· · · · · · · ·

On Jordan models of C_0 -contractions

VLADIMIR MÜLLER

In [7] the following theorem was proved:

Let T be a contraction of class C_0 on a separable Hilbert space. Then there exists an (up to constant factors of modulus 1) unique sequence $\{m_i\}_{1}^{\infty}$ of inner scalar functions such that:

1) $m_{i+1}|m_i$, i.e. m_{i+1} divides m_i , for each i,

2) T is quasisimilar to $S(m_1) \oplus S(m_2) \oplus \dots$ (the "Jordan model" of T).

In [1] and [2] it was proved that if T has finite defect indices $\delta_T = \delta_{T^*} = n$ then, for i = 1, 2, ..., n, m_i is equal to the (n - i + 1)-th invariant factor of the characteristic function of T.

At the end of [8] the problem was raised what is the relation of the functions m_i to the characteristic function of T in the general case. We are going to give an answer to this question.

The main result (Theorem 1) can be also deduced from [9], Corollary 3.4. The methods of the proof, however, are quite different.

The author wishes to thank to Professor Szőkefalvi-Nagy for his kind help during the final preparation of this paper.

We shall use the notations introduced in [2], [4], [6] and [8]. By H^{∞} we mean the Banach algebra of bounded holomorphic functions on the disc $|\lambda| < 1$. If $u, v \in H^{\infty}$ then $u \wedge v$ means the largest common inner divisor of u and v. For $1 \le n \le \infty$ we define, as in [8], $\mathcal{M}(n)$ as the set of $n \times n$ matrices $A = (a_{ij})$ over H^{∞} for which

$$\sum_{i} \left| \sum_{j} \zeta_{j} a_{ij}(\lambda) \right|^{2} \leq K^{2} \sum_{j} |\zeta_{j}|^{2} \quad (K \geq 0)$$

holds for $|\lambda| < 1$ and for every square-summable sequence of complex numbers, i.e. whose values $A(\lambda)$ ($|\lambda| < 1$) are operators on the complex euclidean *n*-space E_n , bounded by the constant K.

7*

Received September 26, 1977.

Vladimir Müller

For $A \in \mathcal{M}(n)$ and a natural number $r, r \leq n$, we define $\mathcal{D}_r(A)$ as the largest common inner divisor of all minors of A of order r. The invariant factors $\mathcal{C}_r(A)$ of A are then defined by

$$\mathscr{E}_1(A) = \mathscr{D}_1(A)$$
 and $\mathscr{E}_r(A) = \mathscr{D}_r(A)/\mathscr{D}_{r-1}(A)$ for $r \ge 2$

(we put $\mathscr{E}_r(A)=0$ if $\mathscr{D}_r(A)=0$). A matrix $A \in \mathscr{M}(n)$ is called inner (inner from both sides) if A is isometry (unitary) valued almost everywhere on the unit circle.

For $A \in \mathcal{M}(n)$ inner we define the operator S(A) on the Hilbert space $\mathfrak{H}(A) = H^2(E_n) \ominus AH^2(E_n)$ by $S(A)u = P_{\mathfrak{H}(A)}(\lambda u)$. If T is an operator on \mathfrak{H} and T' is an operator on $\mathfrak{H}'(E_n)$ by $S(A)u = P_{\mathfrak{H}(A)}(\lambda u)$. If T is an operator on \mathfrak{H} and T' is an operator on \mathfrak{H}' we write $T \stackrel{i}{\prec} T'$ if there exists an injective operator $X: \mathfrak{H} \rightarrow \mathfrak{H}'$ such that XT = T'X. If X can be chosen such that $\overline{X\mathfrak{H}} = \mathfrak{H}'$ we write $T \prec T'$. T and T' are called quasisimilar $(T \sim T')$ if $T \prec T'$ and $T' \prec T$. We write $T \stackrel{u}{\prec} T'$ if T and T' are unitarily equivalent.

