a r k 3.3. In case of scalar function W(k=1) the statements of Theorems 
3.3 and 3.4 remain true after replacing function W (function \W\, respectively) 
with [vV]+ in assumption (iii) (assumption (iii'), respectively). 

For example, by the choice W(x)=(x, x), from Th. 3.3 we get the following: 
Suppose V(t,x) is a Ljapunov function on R+XR" bounded from below for all 
t£R+ when x belongs to an arbitrary compact set. Further, suppose there exist 
continuous functions q>: R+— R+, a: R+—R+ such that a (0)=0 , a(r)>0 for 
r > 0 ; cp is integrally positive, and 

V(t, x) =5 - p ( 0 f l ( M ) ((', x)d r = R+XRn). 

If for any rur2 ( O ^ r j ^ r a ) and for any continuous function u: [T, — 
t 

-+{xiRn: r^Hxl l the function f [(/(5, u(sj), M(j))]+(_)ife is uniformly con-
0 

tinuous on [0, <=0), then for any solution x(t) either x(i)—0 or ;t(/) —00 as 
/ - a ) - 0 . 

Similarly to the previous ones, Th. 3.3 yields an important result when 
W(x)=x. 
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C o r o l l a r y 3.2. Suppose the estimation (3.9) is satisfied with an integrally pos-
itive function (p. Further suppose that for any compact set KczR" and any continuous 

t •• ', ! ' 
function u.\T, K the function J f(s,u(s))ds is uniformly continuous and 

V(t, u(t)) is bounded from below on the interval [T, Then for any solution the 
inclusion QC\G*czF holds. 

From the point of view of applications the most important case is when the func-
tion V is differentiable and / i s continuous, and this corollary is an improvement of 
the LASALLE theorem [7, Th. 1], which can be obtained from it by setting <p(t) = 1. 
It will be shown by examples taken from the theory of nonlinear oscillations that 
even in simple cases it is necessary to introduce the function q> into estimation (3.9). 

R e m a r k 3.4. Associate with the functions V and W the set ¿FczR" defined 
as follows: iff there exists a sequence (tm, xm) such that fV(xm)— (V(x) 
and V(tm, xm) — ri(t)— 0 as m-~Similarly as in Th. 3.3,. from Lemma 3.2 we 
can derive a statement assuring the inclusion QC\G*<z&r for any solution of (2.1). 
In this way it can be generalized a result given by N. ONUCHIC et'ail. [13, Th. 1], 
who introduced the set 3F in case of W(x)=x, ri(t)=0. Even in this special case, 
obviously, there are functions f V, <p and U such that $F~)F, and what is more 
the set is too large to obtain any information about the place of Q in R" by the 
inclusion i 2 f l G * c : # ' (e.g. V(t, X) = sin21 • U(JC)). This fact motivates estima-
tion (3.9). Moreover, if the functions <p and U are chosen in (3.9) "sufficiently well" 
and cp is bounded, then SFziF. 

R e m a r k 3.5. The key assumption in Th. 3.3 is (iii), which assures the point 
x(t) not to go away in the same distance from the attractor F infinitely many times 
within a shorter and shorter time. Even in the special case of W(x)=x, the uniform 

t 
continuity of the function y"sup {| | /(s, x||: x£S(p, Q)C\M}ds on |T, oo) is often 

T 
checked instead of assumption (iii). Before LaSalle's paper [7], in [12] the author 
used already an assumption equivalent to this one to assure the above mentioned 
property of the solutions. 

4. Applications and examples 

I. Let us consider the non-linear differential equation of second order 

(4.1) (p№)- + q ( t ) f ( x ) = 0 (x£R), 

where the functions p,q:R+-*R+ are continuously differentiable and : p(t)^Q, 
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4 0 ) = 0 (t£R+); the function f:R—R is continuous and (*£/?) ; 

o 

Apply Th. 3.2 to the study of asymptotic behaviour of the coordinate x and 
the momentum y=p(t)x. In terms of these Hamiltonian variables equation (4.1) 
has the form 

(4.1') x = (l/p(t))y, y = — q(t)f(x). 

Let us now consider functions 

V(t, x, y) = _ L - / + 2?(0F(x) , W{x,y) = xy, 

whose derivatives by virtue of (4.1') are 

V=-j^.y* + 2q(t)F(x), W = j^y*-q{t)xf{x). 

On the one hand, if there exist y ^ O , T t £R+ such that 

(4.2) P ( t ) l p ( t ) ^ y i > 0 ( i S T , ) , 

then. 

On the other hand, if there exist y 2 , y 3 >0 and T2£R such that 

(4.3) ( i S J 2 ) ; y3F(x) > xf(x) (x€ R), 

then 

\V^2q(t)F(x) ^-^.y3q{t)F(x) [-W]+ 

for ts=T2; x, y£R. 
Applying Th. 3.2 with M=G=R2 and with the functions V, W a n d V, - W, 

respectively, we get: for 
any solution of (4.1') either |*(0l~M.y(0l->"°o» as t-*-co—0 

or co=°° and l im(x(t)y(t)) exists. By the first equation of system (4.1') 
(x2)-=2xy/p(t), hence, if eo oo 
(4.4) / ( l / p ( 0 ) d i < - , J" q(t) dt < oo, 

o o 

then l imj t (0 , limj>(f) exist. Thus, we have: 
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Suppose either (4.2) or (4.3), and let x(t) be any solution of (4.1) with the maxi-
mal right interval [t0, (o). Then either a) |x(/)| + |/?(0*(0I — os t-*m—0 orb) 
CJ) = °° and lim (p(t)x(t)x(t)) exists. If also condition (4.4) is satisfied, then 
in case b) we can state Jim x(t), lim (p(t)x(t)) exist. 

