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Unary algebras with regular endomorphism monoids 

L . A . S K O R N J A K O V 

The pair ( A , f ) where A is a non-void set and / is a unary operation will be 
briefly called a utiar. For simplicity we often write A instead of (A,f). L e t / 0 be the 
identity transformation and fn=ff"~1 for every 1. We define a relation ~ on 
the unar A as follows: 

a~b <=> fm(a) —f(b) for some m,n^0. 
def 

This relation turns out to be an equivalence relation, the classes of which are 
called components. A unar consisting of a single component is termed connected. 
An element a of a unar is cyclic if f ( a ) = a for some « s i . A unar is called a 
cycle of length n if it consists of the distinct elements a,f(a), . . . , / "~ J (a ) with 
f"(a) = a. The term loop stands for a cycle of length 1. The set 

« A
d T f { / » | n = 0 , 1 , 2 , . . . } 

is called the upper cone of the element a. If f(x)=a then the element x is called a 
parent of a. A connected unar which is not a cycle but in which every element has 
a unique parent is said to be a line. A connected unar A is called a cycle, a loop or 
a line with short tails if A contains a cycle, resp. a loop or a line C such that f(x)£C 
for every x£A. We agree on denoting the cardinality of a set A by \A\. If XQA, 
set / ( Z ) d l f { / ( x ) | x € ^ } . 

The mapping <p of the unar A into the unar B is called a homomorphism if 
'p(f(x))—f((p(x)) for all x£A. In particular, if A=B then we obtain the defini-
tion of an endomorphism of A. The set of all endomorphism of A forms a monoid 
which is denoted by End A. The set of all automorphisms (i.e. bijective endomorphisms) 
of A forms a group denoted by Aut A. 

If m and n are positive integers or °° then the symbol m\n means that either 
n = °o or m, n ̂  °° and m divides n. 

In the present paper the following results are established: . i \ :•. 
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T h e o r e m 1. The endomorphism monoid of a unar is regular if and only if 
each component of the unar is either a cycle with short tails or a line with short tails 
and for any components K, L and M the following conditions are satisfied: 

(1) if \f(L)\ \AK)\, |/(M)|||/(L)| and L*M then \f(K)\ = \f(L)\; 
(2) if \f(L)\ \f(K)\, K*f(K) and L ^ f ( L ) then \f(K)\ = \f(L)\; 
(3) if \f(L)\ \f(K)\ and | L \ / ( L ) | S 2 then K—f(K) or K=L. 
T h e o r e m 2. The endomorphism monoid of a unar is an inverse semigroup if 

and only if every element in the unar has at most two parents, each of its components • 
is either a cycle with short tails or a line with short tails and beyond conditions (1)—(3), 
the following are also fulfilled for any components K, L and M: 

(4) if \f(L)\\\f(K)\ and \f(M)\\\f(K)\ then K=L or K=M or L — M; 
(5)-.if K^L and \f(L)\\\f(K)\ then | / (L) | = 1 and | /(AT)|>1, and i f , in 

addition, L^f(L) then K=f(K). 

T h e o r e m 3. The endomorphism monoid of a unar is a group if and only if each 
of its components is either a cycle or a line and for arbitrary components K and L the 
relation |L|||A:| implies K=L. 

In the proof of these theorems we need some lemmas. The first one charac-
terizes inverse semigroups, while the others concern the unar (A , f ) . 

L e m m a 1. (cf. [1] Theorem 1.17) The following conditions on a semigroup S 
are equivalent: 

(i) 5 is regular and any two idempotents of S commute with each other; 
(ji) S is an inverse semigroup (i.e., every element of S has a unique inverse). 

L e m m a 2. (cf. [2] Theorem 2.4) In a connected unar A the following conditions 
are equivalent: 

(i) A is either a cycle or a line; 
(ii) / is bijective; 

(iii) the endomorphisms of A are the elements of the set { f k : k=0, ± 1 , ± 2 , ...}. 

L e m m a 3. (cf. [2] Lemma 2.8) If C is a cycle of length n in A and a£C then 
for every endomorphism <p the element atp is contained in a cycle of length p where p 
divides n. 

L e m m a 4. (cf. [2] Lemma 2.11) If a,b£A belong to the same component K, 
(p € End A and a(p belongs to the component L then b(p also belongs to. L. 

The following lemma is easily verified. 

L e m m a 5. The set f(A) is a subalgebra in A which is invariant with respect to 
every endomorphism in End A. 