Lemma 1. Let the matrix $A \in \mathcal{M}(n)$ $(1 \le n \le \infty)$ be inner from both sides and have a scalar multiple $\psi \in H^{\infty}$, ψ inner. Let $\Omega \in \mathcal{M}(n)$ be such that $\Omega A = A\Omega = \psi I_n$. Then $\mathscr{C}_k(\Omega)|\psi$ for $k=1, 2, \ldots$ Let $\psi_k = \psi|\mathscr{C}_k(\Omega)$. Then for every natural number $r \le n$ there exist matrices Δ , $\Lambda \in \mathcal{M}(n)$ with a common scalar multiple $h \in H^{\infty}$, $h \land \psi = 1$. and a matrix $B_r \in \mathcal{M}(n')$ (n'+r=n) inner from both sides and having the scalar multiple $\psi_r \cdot h$ such that $\Delta A = B\Lambda$, where $B = \text{diag}[\psi_1, \ldots, \psi_r, B_r] \in \mathcal{M}(n)$.

Proof. According to Theorem 1 of [8] there exist matrices $M, N \in \mathcal{M}(n)$ with the respective scalar multiples φ_1 and φ_2 , such that $\varphi_1 \cdot \varphi_2 \wedge \psi = 1$, $M\Omega = \Omega' N$ where Ω' is a matrix of the form $\Omega' = \text{diag} [\mathscr{E}_1(\Omega), \dots, \mathscr{E}_r(\Omega), \Omega'_r]$ with $\Omega'_r \in \mathcal{M}(n') \ (n'+r=n)$ and $\mathscr{E}_1(\Omega)|\mathscr{E}_2(\Omega)|\dots|\mathscr{E}_r(\Omega)|\Omega'_r$.

Because *M* and *N* also have the scalar multiple $\varphi = \varphi_1 \cdot \varphi_2$ there exist matrices M^a , $N^a \in \mathcal{M}(n)$ such that $MM^a = M^a M = NN^a = N^a N = \varphi \cdot I_n$. Set $A' = NAM^a$. Then we have $\Omega'A' = \Omega'NAM^a = M\Omega AM^a = \varphi \psi \cdot I_n$ and $\varphi A'\Omega' = A'\Omega'NN^a = NAM^a M\Omega N^a = \varphi^2 \psi \cdot I_n$, hence $A'\Omega' = \varphi \psi \cdot I_n$. A' is necessarily of the form diag $[\varphi \psi_1, ..., \varphi \psi_r, A_r]$, where $A_r \in \mathcal{M}(n)$ and $A_r \frac{\Omega'_r}{E_r(\Omega)} = \frac{\Omega'_r}{E_r(\Omega)} A_r = \varphi \psi_r \cdot I_n$. Let $\varphi = \varphi_i \cdot \varphi_e$ and $A_r = A_{ri}A_{re}$ be the canonical inner-outer factorizations of φ and A_r , respectively. Set $B = \text{diag } [\psi_1, ..., \psi_r, A_{ri}], A = \varphi N, A = \text{diag} [\varphi, ..., \varphi, A_{re}] M$. Then we have $BA = \text{diag } [\varphi \psi_1, ..., \psi_r, A_r] \cdot M = A'M = NAM^a M = \varphi NA = \Delta A$. By [4] (V. 6. 4) A_{re} has the scalar multiple φ_e so the matrices Δ and A have the scalar multiple $h = \varphi^2$. On the other hand, A_{ri} has the scalar multiple $\varphi_i \cdot \psi_r$. So A_{ri} is inner from both sides by [4] (V. 6.2), and B, Δ and A satisfy all the conditions required.

