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The Taylor coefficients of certain infinite products 

B. RICHMOND and G. SZEKERES 

In memory of Paul Túrán 

1. Let q be any positive fundamental discriminant;- that is, squarefree and 
= 1 (mod 4) or q = 4d where d is squarefree and = 2 or 3 (mod 4). Let '/_{}) = 

= ^4-J be the Kronecker symbol. Let us define C,„, m—0, 1, 2 , . . . by 

(1.0) 2 cmtm = ff S V = F{t), 
m=0 n=0 j=1 

where £ is either 1 or —1. Note that when q=5 and £ = 1, the infinite product is 

7 ) , . , ( ! - , 3 ) 0 - ^ . , , t 

( l — 0 ( 1 —i 6 ) (1 — í 4 ) ( i — i 9 ) . . . 1 + 1 + . . . ' 

that is, F( l ) is Ramanujan's continued fraction [6; p. 294]. If q = 8 and £ = 1, F(t) 
has a similar continued fraction representation 

( l - t ^ j l - t 1 1 ) . . . ( l - t b ) ( l - . t 1 3 ) ... _ t2 tl f 

(1 - 0 ( 1 - / " ) . . . (1 - 0 ( 1 - i 1 5 ) • • • l + í 3 + l + i 5 + l + i 7 + . . . ; 

This representation is due to BASIL GORDON [5], but there are indications, according 
to Gordon, that it might have been known to Ramanujan. 

In this paper we shall determine the asymptotic behaviour of the coefficients 
Cm, first by the saddle point method using a transformation due to ISEKI [7], and 
then more precisely by the circle method of Hardy and Ramanujan as modified by 
Rademacher, to obtain a convergent series representation of the Cm. Throughout 
the paper we make extensive use of results of ISEKI [8]. The exact formula for Cm 

is given by equation (4.14) in Theorem 4.1. The asymptotic formula (3.9) shows the 
interesting fact that if the product is turned upside down; that is, if the sign of £ is 
reversed, the coefficients have the same asymptotic behaviour in the sense that they 
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oscillate with the same amplitude and a common period of oscillation. In the classical 

case of Ramanujan the amplitude is (5/w) -3 /4exp a n d the oscillation 

is a pure cosine wave of the form cos ^m — j j j . In the case of Gordon 's 

continued fraction the oscillating part of the asymptotic term has the form 

c o s i ^ L , hence vanishes for m = 3 (mod 4). This suggests that Cik+Z=0, 

for all 0 and we shall be able to verify this by means of the exact series. If the 
product is turned upside down (q=8, £ = — 1) then we shall find similarly that 
c4k+2=0 for A: £ 0 . 

We require the following results concerning the Kronecker symbol: 

(1.1) ' x(g-J) = xU) 

(1.2) 2 x U ) = 2 J x U ) = o 
j = i J = I 

(1 .3) 2 xU) EXP ¡2Tti^j) = fqyXn). 

These results are found for example in LANDAU [ 1 1 ] . Equation ( 1 . 3 ) is Theorem 2 1 5 

of [11]. We shall often use without mention that x(.j)~® if and only if (q, 1 
and that x (mn)=X (m) X (n) • 

We also note that 

(1.4) J _ 1 _ C o s 2 « ^ = ( (A))^- 1 L 

where, for any real A, ((A))=A—[A] — j (see [9], formula 573)1). Hence by (1.2) 

and (1.3) 

(1.5) 
ft n=o " « n=i j=1 n \ q > 

= g £ x U ) 2 - J ^ ™ s ( 2 n l j ) = Qlq> 
j=1 n=i n it \ q V 

where 

(1.6) Q = q 2 P x ( j ) . 
j=1 

*) Note that when A is an integer then ((A)) = —1/2 which is not the usual convention. 



The Taylor coefficients of certain infinite products 349 

From (1.3) and (1.5) we obtain for any integer m 

(1-7) . 9 2 x U ) 2 c o s {in — mj\ = z(m)Qlq\ 
j=l n=i « w v q t 

°° y (ri)  0 0 1 
Formula (1.5) shows incidentally that g > 0 since 2 ^ V 5 " 1 ~ Z — 

„=1 " n = 2 « 

2. In this section we derive a transformation equation for the generating func-
tion F(t). The transformation is obtained from a formula of ISEKI and we largely 
follow his notation in [7] and [8]. Let z be a complex number with and 
h, k be co-prime positive integers with k>-1. Let D and K=kq/D denote the 
g.c.d. and l.c.m. of A; and q respectively. Put k=k1D, q—qxT) so that (k1, <?i) = 1 
and K=k1q=kq1. Choose integers y, ô satisfying 

(2.0) yk1-ôql = 1. 
Let 7 / be any solution of 
(2.1) hH = ô (mod k). 

Set 

and for 

(2.2) Fa(x;b,D,g) = f j (I-QxDm+by^(l-QxDm+d-b)-^a) 

m = 0 

where 

(2.3) b = ha-D = {ha}D = D + i ) , <? = e . = e x p [~2nia . 

The notation {x}r will be used to denote the reduced residue of the integer x modulo r, 
that is 0 â { x } r < r , x = { x } r (mod r). 

Finally let 

(K) 

where 2 signifies that fi runs through a complete set of residues modulo K=ktq, 
subject to the condition n =a (mod q). In particular 

We also note that for 1 ^a<q, (a, q) = 1, D > 1 

! 
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since under the conditions n is not divisible by D, hence neither — nor — are 
K k 

integers, and ( ( - * ) ) = —((*)) for non-integer x. If D = \, (k,q) = \ then there 
is a unique na=a (mod q) such that ¡ia=0 (mod/:) and we obtain, noting that for 
integer x, ((x))= — 1/2, 

(2.6') oq_a(h,k) = oa(h,k) + ^ . 

