On Jordan models of C_{0}-contractions

VLADIMIR MÜLLER

In [7] the following theorem was proved:
Let T be a contraction of class C_{0} on a separable Hilbert space. Then there exists an (up to constant factors of modulus 1) unique sequence $\left\{m_{i}\right\}_{1}^{\infty}$ of inner scalar functions such that:

1) $m_{i+1} \mid m_{i}$, i.e. m_{i+1} divides m_{i}, for each i,
2) T is quasisimilar to $S\left(m_{1}\right) \oplus S\left(m_{2}\right) \oplus \ldots$ (the "Jordan model" of T).

In [1] and [2] it was proved that if T has finite defect indices $\delta_{T}=\delta_{T^{*}}=n$ then, for $i=1,2, \ldots, n, m_{i}$ is equal to the ($n-i+1$)-th invariant factor of the characteristic function of T.

At the end of [8] the problem was raised what is the relation of the functions m_{i} to the characteristic function of T in the general case. We are going to give an answer to this question.

The main result (Theorem 1) can be also deduced from [9], Corollary 3.4. The methods of the proof, however, are quite different.

The author wishes to thank to Professor Szökefalvi-Nagy for his kind help during the final preparation of this paper.

We shall use the notations introduced in [2], [4], [6] and [8]. By H^{∞} we mean the Banach algebra of bounded holomorphic functions on the disc $|\lambda|<1$. If $u, v \in H^{\infty}$ then $u \wedge v$ means the largest common inner divisor of u and v. For l $\leqq n \leqq \infty$ we define, as in [8], $\mathscr{M}(n)$ as the set of $n \times n$ matrices $A=\left(a_{i j}\right)$ over H^{∞} for which

$$
\sum_{i}\left|\sum_{j} \xi_{j} a_{i j}(\lambda)\right|^{2} \leqq K^{2} \sum_{j}\left|\xi_{j}\right|^{2} \quad(K \geqq 0)
$$

holds for $|\lambda|<1$ and for every square-summable sequence of complex numbers, i.e. whose values $A(\lambda)(|\lambda|<1)$ are operators on the complex euclidean n-space E_{n}, bounded by the constant K.

Received September 26, 1977.

For $A \in \mathscr{M}(n)$ and a natural number $r, r \leqq n$, we define $\mathscr{\mathscr { O }}_{r}(A)$ as the largest common inner divisor of all minors of A of order r. The invariant factors $\mathscr{E}_{r}(A)$ of A are then defined by

$$
\mathscr{E}_{1}(A)=\mathscr{V}_{1}(A) \quad \text { and } \quad \mathscr{E}_{r}(A)=\mathscr{D}_{r}(A) / \mathscr{U}_{r-1}(A) \quad \text { for } \quad r \geqq 2
$$

(we put $\mathscr{E}_{r}(A)=0$ if $\mathscr{D}_{r}(A)=0$). A matrix $A \in \mathscr{M}(n)$ is called inner (inner from both sides) if A is isometry (unitary) valued almost everywhere on the unit circle.

For $A \in \mathscr{M}(n)$ inner we define the operator $S(A)$ on the Hilbert space $\mathfrak{G}(A)=$ $=H^{2}\left(E_{n}\right) \ominus A H^{2}\left(E_{n}\right)$ by $S(A) u=P_{\mathfrak{S}(A)}(\hat{\lambda} u)$. If T is an operator on \mathfrak{S} and T^{\prime} is an operator on \mathfrak{G}^{\prime} we write $T \stackrel{i}{\prec} T^{\prime}$ if there exists an injective operator $X: \mathfrak{G} \rightarrow \mathfrak{G}^{\prime}$ such that $X T=T^{\prime} X$. If X can be chosen such that $\overline{X \mathfrak{G}}=\mathfrak{H}^{\prime}$ we write $T \prec T^{\prime}$. T and T^{\prime} are called quasisimilar $\left(T \sim T^{\prime}\right)$ if $T \prec T^{\prime}$ and $T^{\prime} \prec T$. We write $T \stackrel{\ddot{\sim}}{\sim} T^{\prime}$ if T and T^{\prime} are unitarily equivalent.