Lemma 2. Let the matrices $A, B \in \mathcal{M}(n)$ $(1 \le n \le \infty)$ be inner from both sides and have scalar multiples ψ and ψh , respectively, where $\psi \wedge h = 1$ and ψ is

inner. Let Δ and $\Lambda \in \mathcal{M}(n)$ be matrices with the scalar multiple h, i.e. $\Delta \Delta^a = = \Delta^a \Delta = \Lambda \Lambda^a = \Lambda^a \Lambda = hI_n$ for some Δ^a , $\Lambda^a \in \mathcal{M}(n)$. Suppose $\Delta A = B\Lambda$. Then:

- 1) the operator $X: \mathfrak{H}(A) \rightarrow \mathfrak{H}(B)$ defined by $X = P_{\mathfrak{H}(B)} \Delta | \mathfrak{H}(B)$ is injective and satisfies XS(A) = S(B)X;
- 2) the operator Y: $\mathfrak{H}(B) \rightarrow \mathfrak{H}(A)$ defined by $Y = P_{\mathfrak{H}(A)} \Delta^a | \mathfrak{H}(B)$ satisfies YS(B) = S(A) Y and we have $h(S(B)|\mathfrak{N}) = 0$, where $\mathfrak{N} = \ker Y$.

Proof. The proof of (1) is the same as in [1] or [6], and we repeat it only to be seen how does case 2 differ from case 1.

We have $\Delta AH^2(E_n) = BAH^2(E_n) \subset BH^2(E_n)$ so $P_{\mathfrak{H}(B)} \Delta P_{\mathfrak{H}(A)} = P_{\mathfrak{H}(B)} \Delta$. Hence $XS(A) = P_{\mathfrak{H}(B)} \Delta P_{\mathfrak{H}(A)} = P_{\mathfrak{H}(B)} \Delta U_+ | \mathfrak{H}(A) = P_{\mathfrak{H}(B)} \Delta H_+ | \mathfrak{H}(A) = P_{\mathfrak{H}(A)} A_+ |$

 $=P_{\mathfrak{H}(B)}U_{+}P_{\mathfrak{H}(B)}\Delta|\mathfrak{H}(A)=S(B)X \text{ (where } U_{+}:H^{2}(E_{n})\rightarrow H^{2}(E_{n}) \text{ is defined by } U_{+}u=\lambda u\text{).}$ Let $u\in\mathfrak{H}(A)$ and Xu=0, i.e. $\Delta u\in BH^{2}(E_{n})$. As A and B are analytic functions inner from both sides, the corresponding multiplication operators on $L^{2}(E_{n})$ are unitary. Set $f=A^{-1}u$. Then $BAf=\Delta Af=\Delta u\in BH^{2}(E_{n})$; hence $Af\in H^{2}(E_{n})$. On the other hand, we have $Af=u\in H^{2}(E_{n})$. Hence $hf==A^{a}Af\in A^{a}H^{2}(E_{n})\subset H^{2}(E_{n})$ and $\psi f=A^{a}Af=A^{a}u\in A^{a}H^{2}(E_{n})\subset H^{2}(E_{n})$ (this is the

place where the proof does not work in case 2 because we get only $\psi hf = B^a Bf \in H^2(E_n)$ then). Since $h \wedge \psi = 1$, $hf \in H^2(E_n)$ and $\psi f \in H^2(E_n)$ imply $f \in H^2(E_n)$ by the Lemma of [3]. So $u = Af \in AH^2(E_n)$. Since, on the other hand, $u \in H(A) = H^2(E_n) \ominus AH^2(E_n)$ we conclude that u = 0. Thus X is an injective operator.

As for 2, note that $hA\Lambda^a = \Delta^a \Delta A\Lambda^a = \Delta^a B\Lambda \Lambda^a = h\Delta^a B$ and hence $A\Lambda^a = = \Lambda^a B$. We prove as above that YS(B) = S(A) Y. From this it follows that the subspace $\mathfrak{N} = \ker Y$ is S(B)-invariant. Let $u \in N$, i.e. $\Delta^a u \in AH^2(E_n)$. Then $hu = = \Delta \Delta^a u \in \Delta AH^2(E_n) = B\Lambda H^2(E_n) \subset BH^2(E_n)$. We have $h(S(B)) = uP_{\mathfrak{H}}(hu) \in e^{2\mathfrak{H}}(E_n) = 0$. Hence $h(S(B)|\mathfrak{N}) = 0$.