In the following 2 ' , II' denote sums and products over a=\, 2, . . . , 

T h e o r e m 2.1. Let a>*(h, k) = exp {2ni£a*(h, k)} where' 

(2.7) <r*ih,k) = Z'x(a)aa{h,k). 
a 

Then 

F{x) = co*(h, k) exp j i g - / z - i - , ) } X U' Fa{x', b, D, g). 

P r o o f . From Theorem 1 of [8] we obtain that 

(2 .8) / 7 ( 1 - x ^ m + a ) - ^ ( l ^ x q m + q - a ) - ^ a ) = 
m = 0 

= coa(h, k) exp { ^ p - ( A " 1 -Az^XFAx', b, D, g) 

where coa(h, k)= exp {2rt/C/(a)(Ta(A, k)} and 

(2.9) A = 6a2-6qa + q2, B = 6b2-6Db+D2 = 

by (2.3). It follows at once that 

(2.10) n'(oa{h,k) = (o*{h,k) 
a 

Next we show that 

(2-11) X x ( a ) A = 3 q 2 p X ( j ) ^ 3 Q . a j = l Using equation (1.1) 

Z'7M)A = 2'x{a){^-6qa + q2} = 2' X(c){6(q-a)2-6q(q-a) +q2} = 
a a a 

= \ "2 xum2-6jq+ q2} = 3 9 2 f x U ) Z j= 1 7 = 1 

by equation (1.2) which proves (2.11): 
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Finally we prove 

(2-12) 2 > m B = 3 Q P x [ ! g ) . 

By definition 

2'x(a)B = X yM{№-6Db+D*} = 
a a 

since if D= 1, the last two expressions are 0 by (1.1) and (1.2), and if Z)=>1 then 

M-((-£))--(($)) 
when D\a and / ( a ) = 0 otherwise. Hence the value of B is unchanged by sub-
stituting q—a for a. It follows by equations (1.4) and (1.7) that 

Since the product of the left side of equation (2.8) taken over a= 1, 2, . . . , is 

F(x), the theorem follows at once from (2.8), (2.10), (2.11), and (2.12). 

L e m m a 2.1. If D = q and x(h) — (, then 

n'Fa(x;b,q,e) = F(xy. 
a 

P r o o f . Because D=q, we can take y = 0 , <5 = — 1 in (2.0), hence q = 1 and 

(2.14) II'Fa{x\ b, q, q) = 77 ' jj[(i-jp»+»)(i-**»+«->)]-{*« 

in Now b—ha—q^^-j, x(b) = "/(ha)=Cx(a)> and 0^ ¡b<q . Hence the exponent 

(2.12) is -tx(a) = -x(b). Since 1 =(h,k) = (h, qkj, we have (h,q) = 1. Thus as 
a runs through a reduced residue system mod q, so does ah, hence b. The lemma 
now follows f rom (2.14) and the definition (1.0) of F(t). 

Next we derive an alternative expression for the generalized Dedekind sum 
o*(h, k) and hence for a>*(h, k). Following Iseki we define integers/ , g as follows: 

/ = 1 2 , g = 1 for (fc,6) = l ; / = 3 , g = 4 for (fc,6) = 2; 
( 2 1 5 ) / = 4, g = 3 for. (fc, 6) = 3; / = 1 , g = 12 for (fc, 6) = 6. 
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In all cases fg=12 and ( / , k)=l. Thus 

(2.16) (h,k) = lo(h,gDk) = l, 

(2.17) (f,gDk)= 1. 

We define integers <p and i¡/ to be any solution of 

(2.18) f<p+gDk = 1 

and choose the solution H of (2.1) so that 

(2.19) hH = 8 (mod gDk) . 

Set K ^ k ^ - l ) , ^ ( ^ - 1 X 2 ^ - 1 ) , 

Ua = gDy (aK1 + qK2) -q>8(2K2 + 3K(2a -q) + A), 

Va = q> (k2 — B), 

where A, B are defined in (2.9). It is shown in [8, p. 947] that 

(2.20) oaQx, k) = ( iU a h+V a H)+W a (mod 1). 

Now it follows from (2.6), (2.6') and (2.7) that 

o*(h, k) = 2'x(a)<ra(h, k) = 1 2 X(j)cj(h, k) if D > 1 
a j = 1 

(2.21) 

= Q - j Z ' x i a ) - ^ if D = 1 

where na=a+vaq=0 ( m o d k ) , 0 E § W r i t i n g na=a+vaq=rak, l^ra<q and 

noting that (mod q), we can rewrite the expression 2' '/.(a) TT ' n ^ e 
y(k) 9-1 " kq 

form 2 rX(r), and we obtain for D=(k,q) = 1 
9 r=i l=5{*r}S<7/2 

( 2 . 2 1 0 2O*(H,K)=21XU)OJIH,K)-±X(K) ' £ > * ( r ) . 
j=1 H r=l 

lS(»r},<i/2 

Now substitute for <jj(h, k) from (2.20) into (2.21), (2.21'). Making use of (2.11), 
(2.12), (1.2) and 

X(j) b = m Z X(hj){hj}q = X(h) "2 bxib) = 0, 
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we obtain 

hence 

XÜ) Uj =-cpô 2 AxU) = -6(pôQ, 
j=1 7 = 1 

= 2xU)j{hj}q, 
7=1 u q 7=1 

gDk gDk q* 
(2.22) 

~X(.k)6Dtl "Z . rx(r) (modi ) 
H r= 1 

where <5D>1=0 if £ > 1 , 1 if D=\. 
We apply formula (2.22) to the case when D—q, x(h)=C-

L e m m a 2.2. Let co*(h,k) be as in Theorem 2.1 and suppose that D=q,k=qk1, 
%(h)=£. Let h* be any solution of 
(2.23) . hh* = 1 (mod qk). 
Then 