Lemma 1. Let the matrix $A \in \mathscr{M}(n)(1 \leqq n \leqq \infty)$ be inner from both sides and have a scalar multiple $\psi \in H^{\infty}, \psi$ inner. Let $\Omega \in \mathscr{A}(n)$ be such that $\Omega A=A \Omega=\psi I_{n}$. Then $\mathscr{E}_{k}(\Omega) \mid \psi$ for $k=1,2, \ldots$ Let $\psi_{k}=\psi \mid \mathscr{E}_{k}(\Omega)$. Then for every natural number $r \leqq n$ there exist matrices $\Delta, \Lambda \in \mathscr{M}(n)$ with a common scalar multiple $h \in H^{\infty}, h \wedge \psi=1$. and a matrix $B_{r} \in \mathscr{M}\left(n^{\prime}\right)\left(n^{\prime}+r=n\right)$ inner from both sides and having the scalar multiple $\psi_{r} \cdot h$ such that $\Delta A=B \Lambda$, where $B=\operatorname{diag}\left[\psi_{1}, \ldots, \psi_{r}, B_{r}\right] \in \mathscr{M}(n)$.

Proof. According to Theorem 1 of [8] there exist matrices $M, N \in \mathscr{M}(n)$ with the respective scalar multiples φ_{1} and φ_{2}, such that $\varphi_{1} \cdot \varphi_{2} \wedge \psi=1, M \Omega=\Omega^{\prime} N$ where Ω^{\prime} is a matrix of the form $\Omega^{\prime}=\operatorname{diag}\left[\mathscr{E}_{1}(\Omega), \ldots, \mathscr{E}_{r}(\Omega), \Omega_{r}^{\prime}\right] \quad$ with $\Omega_{r}^{\prime} \in \mathscr{M}\left(n^{\prime}\right)\left(n^{\prime}+r=n\right)$ and $\mathscr{E}_{1}(\Omega)\left|\mathscr{E}_{2}(\Omega)\right| \ldots\left|\mathscr{E}_{r}(\Omega)\right| \Omega_{r}^{\prime}$.

Because M and N also have the scalar multiple $\varphi=\varphi_{1} \cdot \varphi_{2}$ there exist matrices $M^{a}, N^{a} \in \mathscr{M}(n)$ such that $M M^{a}=M^{a} M=N N^{a}=N^{a} N=\varphi \cdot I_{n}$. Set $A^{\prime}=N A M^{a}$. Then we have $\Omega^{\prime} A^{\prime}=\Omega^{\prime} N A M^{a}=M \Omega A M^{a}=\varphi \psi \cdot I_{n} \quad$ and $\quad \varphi A^{\prime} \Omega^{\prime}=A^{\prime} \Omega^{\prime} N N^{a}=$ $=N A M^{a} M \Omega N^{a}=\varphi^{2} \psi \cdot I_{n}$, hence $A^{\prime} \Omega^{\prime}=\varphi \psi \cdot I_{n} . A^{\prime}$ is necessarily of the form $\operatorname{diag}\left[\varphi \psi_{1}, \ldots, \varphi \psi_{r}, A_{r}\right]$, where $A_{r} \in \mathscr{M}(n)$ and $A_{r} \frac{\Omega_{r}^{\prime}}{E_{r}(\Omega)}=\frac{\Omega_{r}^{\prime}}{E_{r}(\Omega)} A_{r}=\varphi \psi_{r} \cdot I_{n}$. Let $\varphi=\varphi_{i} \cdot \varphi_{e}$ and $A_{r}=A_{r i} A_{r e}$ be the canonical inner-outer factorizations of φ and A_{r}, respectively. Set $B=\operatorname{diag}\left[\psi_{1}, \ldots, \psi_{r}, A_{r i}\right], \Lambda=\varphi N, \Lambda=\operatorname{diag}\left[\varphi, \ldots,{ }_{r}, A_{\text {times }}\right] M$. Then we have $B A=\operatorname{diag}\left[\varphi \psi_{1}, \ldots, \varphi \psi_{r}, A_{r}\right] \cdot M=A^{\prime} M=N A M^{a} M=\varphi N A=\Delta A$. By [4] (V. 6. 4) $A_{r e}$ has the scalar multiple $\dot{\varphi}_{e}$ so the matrices Δ and Λ have the scalar multiple $h=\varphi^{2}$. On the other hand, $A_{r i}$ has the scalar multiple $\varphi_{i} \cdot \psi_{r}$. So $A_{r i}$ is inner from both sides by [4] (V. 6.2), and B, Δ and Λ satisfy all the conditions required.

