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Unary algebras With regqllar endomorphism monqidlslz

L. A. SKORNJAKOV

The pair (4, f) where 4 is a non-void set and f is a unary operat1on will be
briefly called a unar. For simplicity we often write A4 instead of 4, f ). Let f° be the
identity transformation and f"=ff""! for every n=1. We define a relation ~ on
the unar 4 as follows:

a~b & f™@a) = f"(b) for some m,n=0.

This relation turns out to be an equivalence relation, the classes of which are
called components. A unar consisting of a single component is termed connected.
An element a of a unar is cyclic if f"(@)=a for some n=1. A unar is called a
cycle of length n if ‘it consists of the distinct elements a, f(a), ..., " (a)  with
Sf"(@)=a. The term loop stands for a cycle of length 1. The set -

el @n=012. }

is called the upper cone of the element a. If f(x)=a then the element x is called a
parent of a. A connected unar which is not a cycle but in which every element has
a unique parent is said to be a /ine. A connected unar A4 is called a cycle, a loop or
a line with short tails if A contains a cycle, resp. a loop or a line C such that f(x)€C
for every x€A. We agree on denoting the cardinality of a set 4 by |4]. If XZA4,
set JX) = {f(x)|xe X}

: The mapping ¢ of the unar 4 into the unar B is called a homomorphism if
o( f(x))=f(p(x)) for all x€A. In particular, if 4=B then we obtain the defini-
tion of an endomorphism of A. The set of all endomorphism of 4 forms a monoid
which is denoted by End 4. The set of all automorphisms (i.e. bijective endomorphlsms)
of A forms a group denoted by Aut 4.

If m and n are positive integers or - then the symbol mln means that elther
n=c or m,n< and m divides n. ’
In the present paper the following results are established: .
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Theorem 1. The endomorphism monoid of a unar is regular if and only if
each component of the unar is either a cycle with short tails or a line with short tails
and for any components K, L and M the following conditions are satisfied:

) i 1SN EL SOOI and L=M then |f(K)|=|f(L)I;

@ if IfDI|IfFEI, K=f(K) and Lz=f(L) then |f(K)|=|f(L)|;

@) if /DI and |L\ f(L)|=2 then K=f(K) or K=L.

Theorem 2. The endomorphism monoid of a unar is an inverse semigroup if
and only if every element in the unar has at most two parents, each of its components -
is either a cycle with short tails or a line with short tails and beyond conditions (1)—(3),
the following are also fulfilled for any components K, L and M:

@ if |ADI|IAK| and | fMOI||fE)| then K=L or K=M or L=M;

(5):if K=L and |fI|IAK)| then |f(D)|=1 and |f(K)>1, and if, in
addition, L#f(L) then K=f(K).

Theorem 3. The endomorphism monoid of a unar is a group if and only if each
of its components is either a cycle or a line and for arbitrary components K and L the
relation ILH[K | implies K=L.

In the proof of these theorems we need some lemmas. The first one charac-
terizes inverse semigroups, while the others concern the unar (4, f).

Lemma 1. (cf. [1] Theorem 1.17) The foIIowmg conditions on a semigroup S
are equivalent:

(i) S is regular and any two zdempotents of S commute with each other;

(ii) S is an inverse semigroup (i.e., every element of S has a unique inverse).

Lemma 2. (cf. [2] Theorem 2.4) In a connected unar A the Sfollowing condtttons
are equivalent: ‘
(i) A is either. a cycle or a line;
(i) £ is bijective; ‘
(iii) the endomorphisms of A are the elements of the set {f*: k=0, £1, £2,...}.

Lemma 3. (cf. [2] Lemma 2.8) If C is a cycle of length n in A and acC then
Jfor every endomorphism @ the element ap is contained in a cycle of length p where p
divides n. '

Lemma 4. (cf. [2] Lemma 2.11) If a,b€A belong to the same component K,
@ €End 4 and ap belongs to the component L then b also belongs to L. :
The followmg lemma is easily verified.

Lemma 5. The set f(A) is a subalgebra in A whtch is muanant w:th respect t0
every endomorphism in End A.