(2.24) <o*(h, k) = n(h, k) exp{ni(th + h * ) ^ } 

where fi(h,k) — +1 or —1. In particular if q = \ (mod 4) and k=g, kx = l then 

(2.25) fi(h, q) = x(h) — (the Legendre symbol) if q is prime 

= 1 if q is composite. 
Proof . We first note that the value of the expression in (2.24) is independent 

of the solution h* in (2.23). We have to verify that 

(2.26) ' Q = 0 (mod 4) 
Indeed Q="2j2x(j) = 2 XU) (mod4) and 2. xU)=0, trivially 

j-1 7 = l ( m o d 2 ) j = l ( m o d 2 ) 
l<№ 

from (1.2) if q is even, and from 2 X\j) = XV) 2 X(J)=0 if q = 1 (mod 4). 
j=0(mod2) 7 = 1 

Now if D=q, q1=l we can take y=0 , ¿ = - 1 in (2.0), h*=-H in (2.23), 
and (2.22) simplifies to 

_ Q 
2q*k1 

(h+Çh*) (mod 1) by (2.18). 
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From here and from co*(h, k1q)=exp {2ni(o*(h, klq)} equation (2.24) follows 
at once. 

The sign of p(h, k) in (2.24) depends on whether 

(2.27) 2 f f * ( f c , f c l 9 ) - ^ - ( h + C f c * ) 

is an even or an odd integer. We want to show that if q = 1 (mod 4) then n(h, q) = 

= = ^Aj if q is prime, 1 if q is composite. 

From (2.4) and (2.21) 
(2.28) 

2a\h, kl q) = j ^ Z g x U ) ( ^ - { j ({h(j + rq)}k-jk) = 1 2jxU){hj}k 

since 

k2/.(j){hj}k = m k £ 7.(hj){hj}k = k l £ "z xU)(rq+j) = 0. • 
j=1 7 = 1 r=0 7 = 1 

Comparing (2.27) and (2.28) we find that 

(2.29) 1 k£xU)j{hj}k = ^Q(.h + Ch*) + M(h, k)qk 
/Cj j-i z 

for some integer M(h, k). Clearly 

(2.30) p(h, k) = (-l)M^h'ky 

in (2.24). 
Now suppose that k=q = l (mod 4). Then by (2.26) ^Q(h+Ch*)=0 (mod 2) 

and hence 
9 - 1 (9) 

M(h, q) = 2 xU)J{hj}q = Z {hj% ( m o d 2 ) . 
7 = 1 ( 7 , 9 ) = 1 

7*=1 (mod 2) 

Equation (2.25) follows from here, (2.28) and from 

L e m m a 2.3. Let q be odd and squarefree, (h,q) = 1. Set v = v(h,q) — 
(?) / h\ 

— 2 W}q- Then, (—l)vt"i«) is equal to \ — \ if q is prime, and to \ if q is 
(7,9) = 1 

7" a 1 (mod 2) 

composite. 

P r o o f . The first half of the lemma is a trivial corollary of Gauss' lemma, 
(see e.g. BACHMANN. [3] , p. 2 6 6 ) but we give a direct proof. Each hj, j odd, has a 
unique odd residue ms in the interval —q^m^q, and /wf=m7- if and only if i—j 
since ih=—jh (modq) , (h,q) = 1 implies i+j=0 (mod q) which is impossible 
since i+j is even and less than 2q. 
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Let A be the number of negative ones among the ntj so that v(h,q) = 
=). (mod 2). Set 

P = II {j\j = 1, :.., q-l, ( j , q) = l , j = l (mod 2)}. 
Then 

JJ mj = ( - 1 )xp = htv^p (mod q) j 

since exactly one of j, q—j is odd hence exactly half of the relatively prime (to q) 
reduced residues modulo q are odd. Now if q is prime then hV2(fia)=hViiq~1) = 

= (mod q), giving ( - l ) v ( M ) = ( - l ) ; - = ^ j . If q is composite and square-

free, q=q1...qr, r > 1 then -§-<p(tf) is a multiple of ( p z ' = l , . . . , r, hence 
(mod qt), i=l,...,r, /¿««> = 1 (modq) , giving (-1)V<*>«>=1. 

In the case of even q no simple interpretation of n(h, q) has been found. As the 
case ¿7=8,0—16 is of special interest, we show: 

L e m m a 2.4. Let q=8, fcxSl, = x(h)=C- Then 

Aí(/i + 2fcx, 8/q) = ¡i(h, 8/q) if kx is odd and hk± = 3 (mod 4), 

fi (4/Cj — h, 8/Ci) = fi(h, 8fcx) if k± is even. 

P r o o f . Throughout the proof x(j) will denote the Kronecker character 
modulo 8 i.e. / 0 ' ) = l f o r j = ±l (mod 8), x ( j ) = - 1 for j = ±3 (mod 8), x(j)=0 

for j even. Equation (2.29) now has the form 

(2.31) 1 k f x(J)j{hj}k = 8(ft + Ch*) + 64/cxM(h, k), k = 8 k u Kx j=i 

hh* = 1 (mod 64/q). 
Suppose first that kx is odd and kxh=3 (mod 4). Then x(h+2k1)=x(h) since 

h + (h + 2kJ = 2(h+k1) = 0 (mod 8), and 

(2.32) (h+2kJ* = h*+2k± (mod 16) 

as seen from (h+2k1)(h*+2k1)=hh*+2k1(h+h*)+4 = l (mod 16). Hence 

(2.33) 8(h+2k1+£(h+2k1)*)-8(h+t;h*) = l6k1(l + 0 (mod 128). 

Furthermore, writing for the moment / for {hj}k, it is easily seen that 

7T "I y.U)j({h+2k1)j}k-{hj}k) = Ki j=i 
(2.34) 

= 2 2 fx (j)—6 2 ; x 0 ) + 6 2 ; z 0 ' ) - 2 2 jx(J) 
j=l (mod4) 0 = 1 mod4) j s 3 ( m o d 4 ) j ~ 3 (mod4) 
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where all summations go from j= 1 to j—k — 1. For instance 

{(h+2kjj)k =j'+2ki if j= 1 (mod4) and 0 < y "+2fc1 < 8fcl5 

j'—6/cj if j = l (mod 4) and / + 2 f e 1 > 8 f c 1 , etc. 

