
Acta Sci. Math., 41 (1979), 15—27 

C0-Fredholm operators. I 
HARI BERCOVICI 

In this note we introduce the notions of C0-Fredholm and C0-semi-Fredholm 
operators, which are generalisations of the Fredholm and semi-Fredholm operators, 
and we study some properties of these operators. The study of index problems 
in connection with operators that intertwine contractions of class C0 was suggested 
by [10], Theorem 2 and Conjecture. 

In § 1 of this note we introduce some notions and we define and study the 
determinant function of an arbitrary operator of class C„. In §2 the notions of 
C0-fredholmness, C0-semi-fredholmness, and index are defined. Here we find 
(Corollary 2.8) a generalisation of [10], Theorem 2 under weaker assumptions. 
We also show that the index defined for C0-semi-Fredholm operators is multi-
plicative. At the end of § 2 we prove a perturbation theorem. In § 3 we show that 
there exist C„-Fredholm operators with given index (Proposition 3.1). We also 
prove that the conjecture from [10] is generally false (Proposition 3.2) but is verified 
in the bicommutant of a C0 contraction of arbitrary multiplicity (Proposition 3.4). 
At the end of § 3 we show that the set of C0-Fredholm operators is not generally open. 

§ 1. Preliminaries. The determinant function 

For any (linear and bounded) operator T acting on the Hilbert space § we 
denote by Lat (T ) the set of invariant subspaces of T and by Lat1/2 (T) the set of 
all semi-invariant subspaces of T (that is, subspaces of the form 99J091, where 
Ml, 5R€Lat(r) and 9K=>91). It is known (see [4], Lemma 0) that a subspace 9Ji of 
§ is semi-invariant for T if and only if 

(i.i) Tm = pwT\m 
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16 Hari Bercovici 

is a "power-compression", that is, if 

(1 .2) 7 S = P „ r | O T , « = 1 , 2 , . . . . 

If T is a completely non-unitary contraction this is equivalent to 

(1.3) « ( T y = P«K(r) |SR, J i -

l t is obvious that L a t 1 / 2 ( r ) = L a t 1 / 2 ( J * ) (we have SDle5U=5ixe50i-1-). Let 
us recall that the multiplicity /xT of the operator T is the minimum cardinality of 
a subset 21 of § such that V TnfH=%. For each 9Ji€Lat1/2 (T) let us put 

n£0 
/ jT(3)l)=/jT m . If T is an operator of class C0 , we have by [7] that ¡iT=nTt. In 
this case we shall have 

(1-4) ' = H r * m , M6La t 1 / 2 (T ) . 

For any two operators T, T' acting on respectively, we denote by 
T) the set of those operators X\ which satisfy the relation 

(1.5) T'X=XT. 

Obviously, {J{T, T'))¥ = J(T'\ T*). 
We are now going to define the determinant function of a C„ operator acting 

on a separable Hilbert space. 

D e f i n i t i o n 1.1. Let T be a C0 operator acting on a separable space and 
let S(M), M= {nij}J=1 be the Jordan model of T [2]. We define the determinant 
function dT as the limit of any convergent subsequence of {m1m2... mj}(j= 1,2, ...). 

The function dT is uniquely determined up to a constant factor of modulus 
EO 

one because \dT\= [J |m,-|. If dT^0 then dT is an inner function. 
j=i 

The C0 operators of finite multiplicity have nonvanishing determinant func-
tion. Indeed, if S(m1,m2, is the Jordan model [6] of T, we have 
dT=m1m2...mn. For any C0 operator T the relation dTt=dj holds (where 
f ( z ) = m ) . 

With this definition of the determinant function, it is obvious that dT is invariant 
with respect to quasi-affine transforms. It is also obvious that dT=1 if and only 
if T acts on the trivial space {0}. We shall use the general notation 

(1.6) d T m = d T n 

for any Co operator T and any SDteLatyg (7"). 

L e m m a 1.2. A contraction T of class C0 on a separable Hilbert space is a weak 
contraction if and only if dT^0. If T is a weak contraction of class C0 , dT coincides 
with the determinant of the characteristic function of T. 
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P r o o f . If dT?i0 it follows that the Jordan model S(M) of T is a weak con-
traction (cf. [3], Lemma 8.4). Thus, by Proposition 4.3.a of [3], it follows that T 
is a weak contraction. Conversely, if T is a weak contraction, by Lemma 8.4 and 
Theorem 8.5 of [3] we have dT7±0. The coincidence of dT with the determinant 
of the characteristic function of T follows from [3], Theorem 8.7. 