Lemma 2. Let the matrices $A, B \in \mathscr{M}(n)(1 \leqq n \leqq \infty)$ be inner from both sides and have scalar multiples ψ and ψh, respectively, where $\psi \wedge h=1$ and ψ is
inner. Let Δ and $\Lambda \in \mathscr{M}(n)$ be matrices with the scalar multiple h, i.e. $\Delta \Delta^{a}=$ $=\Delta^{a} \Delta=\Lambda \Lambda^{a}=\Lambda^{a} \Lambda=h I_{n}$ for some $\Delta^{a}, \Lambda^{a} \in \mathscr{M}(n)$. Suppose $\Delta A=B \Lambda$. Then:

1) the operator $X: \mathfrak{5}(A) \rightarrow \mathfrak{5}(B)$ defined by $X=P_{\mathfrak{5}(B)} \Delta \mid \mathfrak{G}(B)$ is injective and satisfies $X S(A)=S(B) X$;
2) the operator $Y: \mathfrak{G}(B) \rightarrow \mathfrak{G}(A)$ defined by $Y=P_{\mathfrak{5}(A)} \Delta^{a} \mid \mathfrak{G}(B)$ satisfies $Y S(B)=$ $=S(A) Y$ and we have $h(S(B) \mid \mathfrak{N})=0$, where $\mathfrak{N}=\operatorname{ker} Y$.

Proof. The proof of (1) is the same as in [1] or [6], and we repeat it only to be seen how does case 2 differ from case 1 .

We have $\Delta A H^{2}\left(E_{n}\right)=B A H^{2}\left(E_{n}\right) \subset B H^{2}\left(E_{n}\right)$ so $P_{5(B)} \Delta P_{5(A)}=P_{\mathfrak{S}(B)} \Delta$. Hence $X S(A)=P_{5(B)} \Delta P_{\mathfrak{S}(A)} U_{+}\left|\mathfrak{G}(A)=P_{\mathfrak{5}(B)} \Delta U_{+}\right| \mathfrak{H}(A)=P_{\mathfrak{5}(B)} U_{+} \Delta \mid \mathfrak{G}(A)=$ $=P_{\mathfrak{S}(B)} U_{+} P_{\mathfrak{S}(B)} \Delta \mid \mathfrak{5}(A)=S(B) X \quad$ (where $\quad U_{+}: H^{2}\left(E_{n}\right) \rightarrow H^{2}\left(E_{n}\right) \quad$ is defined by $\left.U_{+} u=\lambda u\right)$. Let $u \in \mathfrak{G}(A)$ and $X u=0$, i.e. $\Delta u \in B H^{2}\left(E_{n}\right)$. As A and B are analytic functions inner from both sides, the corresponding multiplication operators on $L^{2}\left(E_{n}\right)$ are unitary. Set $f=A^{-1} u$. Then $B \Lambda f=\Delta A f=\Delta u \in B H^{2}\left(E_{n}\right)$; hence $A f \in H^{2}\left(E_{n}\right)$. On the other hand, we have $A f=u \in H^{2}\left(E_{n}\right)$. Hence $h f=$ $=A^{a} \Lambda f \in \Lambda^{a} H^{2}\left(E_{n}\right) \subset H^{2}\left(E_{n}\right)$ and $\psi f=A^{a} A f=A^{a} u \in A^{a} H^{2}\left(E_{n}\right) \subset H^{2}\left(E_{n}\right)$ (this is the place where the proof does not work in case 2 because we get only $\psi h f=$ $=B^{a} B f \in H^{2}\left(E_{n}\right)$ then $)$. Since $h \wedge \psi=1, h f \in H^{2}\left(E_{n}\right)$ and $\psi f \in H^{2}\left(E_{n}\right)$ imply $f \in H^{2}\left(E_{n}\right)$ by the Lemma of [3]. So $u=A f \in A H^{2}\left(E_{n}\right)$. Since, on the other hand, $u \in H(A)=$ $=H^{2}\left(E_{n}\right) \ominus A H^{2}\left(E_{n}\right)$ we conclude that $u=0$. Thus X is an injective operator.