Now 2 j'/.(j)-—4ki' 2 jxU)=4ki> hence the expression in 
7* = 1 (mod4) j' = 3(mod4) 

(2.34) is 
- i 6 / c 1 - 8 ( 2 M ; ) - 2 " 7 z ( i ) ) = 

j = l (mod 4) 7 = 8 (mod 4) 
« i ^ / ^ M j <>«=/<2*! 

= - 1 6 ^ - 1 6 2 J 'x0)+64k 1 2 xU) 
j=l (mod4) j = l (mod4) 

and we have to show, by (2.31) and (2.33), if we denote by Sh the set of residues j 
for which 6k^ {hj}k<%k11t that 

fci(2+0+ 2 r/Xi) = 4 2 x ( j ) ( m o d 8), . 
j ' = l ( m o d 4 ) j=l (mod4) 

JiSh j(Sh 

3 2 + 2 = M 2 + 0 (mod 8) 
j s i (mod 8) J = 5 (mod 8) 

JiSh jiSh 

provided that hk1 = 3 (mod 4). 
Now if h = l (mod 8), kx=3 (mod 4) and (h, 2fc1) = l , the elements hj,j= 

= 1 (mod 8 ) , j £ S h are exactly the elements = 1 (mod 8) between 6k x and 8A:l5 

namely 6 / ^+7 , 6fc1+15, . . . , 8/^—7, hence their total number is -j (k^ — 3). Simi-
larly the elements hj, j=5 (mod 8), Sh are 6 ^ + 3, 6 ^ +11, . . . , 8 ^ — 3 , and 
their total number is (A^+1). Hence the left hand side of (2.33) is | (k1 — 3)4-
+\ (k1 + \)=ki—2 which is =3k1 (mod 8) since ^ = 3 (mod 4). 

If h=3 (mod 8), ^ = 1 (mod 8), the elements hj, j= 1 (mod 8), j£ Sh are 
6 ^ - f 5, 6 ^ +13, . . . , 8^—5, and the elements hj with j=5 (mod 8), Sh are 
6kx+1,..., 8 ^ — 1. Hence we get, by counting their respective numbers, | (kx — 1) + 
+ T ( ^ 4 - 3 ) = ^ for both sides of (2.35). 

A similar count for h = 5 (mod 8), kx=3 (mod 4) gives | (A: 14-1)+|-(A: 1—3)=^ 
and for h=l (mod 8), ^ = 1 (mod 4), | (A1 + 3 ) + i ( A : 1 - l ) = A 1 + 2 for the left 
hand side of (2.35), which agrees with the right hand side in each case. Thus the first 
half of the Lemma is proved. 

Suppose next that kx is even. Then 

(2.36) (4Ai-fc)* = 12k! -h* (mod 16/cx) 

as seen from {Ak^-h^n^-h^hh*-Akx(3h+h*) = \ (mod 16^) . Hence 

8(4Aj —/»+{(4^!—A)*) = — &(h+£h*) (mod 128*0 if £ = 1 

= -8(/i4C/i*)464A:1 (mod 128^) if C = - l . 

or 
(2.35) 
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Furthermore, if we denote by Rh the subset of odd residues {1, 3 , . . . , k — 1} for 
which {hj}k>4k1, 

r 2 x U ) j ( { h j } k + № i - m > ) = 8 2 JxU) 

since {/?/}k + {(4ATJ — A)7" i s equal to 4kx if {hj}k<4k1, and to \2k1 if 4A:1< {///}*< 
k-1 

«=8 kx—k, and since 4 2 j x ( j ) = 0 . To prove the second half of Lemma 2.4 we must 
j=1 

therefore show that 

2 ixU) = 0 (mod 16/Ci) if h = ± 1 (mod 8) 
it*» 

= 8k± (mod 16*0 if h = ± 3 (mod 8). 

Now 0<7<4A:1, {hj}k>4k1=>{h(4k1—jj}k — I2k1 — {hj}k^-4k1, hence both j and 
4k1—j are in Rh and f x { j ) + (4k t —j)/(4k ± —j):=4k1x(j). Similarly 4£1<y'<8fc1 

{hj}k >4/fj=> {h(]2k1-j)}k = 12 k, - {hj}k > 4 ^ , and fx (j)+(12^-j) = *(12 k, - j ) = 
= l2k1x(j)- Hence 

2 jxU) = 2k1 2 x(j)+6ki 2 X(j)-

But {h(k—j)}k=k — {hj}k therefore exactly one of j, k—j is in Rh and since x ( j ) = 
=x(k—j), we conclude that among the residues j in Rh exactly half have x ( f ) = ± 1-
Hence 2 x(j)=® and we are finished with the proof if we can show that 

it** 

" 2 X(j) = l - X ( h ) (mod 4), 
j=1 

j'e-Rh 
or, since for 0<j<2k1, 2k1—jdRll<=>2k1

Jt-j£Rh (the condition for both is 4A;1< 

2^-1 1 
2 zU) = T(l-m) (mod 2). 

JiR h 

But x ( j ) = l (mod 2) hence the last condition is equivalent to 
2*1-1 1 
2 = - i ( l - z ( f c ) ) (mod2) 

J=1 z 

JiR h 

and this again is equivalent to 

(2.37) 2 1 = l -Z( fc ) (mod 4). 
j=i 

jtx* 

We formulate the statement in congruence (2.37) as a separate lemma as it has 
some interest of its own. 