Now we are able to prove our main theorem:

Theorem 1. Let T be an operator of class C_0 acting on a separable Hilbert space. Let Θ be the characteristic function of T and let Ω be a contractive analytic function such that $\Theta \Omega = \Omega \Theta = \psi I_n$, where $\psi \in H^{\infty}$ is inner and n is the defect index of T (such an Ω exists by [4], VI. 5.1). Let $S(m_1) \oplus S(m_2) \oplus \cdots$ be the Jordan model of T. Then $m_r = \psi / \mathscr{E}_r(\Omega)$ for every natural number $r \leq n$ (if n is finite then in this notation $m_i = 1$ for i > n).

Proof. Let r be an integer, $r \leq n$. By Lemma 1 there exist matrices Δ , Λ , $\Theta' \in \mathcal{M}(n)$ such that $\Delta \Theta = \Theta' \Lambda$, Δ and Λ have a scalar multiple h, $h \wedge \psi = 1$ and $\Theta' = \text{diag} [\psi_1, ..., \psi_r, \Theta'_r]$, where $\psi_i = \psi/\mathscr{E}_i(\Omega)$ (i=1, ..., r), and Θ'_r is inner from both sides and has the scalar multiple $h\psi_r$.

I. We prove first $m_r | \psi_r$.

By Lemma 2 the operator $X = P_{\mathfrak{H}(\Theta')} \Delta | \mathfrak{H}(\Theta)$ is injective and $XS(\Theta) = S(\Theta')X$, i.e. $S(\Theta) \stackrel{i}{\prec} S(\Theta')$. In the same time $S(\Theta) \stackrel{u}{\sim} T \sim S(M)$, where $M = \text{diag}[m_1, m_2, ...], S(M) = S(m_1) \oplus S(m_2) \oplus \cdots$ and $\mathfrak{H}(M) = \mathfrak{H}(m_1) \oplus \mathfrak{H}(m_2) \oplus \cdots$. Hence $S(M) \stackrel{i}{\prec} S(\Theta')$. Let $Z: \mathfrak{H}(M) \to \mathfrak{H}(\Theta')$ be an injective operator such that $ZS(M) = S(\Theta')Z$. Put $\varphi = h\psi_r$, $\mathfrak{M} = \overline{\varphi(S(M))\mathfrak{H}(M)} = \overline{\varphi(S(\Theta'))\mathfrak{H}(\Theta')}$. We proceed as in [5]. We have $Z\mathfrak{M} \subset \overline{Z\varphi(S(M))\mathfrak{H}(M)} = \overline{\varphi(S(\Theta'))}Z\mathfrak{H}(M) \subset \overline{\varphi(S(\Theta'))\mathfrak{H}(\Theta')} = \mathfrak{M}'$ and \mathfrak{M} and \mathfrak{M}' are obviously subspaces invariant to S(M) and $S(\Theta')$, respectively. Hence $S(M) | \mathfrak{M} \stackrel{i}{\prec} S(\Theta') | \mathfrak{M}'$. But $S(\Theta') | \mathfrak{M}'$ is unitarily equivalent to the operator $S(\psi_1/(\psi_1 \land \varphi)) \oplus \ldots \oplus S(\psi_{r-1}/(\psi_{r-1} \land \varphi)) = S(\psi_1/\psi_r) \oplus \ldots \ldots \oplus S(\psi_{r-1}/\psi_r) = S(\mathfrak{E}_r(\Omega)/\mathfrak{E}_1(\Omega)) \oplus \ldots \oplus S(\mathfrak{E}_r(\Omega)/\mathfrak{E}_{r-1}(\Omega))$ (see [6]). In the same way $S(M) | \mathfrak{M}$ is unitarily equivalent to the operator to the operator of the operator of the operator operato

$$S(m_1/(m_1 \wedge \varphi)) \oplus S(m_2/(m_2 \wedge \varphi)) \oplus \cdots$$

From Proposition 2 of [5] it follows that $S(M)|\mathfrak{M}\in C_0(r-1)$; hence $m_r|\varphi$. Since $m_r\wedge h=1$ it is necessarily $m_r|\psi_r$.