T h e o r e m 1.3. For any C0 operator T acting on a separable space and any 
£ ' 6 Lat (T) we have dT=dT{?)')dr($)"), where 

P r o o f . If dTpi0, T is a weak contraction and the Theorem follows from [3], 
Proposition 8.2. If dT=0 we must show that either dT($>')=0 or dT{<o")=0. 
Equivalently, we have to show that T is a weak contraction whenever T& and 
are weak contractions. So, let us assume that and Ts» are weak contractions. 
Let S(M), S(M'), S{M") be the Jordan models of T, T', T", respectively. We 
consider firstly the case For every natural number k we can find 
a subspace § t 6 L a t ( r ) such that T\9)k is quasisimilar to S(m1,m2, ..., mk). The 
subspace = V £>k 6 Lat (T) and T\§>'k is also of finite multiplicity. From [3], 
Proposition 8.2 we infer 

(1.7) • d r ( & ) - d r M d A s n , K = & & & = §>'kr\S". 

Again by [3], Proposition 8.2, m1m2...mk divides dT(5)k) and dT(§>k) divides dT(§>"). 
Thus (1.7) implies that m1m2...mk divides dT(Sy')dT(9)"). In particular dT^0 and 
by [3], Proposition 8.2, we have dT=dT{9)')dT{§>") in this case. 

Let us remark now that from the preceding argument it follows that the equality 
dT=dT(9)')dT{$z>") also holds under the assumption ")<«>. Indeed, we have 
only to replace T by T* and to use the relation dTt=dj. 

We are now considering the general case. Let §>k, , §jk have the same meaning 
as before. It is clear that /¿r(£>D<0° a n d by the preceding remark it follows that 
T i s a weak contraction and (1.7) holds. Arguing as in the case /*r(£>')<0° we 
obtain dT7± 0, that is J is a weak contraction. This finishes the proof. 

• Let T,T' be two operators and X£J(T', T). For every 3Ji£Lat (T), 
(ifSDi)" £Lat (T'). We shall prove now a lemma which is not particularly con-
cerned with operators of class C„. 

L e m m a 1.4. Let T, T' be two operators and let X£J(T', T). The mapping 
is onto Lat (T ' ) if and only if R'<-+(X*$t')- is one-to-one on Lat (7"*) 

P r o o f . Let us assume that R'<-+(X*R')~ is one-to-one on Lat (7"*) and let 
us take SV £ Lat (T'). If we put it=JIT"1 ( i f ) and we have ( Z * ^ ) ) - = 
=(ran and by the same 
computation (A r*(ft'-L))-=(Z-1(ft '))"L- By the assumption we have ft^SV1, 

so that # ' = ( * » ) " . . 

2 
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Conversely, let us assume that is onto Lat (7 ' ) and let us take 
ft'6Lat(r'*). Then where We have « '=(^51)- = 
= (ran XPA)x = ker PñlY* = X*~\X1-) = X*-\{X-í(Sl'íy)x) = X*'\ker = 
=X*-\nm X*P¿)-=X*~í((X*Si')-) which shows that ft' is determined in this 
case by (A^iV) - . The lemma follows. 

R e m a r k 1.5. Because the Jordan model of a C0 operator acting on a non-
separable Hilbert space contains uncountably many direct summands of the form 
S{M) (cf. [1]) it is natural to extend the definition of the determinant function by 
taking dT=0 for 7acting on a non-separable space. With this extension Lemma 1.2 
and Theorem 1.3 remain valid with the condition of separability dropped. For 
Lemma 1.4 it is enough to remark that a completely non-unitary weak contraction 
acts on a necessarily separable space and for the Theorem 1.3 we have to remark 
that 7 acts on a separable space if and only if and are separable spaces. 

§ 2. C0-Fredholm operators 

D e f i n i t i o n 2.1. Let 7, T' be two operators and let X^J{J', 7). X is called 
a (7T)-latt ice-isomorphism if the mapping is an isomorphism of 
Lat (7) onto Lat (T'). 

For 7 = 0 and 7 ' = 0 a (77)-lat t ice-isomorphism is simply an invertible 
operator. It is clear that a lattice-isomorphism is always a quasi-affinity but the 
converse is not true as shown by the example 7 = 0 , 7 ' = 0 . By Lemma 1.4, X is 
a (7 ' , 7)-lattice-isomorphism if and only if X* is a (7*, 7'*)-lattice-isomorphism. 
We shall say simply lattice-isomorphism instead of (7 ' , 7)-lattice-isomorphism 
whenever it will be clear which are 7 and 7 ' . 