10* 
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L e m m a 2.5. Let k=l6k', 0 < h < k , (h,k) = 1. Consider the set Th = 
= {jh\j=l, 3, . . . , Sk'— 1} of the first 4 k' odd multiples of h, and denote by Nh the 
number of those members of Th whose reduced residues modulo k are in the top half 
of the interval (0, k), i.e. 8 { / ? / } * < 16k'. Then 

0 (mod 4) if h =±l (mod 8) 

* ~ 2 (mod 4) if h= ± 3 (mod 8). 

P r o o f . The Lemma is not a direct corollary of Gauss' lemma and we give 
an independent proof. The number of odd multiples of h between (16r—8)fc' and 

16rk , r=\, 2, . . . , — (h — 1) is — — — and we must show 
that 2 J 

"y r _ i y \ % r k ' ~ h ] =
 0 ( m o d 4 ) h = ± l ( m o d 8 ) ¿i } I 2h J = 2 ( m o d 4 ) if h=±3 ( m o d 8). 

Set k'=mh+k0, 0 t h e n 

r A , \ 8rk0—h ] 

and we have to show that for 0 (2k0 , h) = \, 

"M 1 7 R f ^ l s 1 ~ m ( m o d 4 ) ' 
The left hand side here is 

i v ^ - . - f m ) } . 
As r runs through the non-zero residues modulo h, so does rk0 and the congruence 
reduces to 

(2.38) h Jg (-1)* = h(X(h)-1) = X(h) -1 (mod 4). 

Break up the summation in (2.38) into • 

2 + 2 + 2 + 2 + 2 -
, - r l l - l l rfi—1"! , ^ . r s h - 1 " ! r 3 h - 1 1 r 5)1-1-1 . ^ r ^ h - l n r 7h —1~1 
l s x s l — J L — J L — J < i a L — J L — . h ^ L — J L — 

Then in the /-th sum, / = 1 , 2 , 3 , 4 , 5 , j j — ~ 1 — h where the value 

of ti is —1, 0, 1, 2, 3 respectively, and we get for the left side of (2.38) 

(2.39) - 2 ( - l ) A + 2 ' ( - l ) A + 2 2 ( - l ) A + 3 2 ( - l ) " (mod4) 
1 3 4 5 
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where 2•>•••> 2 a r e summed for the respective ranges in the five sums above. 
1 5 

But clearly 2 (— 1);" only depends on the residue class of h modulo 16 and there-
i 

fore it is sufficient to calculate (2.39) for h = 1, 3, 5, 7, 9, 11, 13, 15. The respective 
values are 0, 2, 2, 4, 4, 2, 2, 4 and in each case they are congruent to 1 — y_ (ti) modulo 
4. This proves Lemma 2.5, and the proof of Lemma 2.4 is complete. 

3. We shall first use a direct saddle point method to obtain the main asymptotic 
expression for Cm. From Cauchy's integral formula 

(3.1) Cm=^r J t-^F(t)dt 

where r is any circle of positive radius less than 1 centred at the origin. We set 
/=exp {-In ( p - i f f ) } , 

(3.2) C = f Fie'^P-^e^-^dO, where = J - 1 / — . 
_i 2q f qm 

This in fact is the saddle point condition as one can show that the derivative of 

F(t)rm~1 is zero for /=exp { - 2 t t = ^ j / j ^ + 0(m"3 / 2) and for 

h satisfying y(h) = i. We omit verification as it will not be needed explicitly. 
We break the range of integration up into Farey intervals of order N=[P~ 3 / i ] 

For the relevant properties of Farey dissections see [6], Chapter III. Thus 

(3.3) Cm= 2 f F{e-2n<"-i0))e2'""<l,-i9) d6 

where Ih k is the Farey interval about hjk and the summation extends for 0 s / z < 
The Farey intervals with k = q, Cx(h) = 1 give the dominant terms; how-

ever, we require a few lemmas to prove this. 
h 

First of all, from Theorem 2.1, letting 9 =—+(p,z — k(P — i(p) it follows that 
/c 

- 2 „ t f - f £_,•„) 

(3.4) 
M KnQD*x(hqlD) p+i<p 0iQ • JxT/r-z-un ^ = co*(h, fc)exp( —j3 - — - — ( f i - u p y i i Fa(x; b,D, e). 

L e m m a 3.1. There exists a constant o 0 , independent of the Farey interval 
h k°f order N such that 

H' Fa(x; b, D, Q) = 0{exp (cp~112)} 
a 

on Ihtk. Furthermore there exists another constant c'>0 such that on Ih q 

7 7 ' Fa(x- b, D, 0) = 1 + 0 { e x p ( - C ' r 1 / 2 ) } . 
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P r o o f . It is easily seen that 

\Fa(x;b,D,e)\^ j jp(n) |* |" 
/ 1 = 0 

where p(n) is the unrestricted partition function of n. Now 

Since k^N=[P~3/i], KSqk and \<P\=jfi (the length of the Farey interval fhi t), 

we have 
Oir R 

ClP 
l K P ^ „ «1/2 
kK p2+cp2 

for some ^ > 0 , hence |Jc[^exp (—cxfiV2ri). It is well known that p(n)^exp (c2n1/2) 
for some c 2 >0. Thus 

¿ p ( « ) e x p ( - C i r 2 " ) = 0 { e x P (c3fi~112)}. 

This proves the first half of the Lemma. 
If k = q=K then 

2n P 
2npN2 > c4/?-1/2 

kK P2 + (p2 

and |Jc|<exp (—c4/?_1/2), from which the second part of the lemma follows, by the 
definition (2.1) of Fa. In the following c will denote a suitable positive constant, not 
necessarily identical with the constant in Lemma 3.1. 

L e m m a 3.2. Let k^q or k=q and xQi)^. Then 

= f o r ç c [ h k . 

