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The value distribution of entire functions of order at most one 
J. N. BAKER and L. S. O. LIVERPOOL 

§ 1. Introduction and results 

Recently S. K I M U R A [6] proved 

T h e o r e m A. Let f be an entire function of order less than one and wn a sequence 
such that |w„|-»°° as n — Suppose that all the roots of the equations f{z) = wn 

(n = l , 2, ...) lie in a half-plane (say Re z=^0). Then f is a polynomial of degree 
at most 2. 

We begin by improving Theorem A a little to 

T h e o r e m 1 . I f f is an entire function whose growth is at most order one and 
minimal type, and wn is a sequence such that — °° while all roots of f ( z ) = w„ 
(« = 1,2, ...) lie in a half-plane, then f is a polynomial of degree at most 2. 

In this form the theorem is sharp. For any d > 0 the function edT has type 
d and is bounded in R e z ^ O so that any sequence wn such that 1 may 
be taken to satisfy the hypothesis in Re zsO. 

Theorem 1 has an application in the theory of iteration of entire functions 
(see e.g. F A T O U [5] for proofs of the following results). The iterates / " of an entire 
f u n c t i o n / a r e defined by fi=f / " + 1 = / " o / = / o / " (« = 1,2, ...). I f / i s non-linear 
the set (£( / ) of points in whose neighbourhood {/"} is a normal family, is a 
proper open subset of the plane. The complement % ( f ) of (£ ( / ) is a non-empty, 
unbounded, perfect set. tf(f) has the invariance property: 

If w f . g ( / ) and / ( z ) = w, then z € g ( / ) and f(w)Cg(/). 
In iteration theory the fixed points of / are important. A fixed point z of / 

of order A: is a solution of fk(z) = z. It is proved in [5] that every point of g ( / ) is 
a limit point of fixed points of / 
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It may happen that a component of £ ( / ) contains a half-plane. Thus for 
d > 0 the function 

maps H= {z: Re z < 0 } into itself so that {#"} is normal in H. 
Suppose that conversely g is a transcendental entire function and that l£(g) 

contains a half-plane, which we may take to be Re z<0 . Then g ( g ) lies in 
R e z s O and if we take a sequence such that |w„| — a l l solutions of 
f ( z ) = wn lie in ff(g) by the invariance property, and hence in R e z ^ O . Thus 
from Theorem 1 we have 

T h e o r e m 2. If g is a transcendental entire function such that the domain of 
normality CC(g) of {g"} contains a half-plane, then the growth of g must be at least 
of order 1, positive type. 

Example (1) shows that this is sharp with respect to growth. Related problems 
have been discussed under more restrictive conditions by P. B H A T T A C H A R Y Y A [4]. 

If 0 6 5 ( g ) then every solution z of g(z)=0 belongs to g(g). The following 
Theorem 3a is thus a strengthening of theorem 2. 

We introduce the notation 

T h e o r e m 3a. Suppose (i) g is a transcendental entire function whose growth 
is at most of order 1, minimal type, (ii) all the zeros of g lie in Re z § 0 . 

Then for any ¿ > 0 the set (re, S) is unbounded. 

Because of the importance of fixed points it is interesting that we can also prove 

T h e o r e m 3b. If in 3a (ii) is replaced by the hypothesis that the first order fixed 
points lie in R e z ^ O , the conclusion remains true. 

The example (1), for which all first order fixed points lie in R e z ^ O , shows 
that 3b ceases to hold if the assumption of minimal type is dropped. 

In the circumstances of Theorems 3a or 3b it follows that A (n, d) must contain 
fixed points of some order of g. Can one be more explicit about the order of such 
fixed points? Let us take 3b and make the stronger hypothesis in (ii) that all the 
first order fixed points are real and positive. Our methods and results differ slightly 
according to the order of g. For order less than we have 

T h e o r e m 4a. Suppose (i) g is transcendental entire of at most order minimal 
type, and 

(ii) all but finitely many first order fixed points of g are real and positive. 
Then for any 5 >0 , A (n, 5) contains infinitely many fixed points of order k for 

each k § 2. 