L e m m a 6. If End A is regular then Aut f(A). , 
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P r o o f . Since / £ E n d A, we have f<Pf=f for some <PdEndA. If x£f(A), 
i.e., x=/(y) for some yd A then we have 

f<p(x) =f<Pf(y) =f(y) = x and <Pf(x) =f$(x) = x, 

which completes the proof. 

L e m m a 7. If K is a component in A then End K can be embedded in End A. 
If End A is a regular or an inverse semigroup or a group then End K has the same 
property. 

Proof . If (?(EEnd K then put 
( <p(x) if x£K 

= otherwise 

for every x in A. It is easy to see that <P embeds End K in End A. If there exists 
(<p))-1£End A then K is invariant with respect to (i>(<p))_1 and, consequently, 

the restriction of (<£(<p))_1 to K can be chosen as cp-1. Hence, End K is a group 
provided End A is a group. Assume now that the monoid End A is regular. Then 
$(<p)*F$(<p)=:4>(<p) for some f ^ E n d A. If W(K)QK then the regularity of 
End K follows. In the opposite case we have T(a)<lK for some a£K. Then Lemma 4 
implies that 

$(q>)V${q>)(a) = $(<P) V(<p(a)) = <F((p(a))$K, 

in contrary to the fact that 4>((p)(a)=(p(a)£K. Finally, it remains to note that 
the rest follows from Lemma 1 since e 2 =e implies ($(e))2 = $(e). 

L e m m a 8. Let K and L be cycles with short tails or lines with short tails such 
that | / (L) | j \f(K)\. Let a^K and b£L. Then there exists a homomorphism (p: K^L 
such that (p(a)=b and (p(x)£f(L) for every x^a. 

P r o o f . If fm(a)=f(a) and m > « then \f(K)\\(m—ri) and, moreover, n a l 
provided aif(K). Since \f(L)\\(m-n), we have fm(b)=f(b). Thus there exists 
a homomorphism q>: aA^bA. If | / ( iT) |<°o then (p(f{K))=f(L). If |/(AT)| = oo, 
i.e. f(K) is a line, then <p can be naturally continued to a homomorphism 
cp: (aUf(K))~L such that again <p(f(K))=f(L). If x£K\f(K) then <p(f(x)) is 
defined and there exists a unique element x '£ / (L) such that / (* ' )=9> (/(*))• 
Choosing <p(x)=x' we obtain the required homomorphism. 

T h e p r o o f of T h e o r e m 1. Let A be a unar and End A a regular monoid-
If A is connected then, by Lemma 6, we have / £ Aut/(/4). Then Lemma 2 implies 
/(4). .to. be a cycle or a line. In view of Lemma 7 the components of A have the 
required structure. Now suppose the components K, L and M satisfy the assump-
tions of property (1). Owing to Lemma 8, there exist homomorphisms <p: K—L 
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and L—M. For every x£A put 
(p(x) if x£K 

$(x)= i K x ) if x€L 
. x otherwise. 

Clearly, $€EndA. Since End A is regular, we have = $ for some '/'CEnd A. 
If x£K then <P(x)£L. Since <P(x), we conclude V<P{x)£K. Hence 
it follows by Lemma 4 that W(L)QK. Consequently, \f(K)\\\f(L)\ by Lemma 3 
and therefore | / ( £ ) | = | / (L) | . Let us assume now that the components K and L 
fulfil the assumptions of property (2). Choose a£K\f(K), b£L\f(L) and, making 
use of Lemma 8, let <p: K-*L and ip: L-*L be homomorphisms satisfying cp(a)=b 
and i p ( L ) Q f ( L ) , respectively. We define End A as above and select f € E n d A 
such that <2>!P<f>=<i>. If \f{K)\*\f(L)\ then ¥(L)mC=0 by Lemmas 3 and 4. 
Consequently, <PrF<P(a)?£b=<P(a) which is a contradiction. Finally, let K and L 
satisfy the assumptions of property (3). Choose b, c£L\f(L) such that b^c. 
Suppose there exists a£K\f(K). By Lemma 8, we can find homomorphisms 
<p: K-~L, i]/:L-~L such that q>(a)=b, \p(b)=c and <p(x), ip(y)£f(L) provided 
x?±a and y^b. Define as above and choose V such that <Z>f<i>= <f>. If K^L 
then, by Lemma 4, we have Y(L)flK= 0 or S /(Z,)flL=0. In the first case we 
obtain that <PxP(P(a) = 0lP(b)9ib = <t>(a) while in the second case we have = 
— $'F(c)9£c=<P(b). But, of course, both cases are impossible. Thus the necessity 
of the conditions of Theorem 1 is proved. 