P r o o f . This follows at once from (3.4) and Lemma 3.1 since %(q!D)=0 if 
D^q, and if k^q then the smallest multiple of q that k can be is 2q. Hence the 

expression in (3.4) is o j e x p I f k=9 a n d W 0 = - 1 then the 

expression is O {exp (c/?-1'2)}. 
Lemma 3.2 shows that the total contribution in (3.3) of all the Farey arcs 

except those with k=q ànd x(/i)=£ is o | e x p ^ ^ j . We now evaluate the 

contribution from those arcs in (3.3) with k=D=q and x(h)=^. From equation 
(3.4) and Lemma 3.1 we obtain 
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(3.5) 

Here J can be written as 
IH,, 

i P + UqN „ „ 
(3.6) T / exp {EJw+E2 w ) dw, El = E2 = 2nm -

1 P-i/qN ACi "1 

and this can be changed into a contour integral 
1 . 

— J exp (EJw+E2w)dw 
1 ( 0 + ) 

with an error 0{exp (cj32V2)}=0{exp (C/T1'2)} (see AYOUB [2, p. 185]). Now 

1 -— J exp (EJw+E2 W) dw = 2n res {exp (EJw+E2 w)} dw = 

= 2n YEJEJ&YE^) = . A VQVqm-tQ)) 

where I i ( t ) = J ^ i t ) is the modified Bessel function of order 1. Hence by (3.5) 

Cm = 4 r 1, fe V<2(4?m-£0 ) X 2 o>*(h, q) exp i-2nim A ) + 

Using the expression (2.24) for a*(h, q) and the saddle point condition (3.2) we 
obtain 

C m = f iQl^qm-mh fc V<2(4 qm-CQ)) X 
(3.7) 

M 2 " {exp ( f / f — " • ) } 
9 - 1 

for some positive constant c, where Q= 2 x(j)j2> h*h = 1 (mod q2) and n(h,q) 
j=i 

is given for odd q by equation (2.25), otherwise by (2.29), (2.30). 
By the well known asymptotic formula 
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(e.g. [1, formula 9.7.1]) (3.7) reduces to 

(3 .5) 

x { *)cos ( 2 , ( m ± - « H + k ^ } ) + 0 

This shows in particular that the asymptotic expression (3.7) gives Cm with a relative 
accuracy of exp (— cmm), except possibly when 

xW=S 1 ^ <1 4q'J) 

Thus, for Ramanujan's continued fraction (<7 = 5, ( = 1, 2 = 4 ) we obtain 

4iz C = T h (5 ])x {cos (r (m -|))+° (exp (-̂ i/4))} / 5 m-

When q=5,( = — l, we obtain 

I/2 C = 
(5m)3'4 e x p ( - g - X { c o s ( m + + 0 ( m " 1 / 2 ) } . 

In the case of Gordon's continued fraction (9=8, ( = 1, 2 = 16) we get 

C m = 2 ( 2 m z ) l l i £ X P ( t ^ m j x j c o s 4 ^ ^ + C>(m~1/2)| hence the asymptotic term 

is 0 for w = 3 ( m o d 4 ) . Similarly if q=8,( = —1 then the oscillating part is c o s - ^ p , 

hence 0 for m = 2 (mod 4). 

4. Finally we consider the representation of Cm as a convergent series. Starting 
from the integral formula (3.1) we again break the range of integration up into 
Farey arcs of order N where N is some positive integer. The saddle point condition 
is now of no help and we take exp (—2nN~2) for the radius of the circle / \ We 
write (3.1) in the form 

(4-1) Cm= 2 exp i—2nim f F(e2ni^~2"w)e2"mwd(p, w = N~2-i(p, 
*nfk 

where Ih k is the Farey interval about h\k and the summation extends over 0 s / 2 < 
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To evaluate the integral (4.1) we again make use of Iseki's transformation. Let 
us define rv by 

II'Fa(x;b,D,Q) = 2ryx> 
a v = 0 

where Fa(x; b, D, g) is as in (2.1). Then applying Theorem 2.1 to (4.1) with z=kw, 

Cm= Z k)exp \ - 2 n i m f Z rv-exp i ^ — ) X 
( M ) = l V I C J I

J
 v = 0 V fC / (4.2) 

We break the summation over v into two parts: Z = Z + Z where v is the greatest 
integer such that v v = 0 

Thus the coefficient of w - 1 is positive for v = 0 , 1, . . . , v, and zero or negative 
V 

for v>v. The sum Z is of course empty if v < 0 , in particular if D ^ q . 
v = 0 

Next we split (4.2) in three sums as follows: 

(4.4) 

Cm = Z 2' k ) e x P ( - 2nim A j J Z ry exp ̂ 2niv-j^J • e x p ( - E J w + F0 w) dcp + 
D^q I>>, K 

+ Z Z'°>*(h> k) e x P i - • 2 n i m T") / 2 exp ¡2niv exp ( - EJw + F0 w) dip + 
k = l h N K / r v>v V fC / 
~ *h. fc D=q 

N 
+ z 

k= 
D=q *(/>) = ? 

? Z' 0)*(h, k) exp i-2nim~) f Z rv e x P i2niv "rl e x P (~Eilw + Fow) d<P 
l h v k ) - * v = o v k J y.* r *h. k 

where 

F - 2nv F 2nv
 v(h-\ F - 2nV M nQ 

¿ O - I T F » ^i^XW, E2- — + -kK' 1 k2 2 qk2Ay" 2 k*^2qki' 
(4.5) 

Fn = 2nm —-— 
° 2 q 

and Z ' denotes summation over those h for which (h,k) = 1, 0<h<k. 
h 

The estimation of the three parts in (4.4) is based upon the following Lemma 
which will be proved at the end of this section. 
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L e m m a 4.1. Let m, v be integers, H as defined in §2, and e > 0 arbitrary. 
Then 

(p) h H -x- -
2 ' e x p { - 2 7 r i m — + 2 n i v — + 2 n i < r * ( h , k)} = 0{k* m3}, ti= + l or -1, 
h k k 

(i) 

where Z denotes summation over those h for which x(h) — t]C-
h 

Consider now the first summation in (4.4). Since the length of the Farey interval 

Ihyk is = t t t a r ,d k ^ N , we have by (4.1) and (4.5) 
fC{\ 

i" 2rtv "J 2nv N-2 2nv nv 
U(EJW) - ^ { j ^ j S N-l + {kN)-2 - q(k2N-2+1) S —. 