As for 2, note that $h A \Lambda^{a}=\Delta^{a} \Delta A \Lambda^{a}=\Delta^{a} B \Lambda \Lambda^{a}=h \Delta^{a} B$ and hence $A \Lambda^{a}=$ $=A^{a} B$. We prove as above that $Y S(B)=S(A) Y$. From this it follows that the subspace $\mathfrak{M}=$ ker Y is $S(B)$-invariant. Let $u \in N$, i.e. $\Delta^{a} u \in A H^{2}\left(E_{n}\right)$. Then $h u=$ $=\Delta \Delta^{a} u \in \Delta A H^{2}\left(E_{n}\right)=B \Lambda H^{2}\left(E_{n}\right) \subset B H^{2}\left(E_{n}\right)$. We have $h(S(B))=u P_{5(B)}(h u) \in$ $\in P_{\mathfrak{5}(B)} B H^{2}\left(E_{n}\right)=0$. Hence $h(S(B) \mid \mathfrak{N})=0$.

Now we are able to prove our main theorem:
Theorem 1. Let T be an operator of class C_{0} acting on a separable Hilbert space. Let Θ be the characteristic function of T and let Ω be a contractive analytic function such that $\Theta \Omega=\Omega \Theta=\psi I_{n}$, where $\psi \in H^{\infty}$ is inner and n is the defect index of T (such an Ω exists by [4], VI. 5.1). Let $S\left(m_{1}\right) \oplus S\left(m_{2}\right) \oplus \cdots$ be the Jordan model of T. Then $m_{r}=\psi / \mathscr{E}_{r}(\Omega)$ for every natural number $r \leqq n$ (if n is finite then in this notation $m_{i}=1$ for $i>n$).

Proof. Let r be an integer, $r \leqq n$. By Lemma 1 there exist matrices Δ, Λ, $\Theta^{\prime} \in \mathscr{M}(n)$ such that $\Delta \Theta=\Theta^{\prime} \Lambda, \Delta$ and Λ have a scalar multiple $h, h \wedge \psi=1$ and $\Theta^{\prime}=\operatorname{diag}\left[\psi_{1}, \ldots, \psi_{r}, \Theta_{r}^{\prime}\right]$, where $\psi_{i}=\psi / \mathscr{E}_{i}(\Omega)(i=1, \ldots, r)$, and Θ_{r}^{\prime} is inner from both sides and has the scalar multiple $h \psi_{r}$.
I. We prove first $m_{r} \mid \psi_{r}$.