(1) g(z) = d - V 2 - 1 ) 

(2) A(6,8) = {z: | a r g z - 0 | < ¿}. 
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Indeed the fixed points of higher order, whose existence is shown in the theorem 
can be taken to be non-real. This is somewhat analogous to the result of the first 
author in [2] that if / is transcendental entire of order less than j and / is a straight 
line, then not all solutions of / 2 ( z ) — z = 0 lie in /. Neither result includes the other 
but both show that second order fixed points tend to be scattered in their angular 
distribution. 

If the order of g exceeds | we have not been able to prove the existence of 
fixed points of order 2 in A {n, 8), However we can prove 

T h e o r e m 4b. If in Theorem 4a (i) is replaced by the assumption that the order 
of g is strictly positive, but at most order 1 minimal type, then for any 0, § subject 

we have that A(0, S) contains infinitely many fixed points of 

order k for each k^3. 

Thus in particular if g is at most of order 1 minimal type and all first order 
fixed points are real and positive, / has fixed points of every order greater than 2 
in A(n, 5), however small ¿ > 0 is taken. 

The arguments used in this discussion can also be applied to show that func-
tions of certain classes are not expressible as iterates of entire functions. An ex-
ample is furnished by 

T h e o r e m 5. Suppose the transcendental function F is such that 
(i) lim sup {log log log M(F, r)}/log #•< 1, 

r-*- OO 
(ii) all first order fixed points of F lie in R e z ^ O , and 

(iii) F is bounded in A (n, <5) for some 5 >0. 
Then F is not expressible as fk,k^2, for any entire f . 

In (ii) we may replace fixed points by zeros without affecting the validity of 
the theorem. The function ee~~ has all its fixed points in R e z s O and shows that 
we cannot allow equality in (i). 

§ 2. Proof of Theorem 1 

We may assume / ( 0 ) ^ 0 (otherwise consider /(z—<5) for a suitable posi-
tive constant <5). 

We shall use the following results about functions of minimal type whose 
zeros lie in a half-plane. They may be found e.g. in the proof of theorem 1 of [8], 
where the additional hypothesis f(—r) = 0(rk) of that theorem is not used until' 
after these facts have been derived. 
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. L e m m a 1. Let f be a transcendental entire function of at most order one and 
minimal (i.e. zero) exponential type. Suppose /(0)^0 and that all zeros an of f lie 
in the right half plane Re z^O. Then there are constants A and c such that 

(3) 
n=l V «„/ 

where an=rneie" is such that 

(4) / = Re J a " 1 = J (cos BB)/ra 
n=l n=l 

is convergent and 
(5) ¿ + Rec = 0. 

Further, for any fixed k 

(6) | / ( - r ) | / r * - °° as 

P r o o f of T h e o r e m 1. We may suppose ^ = 0 (for otherwise consider 
/ ( z ) — Wj) and suppose first that / is transcendental entire of at most order one, 
minimal type and that all solutions of f ( z ) = w„ lie in H: Re z s O . In particular 
the zeros an=rne"B» lie in H, so by Lemma 1 

m = c + y ( - J - + J - 1 
f ( z ) n=Az-a„ a J 

Using (4) and (5) this yields 

(7) R e ^ = J ' R e - 1 
/ ( z ) n f i z-an ' 

If Rez-<0 and R e a ^ O we have Re—i—=0, while if z = o e " ' then for fixed a> 
z — a 

\z\ Re — — cos <p as q — 

7T 
Thus by (7), if d is a fixed number such that 0 < < 5 < y , 

|z| Re a s i n A ( n > 5 ) -

Take a fixed constant K>2n/d. Then there is a constant r0 such that 

(8) K for z£A(n, S), |z| > r0 . 