Thus 

f exp (-E0/w + F0w)dq> = O exp ( - y + 2 n 

and upon interchanging the order of summation of h and v and applying Lemma 4.1 
we obtain 

N /• f N - -—+2 nmN-<> - - + e 
2 ex P(...) f . . . = 0 \ N ^ Z 2K\e k ^ m3\ = 

k = l h r t t = l v = 0 > 

( - N - - + <¡1 
= O i e ^ ' ^ m ^ N - 1 2 k 3 \ 

since the radius of convergence of the infinite series is 1. Thus for the first summa-
tion of (4.4) 

(4.6) Z 2 ' . . . = 0{e2™N-*N 3 m*\. 
k=1 h 

In a similar manner we obtain for the second summation of (4.4), by the remark 
after the definition (4.4) of v, 

(4.7) 2 2 ' - J 2 - = 0{e*™N-*N 3 m3}. 

Let us now consider the third (principal) part of (4.4). Define C+ by equation 
(1.0) with C = l. It follows from Lemma 2.1 that 

(4.8) rv = c+. 

Transforming J as in (3.6), we obtain by the method of Ayoub 

(4.9) f exp {EJw+F0w}d<p = - Jexp{EJw + F0w}dw+O{e^mN-2k-1N-1}. 
1 (o+) 
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Upon interchanging the order of summation of h and v and employing Lemma 4.1 
and (4.9), it follows that the third summation of (4.4) is 

1 

(4.10) 2 2 ' - f 2 - = 2 2 cUk(m,v)Lk(m,v)+0{ei«'"N-2m*N 3 

fc = l h j v=0 fc = 1 v = 0 
D=g *(»)=? D = q 

where 
A«-1 f ( H h "U 

(4.11) Ak(m, v) = 2 h H = ~ l (modfcg) 
(h,kq) = l 

and 

Lk(m, v) = 1 / exp {E2lw + F0w}dw = 2nfEJF0I1 (2 / 7 ^ ) 
1 ( 0 + ) 

provided that Fn>0, i.e. m > . Hence for 

(4 .12) L k ( m , v) = | ^ ( e - 4 v # / 2 ( 4 i m - ^ ) - 1 / 2 / 1 { ^ ( 2 - 4 v # / 2 ( 4 9 m - C 0 1 / 2 } . 

If we let JV— oo, equations (4.4), (4.6), (4.7) and (4.10) yield with Lemma 2.2: 

T h e o r e m 4.1. Lei Cm be given by equation (1.0) awrf C+ by (1.0) with £=1 . 
I 

Lei (?* = — 2 x ( j ) j 2 and hr be a solution of hh* = 1 (mod Thenfor m>Q*/q 
4 

(4 .13) C r a = 2 2 C+Lk(m, v ) 4 ? » ( m , v) 
t = i os»-=e*/9 

»v/iere v) w given by (4 .12) , 

(4.14) v ) = 2 Kh,kq)cosj-(mh + vh*-^-(Ch+h*)) 
h=i kq q 

x№)=s 

withfi(h, kq) given by (2.25) and (2.29), (2.30) when (h, kq) = \, n(h, kq)=0 otherwise. 

The following are the first thirty values of Q*/q: 

q 5 8 12 13 17 21 24 28 29 33 37 40 41 44 53 

Q*lq j - y 1 1 2 2 3 4 3 6 5 7 8 7 7 

q 56 57 60 61 65 69 73 76 77 85 88 89 92 93 97 

Q*lq 10 14 12 11 16 12 22 19 12 18 23 26 20 18 34 
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To prove Lemma 4.1, we estimate 

k-1 JJ 
( 4 . 1 5 ) 2 exp{—2nim— + 2niv — + 2nia*(h, k)} 

l is 1 rC <i K 
xW)=ni 

by means of Kloosterman sums. Define the trigonometric sum 

( 4 . 1 6 ) S(u, v; A, A; r) = 2 E X P I — (uh+vh*)} 
0<«<r I t J 
(fc, >0=1 

h = jI (mod A) 

for integers u, v, A, A, /•>0 where /4 is a positive divisor of r and hh* = l (mod r). 
It was proven by KLOOSTERMAN [10] that there exists a / I > 0 such that with e > 0 

arbitrary, 

( 4 . 1 7 ) S(u, v; A, A; r) = O^-'+'Cu, r f ) . 

According to SALIE [12] and DAVENPORT [4] , p can be taken as and we 
assume this for convenience. 

By making use of the expression (2.22) for a*(h,k), the sum in (4.15) can be 
written as 

«r-i r 2Jii 1 
^2 Hh,k)^p^—[-(3(p5Q+gqm)h + 5(gqv-3cpQX(h))h*]j if D = q, . 

xC0=iC 

k ~ l ( 2ni 1 
2 HKk)exp\-^L-[-(3(p5Q + gDm)h + v5gDh*]\ if D # q 

ft = l - (giJK ) 

where we have taken H=5h*, hh* = 1 (mod gDk), by the definition (2.19) of H. 
The value of 

X{h, k) = ±exp{TTI [ -JL 2 X(j)j{hj}q- j x(k)5D,i 2 ' X t o ] } 

only depends on the residue class to which h and k belong modulo q, provided that 
we select the solution y of yfcj — 5 ^ = 1 in (2.0) always in the interval 