Conversely, suppose now that the unar A satisfies these conditions and 
4>€End A. For every component L consider the set of components 

L* = {K\$(K) g £}. 

We establish that the following statement is valid: 

If L A t h e n there exists a component L° and a homomorphism Ij/L: Z,—V 
such that <P\j/L(x)=x for every x^Im 4>C\L. 

In fact, taking into consideration Lemma 4, denote by M the component con-
taining $(L). By the structure of the components of A we have f(L)QIm <P. Sup-
pose first that Im <PDL=f(L). If M=L then choose an element a£f(L) and, 
putting L°=L, choose an element b£f(L°) with <P(b)=a. Applying Lemma 8 
we can find a homomorphism i//L: L—L° with tj/L(a)=b. If ; t£lm <PDL and 
x=fk(a) for some k then 

=f"^L(a) = /**(&) =f\a) = x. 
If there exists no such k then f(L) is a line. Therefore fk(x)=a for some k whence 
we have 

= = $(b) = a =fk(x). 
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Since &(L)=f(L), it follows that <Pij/L(x)=x. If M^L then, by Lemma 4, we 
can see that $(K)QL for a component K^L. Lemma 3 and property (1) imply 
that \f(K)\ = \f(L)\. Then we can set L°=K and literally repeat the foregoing 
argument. Assume now that Im (¡>f)L?±f(L). If there exists a component K in LA 

such that Kji L and K^f(K) then, by property (3) and Lemma 3, we obtain that 
L \ f ( L ) consists of a single element, say a. Then a=<P{b) for some b^A and 
we can choose L° to be the component containing b. It is easy to see that b§.f(L°). 
Due to property (2), |/(Z,°)| = |/(Z,)| which allows us to apply the above reasoning 
again. It remains to treat the case when Im and K=f(K) for each 

LA\{L}. Then L£LA. There is no difficulty in verifying that <f> induces an 
automorphism, say cp, on f(L). Let ipL: f(L) —f(L) be the inverse of this automorphism. 
For every x 6 (Im <P Pi L)'\f(L), choose and fix an x'dL with <P(x')=x and set 
\jjL(x)=x'. Then \j/L maps Im <PC\L into L and 

№ { * ) ) • = = <£(/(*')) = = / ( x ' ) =ML(X). 

Just as above, we extend ij/L to a homomorphism of L into L for which we will use 
the same notation \j/L and set L°=L. 

Returning to the proof of the theorem, put 

(¡l/L(x) if x£L with I A ? i 0 
^ ^ I x otherwise. 

Obviously, !P€End A. Moreover, we have L A p r o v i d e d L is a component 
containing i>(x) for some x£A. Hence, utilizing the property of the homomorphism 
i/'i we conclude that <Pli/'P(x) = <t'il/L<P(x) = <t>(x) which proves the regularity of 
the monoid End A. 

The p r o o f of T h e o r e m 2. Let A be a unar and End A an inverse monoid. 
Suppose a, b, c are distinct elements in A and f(a)=f(b)=f(c). Denote by K the 
component containing these elements. By Theorem 1, f(K) is a cycle or a line. 
Therefore, for example, a, b$.f(K). The transformations e and 5 defined by 

{ b ii x = a (a ii x = b 

x otherwise anC* ^ ^ I x otherwise, 

respectively, turn out to be endomorphisms of K. Here e2=e, <52=<5, 

e5(a) = e(a) = b and Se(a) = S(b) = a. 
Since the idempotents in an inverse semigroup commute with each other by Lemma 1, 
this contradicts Lemma 7. Thus, every element of A has at. most two parents. The 
validity of conditions (1)—(3) is implied by Theorem 1. Assume now that the distinct 
components K, L and M satisfy the assumptions of property (4). Owing to Lemma 8, 
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there exist homomorphisms <p: K-*L and ip: K—M. The transformations $ and 
where 

f (p(x) if x£K f i p ( x ) if x£K 
= I T * k a n d W = 1 f * l x if l x if x$K 

are easily shown to be endomorphisms of A. Here *P2 = ¥. Still, if x£K, 
we have 

<2><?(x) = <P(\p(x)) = V>(JC)€ M and ¥<P(x) = ¥(q>(x)) = <p(x)€L, 

which, by Lemma 1, fails to hold in the inverse monoid End A. If K and L are dis-
tinct components with |/(Z,)| | |/(AT)| and | / ( L ) | s 2 then select elements a£f(K) 
and b,c£f(L) such that b^c. Lemma 8 implies the existence of homomorphisms 
q>: K-*L and ip: K-*L such that (p(a)=b and tp(a)=c. Furthermore, we define 
endomorphisms $ and ¥ by setting 

[(pipe) if x£K (ip(x) if x£K 
* ( * ) = 1 t a n d 

l x if x$K l x ii x$K. 