Next choose a member of the given sequence wn so that | / ( z ) | < |w„| for | z | ^ r 0 . 
By (6) there is a largest r„ such that |/(—/•„)| = |n,„|. There is a component G of 
{z: | / (z) | >|w„|} which contains {z: z = — /•< — /•„} and this component is bounded 
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by a level curve T: | /(z) | = \wn\ which passes through z——r„. f cannot close 
in Re z < 0 for there are no zeros of / in this region. 

If r meets neither of the lines argz=7t±<5, then G lies entirely in the angle 
A(7i,<5). Let rd(r) be the length of that segment yr of \z\ = r which lies in G and 
contains z=—r. By the arguments used in the proof of the Denjoy—Carleman— 
Ahlfors theorem in [9, pp. 310—311] it follows that for all sufficiently large say) 
the maximum modulus function M ( f , r ) of / satisfies 

/ dt 
log log M (/, r) > log log Max | /(z) | J Jq^+C, 

for a suitable constant C. Since £?(/•) <2<5 this implies that / has order at least 
n/2(5>l, which is impossible. 

Thus there is a level curve T: | /(z) | = |vv„|, which starts at z=—rn and runs 
to either are z=n+S or n—S. Moreover r lies in | z | ^ r 0 so that the inequality 
(8) holds on r . But w=f(z) maps T onto ¡u'j = |H'„| and as z traverses F, w 
traverses |w| = |w„| without change of direction. Further, we have 

dw dz zf'{z) 
w ~ z . f ( z ) 

whence, if w=\wn\ei'p and z=re'B^r we have 

so that by (8) 
zf'(z) 

|dcp\ ^ \d0\ № K\d0\. 

The image of r is therefore an arc of |w| = |w„| whose angular measure is at least 
Kd>2n. Thus r , and in particular A (n, S) must contain a root z of f ( z ) — w„, 
against the hypothesis of the theorem. 

We conclude that / cannot therefore be transcendental. If / is a polynomial 
its degree can clearly not exceed two. 

§ 3. Proof of Theorem 3 

Suppose g is a. transcendental entire function of growth at most order 1, minimal 
type and is such that 
(10) A(n, <5)0 g(g) 

is bounded for some ¿ > 0 . Without loss of generality we may assume that the 
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set in (10) is empty — it is only necessary to shift the origin and consider the itera-
tion of g(z+a)—a for sufficiently large negative a. 

Whether the zeros of g(z) or the fixed points (i.e. the zeros of g(z)—z) are 
in R e z ^ O it follows from Lemma 1 that for any k 

(11 ) g(— r — o° a s r — oo. 

Since A=A(n,d) does not meet g , A belongs to an unbounded component 
G of the set (£(g) of normality of g". Indeed by [3] G is simply-connected. The bound-
ary dG belongs to g and is a continuum in the complex sphere. By the invariance 
property of g , g(z) omits all the values of dG for z£A. 

If M=nj{15) the transformation 

(T) « = (1+0/(1-0, 2 = 
maps | / | < 1 onto A, so that the function 

« - « M ^ f í 
is regular in | f | < l and omits the values w£dG. 

By a result of J. E. L I T T L E W O O D [7] 

MQI,Q) = 0 { ( l - e ) - 2 } as Q — 

If z = re,e£A, and |0-TT |«5/2, then in (T) 

l = (1 _ eMi(it-fl) r-M^J 

~ l - 2 e M i l * - e ) r - M a s . _ „ 

Since \M(n—0)|<;r/4 we have \ — \t\>r~M for large r. Thus as z = r é 9 — 
in \ 8 — w e have 

|g(z)| = |/i(OI < M(h,\-r~M) = 0 ( r 2 M ) . 

But this conflicts with (11). The result follows. 