II. Next we prove $\psi_r | m_r$.

By Lemma 2 there exists an operator $Y: \mathfrak{H}(\Theta') \to \mathfrak{H}(\Theta)$ such that $YS(\Theta') = S(\Theta)Y$ and $h(S(\Theta')|\mathfrak{N})=0$, where $\mathfrak{N}=\ker Y$. Let Y_1 be the restriction of Y to the subspace $M=\mathfrak{H}(\psi_1)\oplus\ldots\oplus\mathfrak{H}(\psi_r)\oplus\{0\}$ of the Hilbert space $\mathfrak{H}(\Theta')$. Denote $M'=\operatorname{diag}[\psi_1,\ldots,\psi_r,I_{n'}]$ (n'+r=n), $S(M')=S(\Theta')|\mathfrak{M}$ and $\mathfrak{N}_1=\mathfrak{N}\cap\mathfrak{M}$. Obviously, $Y_1S(M')=S(\Theta)Y_1$ and $h(S(M')|\mathfrak{N}_1)=0$. On the other hand, $\psi(S(M')|\mathfrak{N}_1)=\psi(S(M'))|\mathfrak{N}_1=0$. As $\psi \wedge h=1$, the minimal function of $S(M')|\mathfrak{N}_1$ is 1, i.e. $\mathfrak{N}_1=\{0\}$. So Y_1 is an injective operator and $S(M') \stackrel{i}{\prec} S(\Theta)$. Now we have $S(\psi_1)\oplus\ldots\oplus S(\psi_r) \stackrel{u}{\leadsto} S(M') \stackrel{i}{\prec} S(\Theta) \sim S(m_1)\oplus S(m_2)\oplus\ldots$. It follows as in I (or [6]) that $\psi_r|m_r$. Together with I this gives $m_r=\psi_r$, thus finishing the proof.

Remark 1. We return now to the case of *n* finite. Then we can take $\psi = \det \Theta_T$ (in an arbitrary choice of orthonormal bases of the defect spaces of *T*), $\Omega = \Theta_T^A$ (the adjoint matrix of Θ_T). The theorem above gives $T \sim S(\psi_1) \oplus \cdots \oplus S(\psi_n)$ with $\psi_{i+1} | \psi_i$ where $\psi_i = \det \Theta_T / \mathscr{E}_i(\Theta_T^A)$. In the same time by [2] it holds $T \sim S(\mathscr{E}_n) \oplus \cdots \oplus S(\mathscr{E}_1)$ with $\mathscr{E}_i | \mathscr{E}_{i+1}$ where $\mathscr{E}_i = \mathscr{E}_i(\Theta_T)$. From the unicity of the Jordan model of *T* it follows $\psi_i = \mathscr{E}_{n-i+1}$ (*i*=1,...,*n*), i.e.

$$\det \Theta_T = \mathscr{E}_i(\Theta_T^A) \cdot \mathscr{E}_{n-i+1}(\Theta_T), \quad i = 1, \dots, n.$$

We shall prove this relation directly, by using the following well-known fact (see e.g. [10]):

Proposition. Let M be an $n \times n$ matrix (n finite) over the complex numbers, M^A its adjoint matrix. Let M_1 be an $r \times r$ submatrix of M formed by the rows $i_1, ..., i_r$ $(1 \leq i_1 < \ldots < i_r \leq n)$ and the columns j_1, \ldots, j_r $(1 \leq j_1 < \ldots < j_r \leq n)$. Let M_2 be the $(n-r)\times(n-r)$ submatrix of M^A obtained by leaving out of M^A its i_1, \ldots, i_r -th rows and j_1, \ldots, j_r -th columns. Then

det
$$M_2 = (\det M)^{n-r-1} \cdot \det M_1 \cdot (-1)^c$$
 where $c = \sum_{k=1}^r (i_k + j_k)$.