Lemma 6. If End 4 is regular then fc Aut f(A). 4 L
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Proof. Since fcEnd A, we have f&f=f for some PcEnd 4. If xcf(4),
i.e., x=f(y) for some y€A then we have

fo(x) =fof(y) =f(y) =x and &f(x) =fP(x)=x,
which completes the proof.

Lemma 7. If K is a component in A then End K can be embedded in End A.
If End A is a regular or an inverse semigroup or a group then End K has the same
property.

Proof. If ¢€End K then put
' ' o(x) if xeK
2@ = {7

otherwise

" for every x in 4. It is easy to see that ¢ embeds End K in End 4. If there exists
(P(p))"'€End 4 then K is invariant with respect to (@(¢))~* and, consequently,
the restriction of (®(¢))~" to K can be chosen as ¢~!. Hence, End K is a -group
provided End 4 is a group. Assume now that the monoid End 4 is regular. Then
()P D(p)=D(p) for some- P¢End 4. If Y(K)SK then the regularity of
End K follows. In the opposite case we have ¥ (a)¢ K for some ac K. Then Lemma 4
implies that
P () ¥P(9)(a) = 45(¢)9’(<p(a)) = ¥(p@)¢ K,

in contrary to the fact that @(p)@)=¢(a)<K. Finally, it ‘femains to note that
the rest follows from Lemma 1 since e?=¢ implies (&(e))2=d(e).

Lemma 8. Let K and L be cycles with short tails or lines with short tails such
that | f(L)||| J(K)|. Let a€K and beL. Then there exists a homomorphism ¢: K—~L
such that @(a)y=>b and @(x)ef(L) for every x#a.

Proof. If f™(@)=f"(a) and m=>n then |f{K)||(m—n) and, moreover, n=1
provided a¢ f(K). Since | f(L)||(m—n), we have f™(b)=f"(b). Thus there exists
a homomorphism ¢: a®—b*. If |f(K)|<o then ¢(f(K))=A(L). If |f(K)|=cs,
ie. f(K) is a line, then ¢ can be naturally continued to a homomorphism
@: (aUf(K))~L such that again ¢(f(K))=f(L). If x€ K\ f(K) then o(f(x)) is
defined and there exists a unique element x'€f(L) such that f(x")=¢( f(x))
Choosmg @(x)=x" we obtain the required homomorphism. .

‘The proof of Theorem 1. Let 4 be a unar and End 4 a regular monoid-
If 4 is connected then, by Lemma 6, we have f€ Aut f(4). Then Lemma 2 implies
f(4) to be a cycle or a line. In view of Lemma 7 the components of 4 have the
required structure. Now suppose the components K, L and M satisfy the assump-
tions of property (1). Owing .to Lemma 8, there exist homomorphisms ¢: K—~L
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and y: L-M. For every x€A put
p(x) if x€K
d(x)=3¢(x) if x€L
X otherwise.

Clearly, #¢End 4. Since End A is regular, we have d¥®=¢ for some ¥€End A.
If x¢K then ®(x)€L. Since P¥P(x)=P(x), we conclude PP(x)cK. Hence
it follows by Lemma 4 that ¥(L)S K. Consequently, | f(K)]|| f(L)| by Lemma 3
and therefore |f(K)|=|f(L)|- Let us assume now that the components K and L
fulfil the assumptions of property (2). Choose a€ K\ f(K), b€ L\ f(L) and, making
use of Lemma 8, let ¢: K—~L and {: L—~L be homomorphisms satisfying ¢(a)=>b
and Y (L)S f(L), respectively. We define #cEnd A as above and select ¥€End 4
such that d¥d=0&. If |[f(K)|#]|f(L)| then ¥(L)NK=@ by Lemmas 3 and 4.
Consequently, - ¥ d(a)~b=@d{a) which is a contradiction. Finally, let X and L
satisfy the assumptions of property (3). Choose b, c€ L\ f(L) such that b=¢.
Suppose there exists a€ K\ f(K). By Lemma 8, we can find homomorphisms
¢: K—~L, y: L~L such that @@ =>b,¥y(})=c and ¢(x), Y (¥)cf(L) provided
x7#a and y>b. Define @ as above and choose ¥ such that d¥Pd=¢. If K=L
then, by Lemma 4, we have Y (L)NK=@ or Y¥Y(L)NL=0. In the first case we
obtain that &P &(a)= ®¥(b)><b= ®(a) while in the second case we have ¥ O (b)=
=@¥(c)#c=®(b). But, of course, both cases are impossible. Thus the necessity
of the conditions of Theorem 1 is proved.