§ 4. Preliminaries to the proof of Theorems 4a and 4b 

Throughout this section assume that g is an entire function such that 
(i) g is transcendental and of at most order one, minimal type, 

(ii) all but finitely many fixed points of first order of g are real and positive. 
Then we have 

«(*)-* = p W Ü (l — f \ e°~», 
n=i v 
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where p is a polynomial of degree say d^O, and 0. Applying lemma 1 to 
{g(z)—z}Ip(z) w e see that 2^an1 converges and in fact 

g ( z ) - z = p(z)exp(iyz) ] J \ i - J L \ 
n=l v 

where y is real. If y^O then 

Max | g (± iy) | > exp 

so 7 = 0 since g has minimal type. Thus 

(12) g(z) = z + h(z), h(z) = p(z)Q(z) = p(z) n fl 
n=i v anj 

L e m m a 2. If g satisfies (i), (ii) then there is some r o > 0 such that |g( — /")l 
is increasing for r>r0, so that w=g( — r), r>rQ describes a simple curve f . 
r approaches infinity in a limiting direction a rgw = a. 

For, let 5 satisfy 0 < ( 5 < y . From (12) it follows that as z — °° in A(n,S) 

we have |A(z)/z| — °° and 

zh' 
p Q h 

(c.f. (7) and (8) in theorem 1). Thus |A ' (z ) | -« . and 

ZS' zh'(l + \/h') . .. 
( 1 3 ) a s m 

In particular 

(14) g'(-r)/g(-r) = ^-{d+o(\)+Z-L-\ {1 + 0(1)} 
r I flal ' T«n-' 

as r — and if g(—r)==Rel<p we have 

dR 
By (14) the argument of (15) approaches zero as r — s o that — > 0 

for large r. 
Clearly —r)| — oo faster than any power of r and arg h(—r) tends to a 

constant value, namely the argument of the leading coefficient of p(z). Hence 
arg g(—r) approaches the same limit. The lemma is proved. 
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7T 

L e m m a 3. If g satisfies (i), (ii) then, given any real 90, <5, a such that 0 < ( 5 < y , 

0-<<7 = 7r, there exist a constant Rl and two branches ip and % of z=g~1(w) regular in 
S = A(90, <r)n {|w| > iij}, 

such that the values of satisfy 7r —<5 -=arg ip and 7i<arg y <n + 5, re-
spectively. For any /c>0 we have 

i 
(16) Max {|^(iv)|, |^(w)|} = 0(|wf*) as w i n S. 

Proof . As w traverses r from w0=g(—rQ) to the branch of z=g~1(w) 
such that r0=^~1(w0) has a regular continuation and the values of z are all real 
and negative ( < — /•„). 

For r1 =-/'0 put -R=|g(—/"i)| and consider the level-curve X = \g(z)\ = R which 
passes through z=—rx. Along X we have as in (9) 

idcp = (zg'/g){id9+^-], 

where z=rei6fj., g(z) = Re'"'. 
By (13) for z of sufficiently large modulus in A(n,S) we have for any given 

K>4n/5 that \zg'(z)lg(z)\>K. Thus if R and hence r are sufficiently large we 
have \d(p\>K\d6\, \d(p\>K\dr\/r. As z leaves —rx on X and travels in a given direc-
tion to re'6 the corresponding <p changes monotonely so that 

K\6-7i\ = | f Kd91 ^ f K\d9\ S f\d<p\ = d<p\ = Acp, 

and similarly A T | l o g A ( p . As w-g(z) traverses |w| = 7?, increasing from 
a r g g(—r) by 4ft, z traverses ). in one direction with 9 changing by at most' 4n/K<5, 
while r satisfies 
(17) r i exp ( - 4n/K) < r < /-x exp (4n/K) . 