By Lemma 2 the operator $X=P_{\mathfrak{S (}\left(\theta^{\prime}\right)} \Delta \mid \mathfrak{G}(\Theta)$ is injective and $X S(\Theta)=$ $=S\left(\Theta^{\prime}\right) X$, i.e. $S(\Theta) \stackrel{i}{<} S\left(\Theta^{\prime}\right)$. In the same time $S(\Theta) \underset{\sim}{\sim} T \sim S(M)$, where $M=\operatorname{diag}\left[m_{1}, m_{2}, \ldots\right], S(M)=S\left(m_{1}\right) \oplus S\left(m_{2}\right) \oplus \cdots$ and $\mathfrak{G}(M)=\mathfrak{S}\left(m_{1}\right) \oplus \mathfrak{G}\left(m_{2}\right) \oplus \cdots$. Hence $S(M) \stackrel{i}{<} S\left(\Theta^{\prime}\right)$. Let $Z: \mathfrak{G}(M) \rightarrow \mathfrak{F}\left(\Theta^{\prime}\right)$ be an injective operator such that $Z S(M)=S\left(\Theta^{\prime}\right) Z$. Put $\varphi=h \psi_{r}, \mathfrak{M}=\overline{\varphi(S(M)) \mathfrak{S}(M)}$ and $\mathfrak{M}^{\prime}=\overline{\varphi\left(S\left(\Theta^{\prime}\right)\right) \mathfrak{G}\left(\Theta^{\prime}\right)}$. We proceed as in [5]. We have $Z \mathfrak{M} \subset \overline{Z \varphi(S(M)) \mathfrak{H}(M)}=\overline{\varphi\left(S\left(\Theta^{\prime}\right)\right) Z \mathfrak{G}(M)} \subset$ $\subset \overline{\varphi\left(S\left(\Theta^{\prime}\right)\right) \mathfrak{G}\left(\Theta^{\prime}\right)}=\mathfrak{M}^{\prime}$ and \mathfrak{M} and \mathfrak{M}^{\prime} are obviously subspaces invariant to $S(M)$ and $S\left(\Theta^{\prime}\right)$, respectively. Hence $S(M)\left|\mathfrak{M} \stackrel{i}{<} S\left(\Theta^{\prime}\right)\right| \mathfrak{M}^{\prime}$. But $S\left(\Theta^{\prime}\right) \mid \mathfrak{M}^{\prime}$ is unitarily equivalent to the operator $S\left(\psi_{1} /\left(\psi_{1} \wedge \varphi\right)\right) \oplus \ldots \oplus S\left(\psi_{r-1} /\left(\psi_{r-1} \wedge \varphi\right)\right)=S\left(\psi_{1} / \psi_{r}\right) \oplus \ldots$ $\ldots \oplus S\left(\psi_{r-1} / \psi_{r}\right)=S\left(\mathscr{E}_{r}(\Omega) / \mathscr{E}_{1}(\Omega)\right) \oplus \ldots \oplus S\left(\mathscr{E}_{r}(\Omega) / \mathscr{E}_{r-1}(\Omega)\right)$ (see [6]). In the same way $S(M) \mid \mathfrak{M}$ is unitarily equivalent to the operator

$$
S\left(m_{1} /\left(m_{1} \wedge \varphi\right)\right) \oplus S\left(m_{2} /\left(m_{2} \wedge \varphi\right)\right) \oplus \cdots
$$

From Proposition 2 of [5] it follows that $S(M) \mid \mathfrak{M} \in C_{0}(r-1)$; hence $m_{r} \mid \varphi$. Since $m_{r} \wedge h=1$. it is necessarily $m_{r} \mid \psi_{r}$.
II. Next we prove $\psi_{r} \mid m_{r}$.