Conversely, suppose now that the unar A satisfies these conditions and
®cEnd 4. For every component L consider the set of components

Lr = [K|9(K) & L}.
We establish that the following statement is valid:

If L2#9 then there exists a component L® and a homomorphism W : L—L°
such that ®Y(x)=x for every x€Im $NL.

In fact, taking into consideration Lemma 4, denote by M the component con-
taining @ (L). By the structure of the components of 4 we have f(L)SIm &. Sup-
pose first that Im @NL=f(L). If M=L then choose an element a¢f(L) and,
putting L°=L, choose an element b€f(L% with &(b)=a. Applying Lemma 8
we can find a homomorphism ;: L—~L° with ¥;(a)=b. If xcIm #NL and
x=f*(a) for some k then

DY (x) =f*PYr(a) =f*@(b) =f*(a) = x. ~

If there exists no such k then f(L) is a line. Therefore f*(x)=a for some k whence
we have

SHYL(x) = BYr(a) = D(b) = a = f*(x).
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Since” ®(L)=f(L), it follows that &y (x)=x. If M#=L then, by Lemma 4, we
can see that ¢(K)SL for a component K=L. Lemma 3 and property (1) imply
that | f(K)|=|f(L)|. Then we can set L°=K and literally repeat the foregoing
argument. Assume now that Im @NLs<f(L). If there exists a component K in L?
such that K+ L and K=f(K) then, by property (3) and Lemma 3, we obtain that
L\ f(L) consists of a single element, say a. Then a=®(b) for some bcA and
we can choose L° to be the component containing b. It is easy to see that b¢ f(L9).
Due to property (2), |f(L%|=|f(L)| which allows us to apply the above reasoning
again. It remains to treat the case when Im @#NL#f(L) and K=f(K) for each
KeLAN\{L}. Then L€L“. There is no difficulty in verifying that @ induces an
automorphism, say @, on f(L). Let y, : /(L) ~f(L) be the inverse of this automorphism.
For every xc¢(Im®NLY\ f(L), choose and fix an x’€L with P(x")=x and set
Y (x)=x". Then Y, maps Im &NL into L and

YL(fX) = Yo @) = YL B(f(x)) = Y o (f(x)) = F(x) =S (x).

Just as above, we extend ¢, to a homomorphism of L into L for which we will use
the same notation ¥, and set L°=L.
Returning to the proof of the theorem, put

Yo(x) if x€L with L& =0
x otherwise.

v ={

Obviously, Y€¢End 4. Moreover, we have L20 provided L is a component
containing ¢ (x) for some x€A4. Hence, utilizing the property of the homomorphism
¥, we conclude that VPP (x)=PY; d(x)=D(x) which proves the regularity of
the monoid End A4.

The proof of Theorem 2. Let A be a unar and End 4 an inverse monoid.
Suppose a, b, ¢ are distinct elements in A and f(a)=f(b)=f(c). Denote by K the
component containing these elements. By Theorem 1, f(K) is a cycle or a line.
Therefore, for example, a, b¢ f(K). The transformations ¢ and & defined by

b if x=a a if x=5»5

e(x) = { and d(x) = {

x otherwise x otherwise,

respectively, turn out to be endomorphisms of K. Here ¢=¢, §2=9,
ed(a) =e(a) =b and de(a) =46(b) =a.

Since the idempotents in an inverse semigroup commute with each other by Lemma 1,
this contradicts Lemma 7. Thus, every element of 4 has at most two parents. The
validity of conditions (1)—(3) is implied by Theorem 1. Assume now that the distinct
components K, L and M satisfy the assumptions of property (4). Owing to Lemma 8,

i
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there exist homomorphisms ¢: K—~L and §: K—M. The transformations & and
¥ where
e(x) if x€eK _ {l,b(x) if x¢K
@) = {x if x¢x 24 YW= if x¢K

are easily shown to be endomorphisms of 4. Here @%*=¢, ¥2=Y. Still, if x€K,
we have

PY(x) = P(Y(x) = Yy(x)eM and ¥P(x) = ¥(p(x) = p()E L,

which, by Lemma 1, fails to hold in the inverse monoid End 4. If K and L are dis-
tinct components with | f(L)||| f(K)| and |f(L)|=2 then select elements ac f(K)
and b, c€f(L) such that b>#c. Lemma 8 implies the existence of homomorphisms
¢: K—~L and §: K—L such that ¢(@)=b and Y (a)=c. Furthermore, we define
endomorphisms @ and ¥ by setting

' o(x) if xeK W) if xeK
(p(x)s{x if xgkx 2 W(x)={x i x4K.