II. Let us now consider the equation 

(4.5) x+a(t)x + bit) fix) '= 0 (x£ R), 

where the functions a: R+ -» R, f : R-+ R are continuous, b: R+—R is continuously 
diiferentiable. By the aid of Th. 3.3, we seek for conditions which assure that the 
derivative of any solution of (4.5) tends to 0 as t — 

Introducing the variable y = x, we can transform equation (4.5) into the system 

(4.5') x = y =-b(t)f(x)-a(t)y. 

Choose the Ljapunov functions 

KO, x, y) = -^+2Fix); V2(t, x, y) = jf+b(t)F(x) 

X 

(see [11]), where F(x)= J" f(s)ds, and the auxiliary function W(x)=(x2/2, y2/2). 
o 

Their total derivatives by virtue of (4.5') are 

b{t) b\t)' 

V2 = -a(t)y* + bit)Fix), W=(xy,-bit)yfix)-ait)y*). 

Applying Th. 3.3 with the functions Vx, W and Vs, W, respectively, we obtain 
t 

the following results: Suppose the function J ( |a(j)|- |- |6(i)|)<fo is uniformly con-
tinuous on R+. 0 

1) If either ¿>(f)>0 or there exists a y > 0 such that b(t) ^ —y for values 
of t large enough, and <Pi(0 is integrally positive, then for any solution xit) of (4.5) 
either a) I^OI + l^iOl — 00 as f—ca-0 or b) x(i)—0 as t-+°°. 

2) If Fix) ix€R), bit) is bounded from below (t£R+), and ait) is integrally 
positive, then for any solution xit) of (4.5) either a) or b) is satisfied. 

HI. Finally, in order to compare our results with those of LaSalle and 
Haddock, we investigate attractivity properties of the solutions of the linear system 

* = - r ( 0 * + f ( 0 j ' , (4.6) . . • • (x,y€R), 
y =-q{t)x-pit)y 

where p,q,r: R+—R are continuous, and />( i ) s0 , r ( i ) = 0 (teR+). Choose the 
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Ljapunov function V(x, y) = (x2+y2)/2. Its derivative by virtue of (4.6) 
V(t, x, y)=. — r(t)x2— p(t)y2 is non-positive, so any solution of (4.6) exists and. 
is bounded on the whole R+. The LaSalle—Yoshizawa theorem yields the follow-
ing statement: 

A) (J. P. LASALLE [6]: / • ( / ) = 0 , q(t) = l). If 0 < c < p ( 0 = C c,C= 
=const.), then for every solution of (4.6) *(/)—const., j>(0—0 a s i~*OD-

Haddock deduced from his theorem (see Cor. 3.1 in this paper) the following 
result: 

B) ( J . H A D D O C K [10]: r(t)=0). If there exists A > 0 such that 

(4.7) | ? ( 0 I < « P ( 0 ( ' 6 * + ) , 
OO 

and Jp(t)dt=°then for any solution of (4.6) j>(i)—0, x( / ) —const, as i— 
o 

Let us now consider the auxiliary function W(y)=y2/2, whose derivative is 
— q(t)xy—p(t)y2, and denote by H the set of the points of x-axis on the 

plane (x, y). We prove all the conditions of Th. 3.1 are satisfied, provided that (4.7) 
is true. For any solution (x(0> y(t)) of (4.6) there exists a C such that 
(x(i), }>(<))€M={(x, y ) ' x 2 + y 2 ^ C } . It is sufficient to show that for every e > 0 
there exists a ¿ > 0 such that (x,y)£M, \y\^e imply V(t,x)^S—5\W(t,x)]+ 

for all t£R+. Let 5 = 2e2/(aC). Then from (4.7) it follows that -p(t)y2^ 
^ —S\q(t)\(xz+y2)/2 (t£R+), which implies the desired inequality. 

By Th. 3.1, using also the fact that Jim V(x(t), y(t)) exists, we obtain the 
following result: 

1) Suppose (4.7). Then both of the components of any solution of (4.6) tend to 
OO 

a finite limit as 't — I f J p(t)dt = °° is also satisfied, then x(f)—const., 
. o 

j(i)—0 as t—co; 

It is worth noting that if we applied Haddock's theorem to this case, then in 
order to get the same result we would also have to require the condition analogous 
to (4.7) of the function r(t). On the other hand, condition (4.7) is too strong, since 
it requires much of q(t) locally at certain points (e.g. p(t0)=0 implies <7(/0)=0), 
nevertheless the conclusion is only about the limits of the solutions. By the aid of 
Theorems 3.3 and 3.4 (<p(t)=p(t), U=-y2, we do without 
assumption (4.7): 

t 
2) If p(t) is integrally positive and J |<7(s)| ds is uniformly continuous on R+, 

o 
then for any solution of (4.6) x( i ) - 'const , ^( i )—0 as 
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3) If J p(t)dt= °° and J \q(t)\dt-=r.<*=, then for any solution of (4.6) 
o o 

x{t)~*const., yiO-'-O as t — oo. 
* 

The author is very grateful to L. Pintér for many useful discussions. 
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