Thus the sum ( 4 . 1 5 ) splits up in at most q2 sums of the form cS(u, v; A, A; r) 
with A=q,r=gDk and u = ~(gDM+3(p5Q). But uq = -(gDqm + 3<pQ(yk-D)) 
by (2.0) and so (uq, k) = (gDqm-3(pQD, k)^gDqm + 3 \q>QD\, (u, r) = 0(m), and 
(with fi=±) 

Hence by (4.17) the expression (4.15) itself is 0(km+em1/3), which is precisely the 
statement of Lemma 4.1. The proof of Theorem 4.1 is now complete. 
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5. We apply Theorem 4.1 to the case when q=%, Q = \6 and £ = 1, m = 3 (mod 4) 
or ( = — 1, m=2 (mod 4). Suppose first that k is odd and that hk=3 (mod 4). 
Then %(h+2k)=x(h), as in the proof of Lemma 2.4, and we find, by the first case 
of the Lemma and (2.32) 

<5.1) n(h, 8k) cos -^r (mh - j (£h + h*))+n(h +2k, 8k) c o s ( m ( 2 k + h ) -

-±(Uh+2k)Hh+2k)*)) = 

= n(h, 8k){cos (mh - j (th + h*))+cos (mh - j (£h + h*) + 

+ k(2m-C-lj) = 0 

since m=3 (mod 4) if £ — 1 and m=2 (mod 4) if £ = — 1. Clearly the co-prime 
residues h modulo 8k with x(h)=i can be uniquely grouped in pairs h,h+2k 
satisfying the condition kh~ 3 (mod 4) and each pair of corresponding terms in 
(4.14) cancels, by (5.1). Therefore Af\m, v )=0 for odd k in (4.14). 

Suppose next that k is even. Then x(h)=%(4k—h) and we find, by the second 
case of Lemma 2.4 and (2.36) 

H(h, 8k) co s JL (mfc — I (£h + h*))+n(4k-h, 8k) cos (m(4k-h)-

-l(^k-h)+(4k-h)*)) = 

= ft(h, 8k) {cos (mh - j + h*))+cos (mh - j tfh + h*) + . 

+ 2fc(3 + C-2m))} = 0 

since m is odd when £ = 1, even when f = — 1. Thus the terms in the sum (4.14) 
cancel in pairs and A(P(m, v)=0 also for even k. Thus Af(m, v )=0 for all k, 
and we obtain the following corollary of Theorem 4.1: 

T h e o r e m 5.1. If q = 8, £ = 1 (Gordon's continued fraction) then Cm=0 in 
(1.0) for all m = 3 (mod 4). If q= 8, £ = - 1 then Cm = 0 for all m= 2 (mod 4). 

Another interesting case is <7= 12 when the principal asymptotic term of Cm 

vanishes fór m=5 (mod 6) if £ = 1 and for m=3 (mod 6) if £ = — 1. It is quite 
likely that Cm is zero for these values of m but at present we do not have the appro-
priate modification of Lemma 2.4. It would be interesting to prove these results 
independently from the series representation (4.13). 
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It is easy to give an interpretation of Theorem 5.1 in terms of partitions. Take 
first Gordon's product 

( 1 - ^ ( l - x " ) . . . ( 1 - * * ) ( ! - * * 3 ) . . . _ 

Since Cm—0 for m=3 (mod 4), we have F(x) -F{-x) + i(F(ix) -F(- ix))=0 
and upon expressing this equation as a sum of four fractions of products and bringing 
the fractions to common denominator we obtain for the product 

G(x) = 7 7 ( l + x 8 m + 1 ) ( l - x 8 m + 3 ) ( l - x 8 m + 5 ) ( l - x 8 m + ' ) ( l + ^ 1 6 m + 2 ) ( l + x 1 6 m + 1 4 ) = 
m = 0 

= Zd„x", 

G(x)-G(-x)+i(G(ix)-G(-ix))=0, that is d„=0 for n=3 (mod 4). Or, if we 
take the partitions of n into distinct positive integers of the form 8 / n + l , 16w + 2„ 
8m+7, 16/M+14, 8m+3, 8m+5, and if n=3 (mod 4) then the number of such 
partitions in which parts 8m ± 3 appear an even number of times is the same as 
the number of those partitions in which parts 8m ± 3 appear an odd number of 
times. By reinterpreting parts 16m+2and 16m+ 14 as (8w + l) + (8m+l) , (8m + 7) + 
+ (8m+7) respectively, we obtain 

T h e o r e m 5.2. Denote by II„ the set of those partitions of n into positive odd 
parts in which summands = ± 3 (mod 8) appear at most once and summands 
= ± 1 (mod 8) appear with multiplicity at most three. Then if n = 3 (mod 4), exactly 
half of the partitions belonging to Fl„ contain an even (odd) number of summands 
= ± 3 (mod 8). 

For instance II19 contains the 14 partitions (1 ,1 ,1 ,3 ,13) , ( 1 , 1 , 1 , 5 , 1 1 ) , 
(1 ,1 ,1 ,7 ,9 ) , (1,1,17), (1 ,1 ,3 ,5 ,9 ) , (1,5,13), (1,9,9), (1 ,1 ,3 ,7 ,7 ) , (1 ,3 ,15) , 
(1, 7, 11), (3, 5, 11), (3, 7, 9), (5, 7, 7), (19). The first seven of these contain an even 
number of summands = ± 3 (mod 8), and the last seven an odd number of suck 
summands. 

By turning Gordon's product upside down, a similar theorem is obtained fo r 
n=2 (mod 4), with ± 1 and ± 3 interchanged. For instance in the ten partitions 
(1, 17), (5, 13), (1, 3, 5, 9), (3, 5, 5, 5), (1, 5, 5, 7), (1, 3, 3, 11), (3, 3, 3,9), (3,3, 5, 7), 
(3, 15), (7, 11) of 18, exactly five contain an even number of summands = ± 1 (mod 8). 
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