Then #2=, P2=Y¥ and PY¥Y(a)=c=b=¥P(a). If f(K)':{Au} and f(L)={w}
then #*=P, Y’=¥ and O¥(v)=v=w=¥YP(v), where

v if xeKUL

& { w if x€kK
PO =1y i xerUL

and SlU("):{x if x¢K.

This contradicts Lemma 1 as above. If |f(L)|=1 and assume L>f(L) and
K=f(K) then, by property (3), L={b, w} where f(b)=f(w)=w. Puiting :

w if xcK w if x€f(K)
d(x) = {x i x¢K and ¥Y(x)=1b lff- x:g\f(K)}
x if x¢K,

we can see that &, Y¢End 4, $2=¢ and ¥2=V. However, for every x€ K\ f(K)
we have ’
P¥YP(x) =P(b) =b and P&(x) = ¥(w)=w,

which is impossible. Thus we have proved the hecessity of the conditions of Theo-
rem 2. : - ’
Assume now that these conditions are satisfied in the unar A. In consequence
of Theorem 1, End 4 is a regulair monoid. Let &, YcEnd A such that &$2=¢
and Y?=Y¥. By Lemma 1, we have only to show that ¥ =¥&. Let x be an
arbitrary element in 4 and K the component containing x. Denote by L and M
the components containing #(x) and ¥(x), respectively. By Lemma 4, ®(K)SL
and Y(K)SM. By virtue‘“of Lemma 3 and property (4) we have K=L, K=M
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or L=M. If K=L=M then both & and ¥ induce idempotent endomorphisms
- on f(K). Thus Lemma 2 implies that &(z)=¥(z)=z forevery z¢f(K), i.e. D¥(x)=
=x=Y®(x) provided x€f(K). Otherwise, if x¢ f(K) then, since f(x) has at most
two parents, we obtain @(x)=x or P(x)=x" where x'€f(K) and f(x")=f(x).
A similar statement holds for ¥, too. If &(x)=¥(x)=x then O¥(x)=x=YP(x).
If ®#(x)=x" or ¥(x)=x" then we have ®¥(x)=x"=¥®(x). Suppose now L=M
but K>L. Then property (5) implies that |f(L)[=1 and either K=f(K) or
L=f(L). Hence we have ®(z)=¥(z)=w for every z€K where w denotes the
single element in f(L). Moreover, ®(w)=®2(z)=®&(z)=w. Analogously, ¥(w)=w.
Thus .
P¥(x) =Pd(w) =w = ¥(w) = YO (x).

. Finally, consider the case when K=L but L#M. Property (5) implies that

1/(M)|=1 and either K=f(K) or M=f(M). Denoting by w the single element
of f(M), we conclude as above that ¥ (z)=w for every z€ K. In addition, properties
(4) and (5) imply #(M)SM by Lemma 3. Thus

PY¥(x) = ¢(w) = w = VYP(x).

The case when K=M but ML is handled similarly. Therefore ¥ =% @ which
completes the proof.

The proof of Theorem 3. Let 4 be a unar and End 4 a group. If |4|=1
then the conditions of Theorem 3 are trivially fulfilled. Let |4|1. Lemmas 2 and
7 imply each component to be a cycle or a line. If we have distinct components K
and L with |L|||K| then, according to property (5) in Theorem 2, |L|=1. If w
is the single element in L then, defining @ by ®(x)=w for every x€A4, we have
@®cEnd A=Aut A. Counsequently, 4=L, contradicting our assumption. The proof
of the necessity of the conditions of Theorem 3 is complete. In the case when these
conditions are satisfied it is not difficult to show by Lemma 3 that every endomor-
phism induces an endomorphism on each component. To complete the proof it
remains only to make use of Lemma 2.
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