By Lemma 2 there exists an operator $Y: \mathfrak{G}\left(\Theta^{\prime}\right) \rightarrow \mathfrak{S}(\Theta)$ such that $Y S\left(\Theta^{\prime}\right)=$ $=S(\Theta) Y$ and $h\left(S\left(\Theta^{\prime}\right) \mid \mathfrak{N}\right)=0$, where $\mathfrak{N}=$ ker Y. Let Y_{1} be the restriction of Y to the subspace $M=\mathfrak{G}\left(\psi_{1}\right) \oplus \ldots \oplus \mathfrak{G}\left(\psi_{r}\right) \oplus\{0\}$ of the Hilbert space $\mathfrak{5}\left(\Theta^{\prime}\right)$. Denote $\quad M^{\prime}=\operatorname{diag}\left[\psi_{1}, \ldots, \psi_{r}, I_{n^{\prime}}\right] \quad\left(n^{\prime}+r=n\right), \quad S\left(M^{\prime}\right)=\left.S\left(\Theta^{\prime}\right)\right|^{\mathfrak{M}} \quad$ and $\mathfrak{\Re}_{1}=\mathfrak{M} \cap \mathfrak{M}$. Obviously, $Y_{1} S\left(M^{\prime}\right)=S(\Theta) Y_{1}$ and $h\left(S\left(M^{\prime}\right) \mid \mathfrak{M}_{1}\right)=0$. On the other hand, $\psi\left(S\left(M^{\prime}\right) \mid \mathfrak{\Re}_{1}\right)=\psi\left(S\left(M^{\prime}\right)\right) \mid \Re_{1}=0$. As $\psi \wedge h=1$, the minimal function of $S\left(M^{\prime}\right) \mid \mathfrak{M}_{1}$ is 1 , i.e. $\mathfrak{M}_{1}=\{0\}$. So Y_{1} is an injective operator and $S\left(M^{\prime}\right) \stackrel{i}{<} S(\theta)$. Now we have $S\left(\psi_{1}\right) \oplus \ldots \oplus S\left(\psi_{r}\right) \underset{\sim}{\sim} S\left(M^{\prime}\right) \stackrel{i}{\prec} S(\Theta) \sim S\left(m_{1}\right) \oplus S\left(m_{2}\right) \oplus \ldots$. It follows as in I (or [6]) that $\psi_{r} \mid m_{r}$. Together with I this gives $m_{r}=\psi_{r}$, thus finishing the proof.

Remark 1. We return now to the case of n finite. Then we can take $\psi=\operatorname{det} \Theta_{T}$ (in an arbitrary choice of orthonormal bases of the defect spaces of T), $\Omega=\Theta_{T}^{A}$ (the adjoint matrix of Θ_{T}). The theorem above gives $T \sim S\left(\psi_{1}\right) \oplus \cdots \oplus S\left(\psi_{n}\right)$ with $\psi_{i+1} \mid \psi_{i}$ where $\psi_{i}=\operatorname{det} \Theta_{T} / \mathscr{E}_{i}\left(\Theta_{T}^{A}\right)$. In the same time by [2] it holds $T \sim S\left(\mathscr{E}_{n}\right) \oplus \cdots$ $\cdots \oplus S\left(\mathscr{E}_{1}\right)$ with $\mathscr{E}_{i} \mid \mathscr{E}_{i+1}$ where $\mathscr{E}_{i}=\mathscr{E}_{i}\left(\Theta_{T}\right)$. From the unicity of the Jordan model of T it follows $\psi_{i}=\mathscr{E}_{n-i+1}(i=1, \ldots, n)$, i.e.

$$
\operatorname{det} \Theta_{T}=\mathscr{E}_{i}\left(\Theta_{T}^{A}\right) \cdot \mathscr{E}_{n-i+1}\left(\Theta_{T}\right), \quad i=1, \ldots, n .
$$

We shall prove this relation directly, by using the following well-known fact (see e.g. [10]):

Proposition. Let M be an $n \times n$ matrix (n finite) over the complex numbers, M^{A} its adjoint matrix. Let M_{1} be an $r \times r$ submatrix of M formed by the rows i_{1}, \ldots, i_{r} $\left(1 \leqq i_{1}<\ldots<i_{r} \leqq n\right)$ and the columns $j_{1}, \ldots, j_{r}\left(1 \leqq j_{1}<\ldots<j_{r} \leqq n\right)$. Let M_{2} be the $(n-r) \times(n-r)$ submatrix of M^{A} obtained by leaving out of M^{A} its i_{1}, \ldots, i_{r}-th rows and j_{1}, \ldots, j_{r}-th columns. Then

$$
\operatorname{det} M_{2}=(\operatorname{det} M)^{n-r-1} \cdot \operatorname{det} M_{1} \cdot(-1)^{c} \quad \text { where } \quad c=\sum_{k=1}^{r}\left(i_{k}+j_{k}\right)
$$