Then $2 = <P, <F2 = ¥ and $¥(a) = c?ib = V<P(a). If f ( K ) = {«} and f ( L ) = {w} 
then 4>2 = <2>, >F2 = >F and 4>'F(v) = v ^ w = <F$(v), where 

iv if xeKUL f w if x£K 
= 1 "c * n i r a n d y ( * ) - = T „ if x$KUL [ x if x$K. 

This contradicts Lemma 1 as above. If \f{L)\ = \ and assume f(L) and 
K ^ f ( K ) then, by property (3), L={b,w) where f(b)=f{w) = w. Putting 

{ w 

X 

if x$_K 
if x i * a D d *<*> = 

w if x£f(K) 
b if x(iK\f(K)] 
x if xff^T, 

we can see that <i>, !P£End A, <P2 = <£ and iP2= f . However, for every x£K\f(K) 
we have 

<PY(x) = <P(b) = b and f<P(x) = f ( w ) = w, 

which is impossible. Thus we have proved the necessity of the conditions of Theo-
rem 2. 

Assume now that these conditions are satisfied in the unar A. In consequence 
of Theorem 1, End A is a regular monoid. Let <P, f ^ E n d A such that <P2= <P 
and !F2=W. By Lemma 1, we have only to show that <$Y = W<I>. Let x be an 
arbitrary element in A and K the component containing x. Denote by L and M 
the components containing $ (x ) and T(x), respectively. By Lemma 4, <P(K)QL 
and ¥(K)Q.Mi By virtue of Lemma 3 and property (4) we have K=L, K—M 
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or L=M. If K=L=M then both $ and f induce idempotent endomorphisms 
' on/ (A0-Thus Lemma 2 implies that <£(z) = <F(z)=z for every z£f(K), i.e. = 
=x—W$(x) provided x£f(K). Otherwise, if x$f(K) then, since f ( x ) has at most 
two parents, we obtain <P(x)=x or 4>(x)—x' where x'£f(K) and f(x')=f(x). 
A similar statement holds for Y, too. If <P(x) = 1'(x)=x then <!>¥(x)=x = ¥<P(x). 
If <P(x)=x' or <F(x)=x' then we have <PW(x)=x' = lP<P(JC). Suppose now L = M 
but K^L. Then property (5) implies that | / (L)[ = 1 and either K=f(K) or 
L—f(L). Hence we have <$ (z) = f ( z )=w for every z£K where w denotes the 
single element in / (L) . Moreover, <P (w) = <P2 (z) = <f (z) = w. Analogously, ¥(w) = w. 
Thus 

4>V(x) = 4>(w) = w = T(w) = <F$(x). 

Finally, consider the case when K=L but L^M. Property (5) implies that 
\f(M)| = 1 and either K=f(K) or M=f(M). Denoting by w the single element 
o f f ( M ) , we conclude as above that W(z)=w for every z£K. In addition, properties 
(4) and (5) imply <P(M)QM by Lemma 3. Thus 

<PV(x) = <P(w) = w = V4>(x). 

The case when K = M but M ^ L is handled similarly.1 Therefore 4>W = ¥<P which 
completes the proof. 

T h e p r o o f of T h e o r e m 3. Let A be a unar and End A a group. If \A\ = l 
then the conditions of Theorem 3 are trivially fulfilled. Let \A\^l. Lemmas 2 and 
7 imply each component to be a cycle or a line. If we have distinct components K 
and L with |L|||AT| then, according to property (5) in Theorem 2, \L\ = 1. If w 
is the single element in L then, defining $ by <P(x) = w for every x£A, we have 
4>ÇEnd A = Aut A. Consequently, A=L, contradicting our assumption. The proof 
of the necessity of the conditions of Theorem 3 is complete. In the case when these 
conditions are satisfied it is not difficult to show by Lemma 3 that every endomor-
phism induces an endomorphism on each component. To complete the proof it 
remains only to make use of Lemma 2. 
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