Thus if rt is large enough the value of z remains in A(n, <5) and by (13) g'{z)^0 
on X so the value of z gives a regular continuation of g _ 1(w) from g(—r^) in r 
round through an angle of 4n. The values of z lie in A (n, 3) but do not 
meet the negative real axis except at z=—r 1 ? since g(—r) is increasing. Since 
r can be taken to lie in any sector |argw—a|<£, £>0, it follows that we can 
derive from these values of g~*(w) a branch i¡/ which satisfies the statements of 
lemma 3, including either n—5<arg\j/<n or 7 r < a r g i p ^ n + d . 

If in the above construction we begin by proceeding along X in the opposite 
direction from that chosen originally we construct the other branch / of g - 1 . 
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For re10 = \J/(Reirp) we have by 

|r | = liACRe^)! < i\ exp (4n/K) 

and from R = |g(—/-^l for large r1 the estimate (16) follows. 
We shall also need 

Lemma 4 ( P Ó L Y A [ 1 0 ] ) . Let e,f,h be entire functions which satisfy e=foh, 
h (0) — 0. Then there is a positive constant c independent of e, f h such that 

(18) M ( e , r ) > j l f [ s , c M 

The condition h ( 0 ) = 0 can be dropped ¡ / ( 1 8 ) is to hold only for all sufficiently large r. 

§ 5. Proofs of Theorems 4a and 4b 

T h e o r e m 4a. Suppose g satisfies the hypotheses of the theorem. The first of 
these implies that the minimum modulus of g is large (>i?„) on a sequence of circles 
|z| = i?„ — T h e R„ may be chosen so that there is at least one zero of g in each 
í,<|z|<üJ+1. Since |g(-r)\/r-»°° as r-*-°° each of the simply-connected slit 
annuli 

An = {z: R„ < [z| < Rn+1, |argz| < TZ}, n = 1, 2, ... 

contains a zero of g and has the property that 

(19) |g(z)| => |z| on the boundary dA„. 

Denote by <p a branch of z=g~1(w) which is regular in A(0,n) for sufficiently 
large w, with values in 7i>arg z>n—<5, <5 being the fixed number, 0 < ( 5 < y chosen 
in §4. Such a <p exists by lemma 3. 

: For any fixed 1=2, 3, . . . , the (/—l)-th iterate cp!~1(w) is defined in A(0, n) 
for sufficiently large w, with values in 7r>arg z=»7r —<5. For sufficiently large n 
then <p1-1 maps A„ univalently onto a simply-connected domain D„ in 7r=-arg z > 

<• >7r —d. For z£dDn we have g'^1(z)£dAn. Now since |g(z) |> |z | for large |z|, 
z£A(n, S), it follows from z f j D n that |g' _ 1(2) |> |z | and from g'~1(z)^dAn and 
(19) that at 

Ig'wi = Ig^' - 1 ^)) ! > |g i_1(^)l > w , 
at least for large n. 

. By Rouché's theorem g'(z)—z and gl(z) have equal numbers of zeros in D„ 
and:: 0£g(A„)=gl(Dn). Thus the region 7i>arg z>n — ő and a fortiori A(n,ő) 
contains an infinity of solutions of g'(z)— z = 0. 
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T h e o r e m 4b. Suppose g has order o, 0 < 1, and is at most of order one, 
minimal type, while all but finitely many first order fixed points are positive. Suppose 

also that and that a, 0<(T<7i/2 is so small that Let 
2 2 ' . 2 2 

ij/ and x be the two branches of whose existence is asserted in Lemma 3. in the 
case 0o = 6. Then *j> = x has no solution in A(9, H{|>v| 

Suppose g has only finitely many fixed points of order k in A (6, a). Then 

is regular and different from 0, 1, °° for large z in A (9, a). By applying Schottky's 
theorem to F in A (8, <7) (or in a slightly smaller sector within A (6, a) and with 
origin shifted so that F^O, 1, °° in this sector) we find 

(20 ) F ( z ) = 0 { e x p ( C | z | " " ) } 

for some constant C as in A (0, a'), a'^o. From (16) the same estimate 
follows for |g* - 1(z) | with perhaps a different C. 