D e f i n i t i o n 2.2. Let 7 and 7 ' be two operators of class C0 and X£J(T\ T). 
X is called a (7 ' , T)-semi-Fredholm operator if XKker X)1- is a 
(7' |(ran X)~, 7(kerX>1)-lattice-isomorphism and either dT (ker X)^0 or 
dT,(ker X*)^0. A (7 ' , 7)-semi-Fredholm operator X is (7 ' , T)-Fredholm if both 
dT (ker X) and dT, (ker A"") are different from zero. The index of the (7 ' , 7 ) -
Fredholm operator X is the meromorphic function 

(2.1) j(X) = j(T,T')(X) = ¿ r (ke r X)/dT. (ker X*). 

If X is (7 ' , 7)-semi-Fredholm and not (7 ' , 7)-Fredholm we define 

(2.2) j(X) = 0 if dT(ker X) = 0; j(X) ==° if dT, (ker X*) = 0. 

We shall say simply C0-semi-Fredholm, C0-Fredholm instead of (7 ' , 7)-semi-
Fredholm, (7 ' , 7)-Fredholm, respectively, whenever it will be clear which are 
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the C0 operators T and T'. We shall denote by sF (T\ T) (respectively F (7", T)) 
the set of all (T7")-semi-Fredholm (respectively (7", T)-Fredholm) operators. 
If T= T' we shall write sF (T), F (T) instead of sF (T, T), F (T, T), respectively. 

We can easily see how the preceding definition is related to the usual defini-
tion of Fredholm operators. Let us note that the operator T= 0 acting on the 
Hilbert space § is a C0 operator; it is a weak contraction if and only if 
« = d i m § < o o and in this case dT{z)=z" ( |z |< 1). If T=T'=0 and XiJ{T', T) = 
= i ? ( § ) then X|(ker X)1 is a lattice-isomorphism if and only if X has closed range. 
From these remarks it follows that an operator 0) is C0-Fredholm if and 
only if it is Fredholm in the usual sense, and j(X)(z)=z'(x\ where i(X) = 
=dim ker X— dim ker X* is the (usual) index of the Fredholm operator X. 

P r o p o s i t i o n 2.3. Let T, T', T" be C0-operators acting on respect-
ively, and let A£J(T,T'), B£J{T,T") be such that A$>'a{B$)"y. If dr^0, 
we have: 
(2.3) -

(2.4) ( / f $ T W ) ~ ^AfY. 

P r o o f . It is enough to prove (2.3) because (2.4) is a simple consequence of (2.3). 
We may suppose that B is a quasi-affinity and A is one-to-one. Indeed, we have 

only to replace A, B respectively by A\(ker A)L and 5j(ker B)1, and § by (B£>")~. 
It follows that dT.=dT and T' is quasisimilar to the restriction of T to some in-
variant subspace. By Theorem 1.3 we have dT ,^Q and therefore 

(2.4) dr'ST- = dT,dT< = dT,dT ^ 0. 

The operator X: defined by X(h'®h")=Ah'—Bh" has dense range 
and satisfies TX=X{T'®T"). 
Thus {T'@ ^'Ockerx^ is a quasi-affine transform of T, in particular 

(2.5) dT,Br.{(ktvX)±) = dT. 

From (2.4) and (2.5) we infer 

(2.6) ¿ r e r - ( k e r X ) = d r . 

The operator Y: k e r X — d e f i n e d by Y{h'@h")=h' is one-to-one. Indeed, 
Y{h'@h,r) = 0 and h' © h" € ker X imply h' = 0 and Bh"=Ah' = Q\ it follows that 
h"=0 because B is one-to-one. Moreover, we have (7"® 7")j(ker X)). 
It is easy to verify that ran Y=A'1(B§>"). By the invariance of the determinant 
function we have 
(2.7) dT.((A-i(BZ"))~) = drer( k e r * ) = dT.. 

2» 
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From Theorem 1.3 and relation (2.7) it follows that 

(2.8) dr = dT.{{A-\B9>"))-)dr.{{A-\B9>'= dr 

and therefore 

d r ^ A - ^ B è " 0 ) x ) = 1, = {0} and (2.3) follows. 

The Proposition is proved. 

C o r o l l a r y 2.4. Let T, T' be two C0 operators such that dr^0 and let 
T) be a quasi-affinity. Then A is a lattice-isomorphism. 