Now let N be an $n \times n$ matrix over H^{∞}. From the Proposition easily follows $\mathscr{D}_{n-r}\left(N^{A}\right)=(\operatorname{det} N)^{n-r-1} \mathscr{D}_{r}(N)(r=1, \ldots, n)$ and $\mathscr{E}_{n-r+1}\left(N^{A}\right)=\mathscr{D}_{n-r+1}\left(N^{A}\right) / \mathscr{D}_{n-r}\left(N^{A}\right)=$ $=\operatorname{det} N \cdot \mathscr{D}_{r-1}(N) / \mathscr{D}_{r}(N)=\operatorname{det} N / \mathscr{E}_{r}(N), r=1, \ldots, n ;$ whence (1).

Remark 2. Let $A=\operatorname{diag}[\varphi, \psi, \varphi, \psi, \ldots], B=\operatorname{diag}[\varphi \psi, \varphi \psi, \ldots]=\varphi \psi I_{\infty}$, where $\varphi, \psi \in H^{\infty}$ are inner, $\varphi, \psi \neq 1, \varphi \wedge \psi=1$. Then A and B are matrices inner from both sides with a scalar multiple $\varphi \psi$. Obviously, $A^{a}=\operatorname{diag}[\psi, \varphi, \psi, \varphi, \ldots]$, $B^{a}=\operatorname{diag}[1,1, \ldots]=I_{\infty}$. According to Theorem 1 we have $S(A) \sim \bigoplus_{1}^{\infty} S(\varphi \psi)=S(B)$. An easy computation shows on the other hand that A and B are not quasiequivalent. This situation cannot happen in the case of finite matrices (see [1]).

In the same manner the matrix $A^{a}=\operatorname{diag}[\psi, \varphi, \psi, \varphi, \ldots]$ is not quasiequivalent to the diagonal matrix formed by its invariant factors $\operatorname{diag}\left[\mathscr{E}_{1}\left(A^{a}\right), \mathscr{E}_{2}\left(A^{a}\right), \ldots\right]=$ $=B^{a}=I_{\infty}$.

References

[1] B. Moore III-E. A. Nordgren, On quasi-equivalence and quasi-similarity, Acta Sci. Math. 34 (1973), 311-316.
[2] E. A. Nordgren, On quasi-equivalence of matrices over H^{∞}, Acta Sci. Math., 34 (1973), 301-310.
[3] B. Sz.-NaGy, Hilbertraum-Operatoren der Klasse C_{0}, Abstract spaces and approximation, Proc. Oberwolfach, Birkhäuser (Basel, 1968), 72-81.
[4] B. Sz.-Nagy, C. Folas, Harmonic analysis of operators on Hilbert space, North Holland/Akadémiai Kiadó (Amsterdam/Budapest, 1970).
[5] B. Sz.-Nagy, C. Foiaş, Modèle de Jordan pour une classe d'opérateurs de l'espace de Hilbert, Acta Sci. Math., 31 (1970), 91-115.
[6] B. Sz.-Nagy, C. Foiaş, Jordan model for contractions of class C.0, Acta Sci. Math., 36 (1974), 305-322.
[7] H. Bercovici, C. Foiaş, B. Sz.-Nagy, Compléments à l'étude des opérateurs de classe C_{0}. III, Acta Sci. Math., 34 (1975), 313-322.
[8] B. Sz.-NaGy, Diagonalization of matrices over H^{∞}, Acta Sci. Math., 38 (1976), 223-238.
[9] H. Bercovici, D. Voiculescu, Tensor operations on characteristic functions of C_{0} contractions, Acta Sci. Math., 39 (1977), 205-231.
[10] F. R. Gantmacher, The theory of matrices, Chelsea Pub. Co. (New York, 1960).