71 
Now there exists 81 such that O c ^ ^ y and A(9, cr')<zA(n, 5^. Thus 

\g(reie)\^o0 as r — °o and \zg'/g\>K>2nl<r' for large |z|, z£A(9, a'). As in the 
proof of theorem 1 there is for large R a level curve T(R): |g(z)| = which passes 
through z=re ' 9 , say. Such a curve cannot close in A (6, 5) for arbitrarily large R, 
since |g(z)| —<=> in A (9, S) and A (9, 5) contains only finitely many zeros of g. 
As in theorem 1 F must run to the boundary of A (9, a') in at least one direction. 
If 7 is an arc of r which goes from re*e to c)A(0, a'), then from \zg'/g\>-K it follows 
that the image of y under w=g(z) is the whole of |w|=/?. 

For large R we have that if t is the point on \t\=R where |g*_2(OI = 
=M(gk~2, R) then for some zgy, g{z)=t 

(21) = Ig*"1^)!-

Now in A(9,a')cA(n,S1), \g(z)\l\z\N-<*> as for any N. Take 
N>2n/(go), where Q is the order of g. Then for large R we have from (21) 

(22) Max Ig*"1^)! > M(gk~2, rN). 
| z | = r 

zZA(e,,o 
Since A:—2 = 1 the right hand side is (for large r) at least 

M(g, rN) > exp ( r* ) > exp (r2*/o) 

for some arbitrarily large r. Thus we have a contradiction between (22) and the 
estimate for g k _ 1 from (20). Hence g must in fact have an infinity of fixed points 
in A(9,a). 
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§ 6. Proof of Theorem 5 

Suppose F satisfies the hypotheses of Theorem 5 and that there exist an entire 
function / and an integer such that F=fk. Since F is bounded on the path 
y which consists of the negative axis running to — it follows that one of 

/(?)> •••> / t - 1 ( ? ) is an unbounded path on which / is bounded. From this 
it follows that the lower order of / is positive. 

From lemma 4 and the fact that the lower order of / is positive we easily 
obtain a contradiction to hypothesis (i) of the theorem, provided k ^ 3. 

It remains to prove the theorem for k=2. From hypothesis (i), F=f2 and the 
fact that the lower order of / is positive it follows from Lemma 4 (as is proved 
in [1, Satz 12]) that the order of / is less than one. 

Now /(z)=zH-g(z) where the zeros of g are fixed points of / and hence of F. 
Thus the zeros of g lie in Re z s O and the order of z is less than 1. By lemma 1 
we have 

(23) M and a s 

while 

(24) > K > 2 n / ô in |z| > r0 , |arg z — n\ -< 5. 

For a large R ( > M ( g , /•„)) there is a level curve T: |g(z) |=i? passing through 
z——/• such that | g ( — = R > r 2 . Just as in the proof of theorem 1 it follows 
that r must run to at least one of arg z=n+S or n—8, say the former, and that 
the image under w=g(z) of this arc must cover jiv[ = i? with angular measure 
at least Kd>2n. Let y denote the arc of r between —r and a point z' chosen so 
that the image g(y) covers exactly the angular length K8 of |w|=i?. As in the 
proof of Lemma 3 (17) it follows that for all z1=r1e">i£y we have |log ( r j / r ) j<5. 

The arc y is mapped by / ( z ) = z + g ( z ) onto a (not necessarily closed) curve 
in such a way that the image of zx is z1 + Re"''1 where |zjcre"5 , R>r2, and <p1 

increases by K8>2n as z t describes y. Thus / (y ) certainly cuts the negative real 
axis, say in a point w'=/(z"), z"€ y. Then 

\F(z")| - | /( /(z")) | = |/(w')| > M 2 > ( R - r e r > | r j 

if R and hence r are sufficiently large. Thus A (n, ¿) contains points z" of arbitrarily 
large modulus for which 

which contradicts (iii). This completes the proof. 
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