Now let N be an $n \times n$ matrix over H^{∞} . From the Proposition easily follows $\mathscr{D}_{n-r}(N^A) = (\det N)^{n-r-1} \mathscr{D}_r(N) \ (r=1,\ldots,n) \text{ and } \mathscr{C}_{n-r+1}(N^A) = \mathscr{D}_{n-r+1}(N^A) / \mathscr{D}_{n-r}(N^A) = \mathscr{D}_{n-r+1}(N^A) = \mathscr{D}_{n-r+1}(N^A) / \mathscr{D}_{n-r}(N^A) = \mathscr{D}_{n-r+1}(N^A) = \mathscr{D}_$ = det $N \cdot \mathcal{D}_{r-1}(N)/\mathcal{D}_r(N)$ = det $N/\mathcal{E}_r(N), r=1, ..., n$; whence (1).

Remark 2. Let $A = \text{diag}[\varphi, \psi, \varphi, \psi, ...], B = \text{diag}[\varphi\psi, \varphi\psi, ...] = \varphi\psi I_{\infty}$, where $\varphi, \psi \in H^{\infty}$ are inner, $\varphi, \psi \neq 1, \varphi \land \psi = 1$. Then A and B are matrices inner from both sides with a scalar multiple $\varphi \psi$. Obviously, $A^a = \text{diag}[\psi, \varphi, \psi, \varphi, ...]$, $B^a = \text{diag}[1, 1, ...] = I_{\infty}$. According to Theorem 1 we have $S(A) \sim \bigoplus_{i=1}^{\infty} S(\varphi \psi) = S(B)$. An easy computation shows on the other hand that A and B are not quasiequivalent. This situation cannot happen in the case of finite matrices (see [1]).

In the same manner the matrix $A^a = \text{diag}[\psi, \varphi, \psi, \varphi, ...]$ is not quasiequivalent to the diagonal matrix formed by its invariant factors diag $[\mathscr{E}_1(A^a), \mathscr{E}_2(A^a), \ldots] =$ $=B^a=I_{m}$. **י** .

References

- [1] B. MOORE III-E. A. NORDGREN, On quasi-equivalence and quasi-similarity, Acta Sci. Math. 34 (1973), 311-316.
- [2] E. A. NORDGREN, On quasi-equivalence of matrices over H[∞], Acta Sci. Math., 34 (1973), 301-310.
- [3] B. Sz.-NAGY, Hilbertraum-Operatoren der Klasse C_0 , Abstract spaces and approximation, Proc. Oberwolfach, Birkhäuser (Basel, 1968), 72-81.
- [4] B. Sz.-NAGY, C. FOIAS, Harmonic analysis of operators on Hilbert space, North Holland/Akadémiai Kiadó (Amsterdam/Budapest, 1970).
- [5] B. Sz.-NAGY, C. FOIAS, Modèle de Jordan pour une classe d'opérateurs de l'espace de Hilbert, Acta Sci. Math., 31 (1970), 91-115.
- [6] B. Sz.-NAGY, C. FOIAŞ, Jordan model for contractions of class C., Acta Sci. Math., 36 (1974), 305-322.
- [7] H. BERCOVICI, C. FOIAS, B. SZ.-NAGY, Compléments à l'étude des opérateurs de classe Co. III, Acta Sci. Math., 34 (1975), 313-322.
- [8] B. Sz.-NAGY, Diagonalization of matrices over H^{∞} , Acta Sci. Math., 38 (1976), 223–238.
- [9] H. BERCOVICI, D. VOICULESCU, Tensor operations on characteristic functions of C_0 contractions, Acta Sci. Math., 39 (1977), 205-231.
- [10] F. R. GANTMACHER, The theory of matrices, Chelsea Pub. Co. (New York, 1960).

MATHEMATICAL INSTITUTE ČSAV