P r o o f , The correspondence Sî>—(yift)- is onto Lat (T') by Proposition 2.3. 
Corollary follows by Lemma 1.4 since A* is also a quasi-affinity. 

L e m m a 2.5. Let T,T' be C0 operators and A£J(T', T). We always have 
dT,dT (ker A)=dTdT, (ker A*). 

P r o o f . From Theorem 1.3 and the invariance of the determinant function 
with respect to quasi-affine transforms we infer dT,=dT,(ker A*)dr((ran A)~) = 
= dT, (ker A*)dT ((ker A)-1) and dT = dT (ker A)dT ((ker A)-1). The Lemma ob-
viously follows from these relations. 

C o r o l l a r y 2.6. Let T, T' be weak contractions of class C0. Then F(T', T) = 
= J{T\ T) and j(A) = dT/dr, for A£J(T', T). 

P r o o f . For each A Ç J (J", T), A ¡(ker A)1 is a lattice-isomorphism by Corollary 
2.4. Also we have dT(ker A)^0 and dr(ker A*)^0 by Theorem 1.3. The value 
of j{A) follows then from Lemma 2.5. 

R e m a r k 2.7. From the preceding proof it easily follows that s F ( r ' , 2") = 
=J{J', T) and F (T\ 7 ) = 0 if exactly one of the contractions T and T' is weak. 

The following Corollary is a generalisation of [10], Theorem 2. 

C o r o l l a r y 2.8. Let T and T' be weak contractions of class C0 such that 
dT=dr. Then each injection A£^(T', T) is a lattice-isomorphism (in particular 
a quasi-affinity). 

P r o o f . Let A£S(T', T) be an injection. By Corollary 2.6 A£F(T', T) and 
j(A)=dT/dT,= i ; it follows that dT,(kev A*)=dT(ker A) = l, thus k e r 4 * = { 0 } 
and A is a quasi-affinity. The conclusion follows by Corollary 2.4. 

C o r o l l a r y 2.9. Let T be a weak contraction of class C0 and let A € {T}' be 
an injection. Then the restriction of A to each hyper-invariant subspace of T is a quasi-
affinity. 
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P r o o f . Obviously follows from the preceding Corollary. 

L e m m a 2.10. For any two C0 operators T and T' we have sF(T, T')* = 
= sF (T'*,T% F(T,T')* = F(T'*,T*), and 

(2.9) j(A*) = ( j ( ^ ) " ) " 1 , A € sF ( Г , T) (here 0" 1 = ~ and - - 1 = 0). 

P roo f . If A£J(T',T), we have (Л|(кег A^f^A^ktv A*)1, dT,Jker A*) = 
=dT,(ker A*)~ and dT,(ker A) = dT(ker A)~. The Lemma follows. 

T h e o r e m 2.11. Let T,T',T" be operators of class C0, A£sF(T', T), 
BisF (T", T'). If the product j{B)j(A) makes sense we have BA£sF(T", T) 
and j(BA)=j(B)j(A). 

P r o o f . We shall show firstly that ВА\(кет BA)X is a lattice-isomorphism. 
To do this we will show that the range of BA is dense in each cyclic subspace of 
T", contained in (ran BA)~. The whole statement will follow from Lemma 1.4 
and Lemma 2.10 and the same argument applied to (BA)*—A*B*,. 

Let us remark that from the C0-semi-fredholmness of В it follows that 

2?-1((ran BA)~)a ((ran +ker B)~. 

Therefore, for each / £ (ran BA)~ and e > 0 we can find g в ((ran A)~ +ker B)~ 
such that 
(2.Ю) Bg£§>f = V T"nf and | | 5 g - / | | < £ . 

nm о 

Now, let us denote by Я the subspace ((ran Л)~ + кег "©(ran A)~ and by P 
the orthogonal projection of ((ran A)~ + ker B)~ onto Я. We claim that 

(2.11) d r ( f t ) ^ 0 . 

Indeed, if Д Л ) ^ w e have dT,(ker A*)^0 and Я с к е г A*. If. j(A) = <*= it 
follows from the hypothesis that j(B)^0 and therefore dT,(ker B)^0. But 

(2.12) ( ( r a n ( ^ | k e r 5 ) - = Я 
and 
(2.13) = PT'\((vanA)-+ktvBy. 

From Theorem 1.3 and the invariance of the determinant function with respect 
to quasi-affine transforms we infer that dr(i\) divides dT,(kev B); thus (2.11) 
is proved. 

From the relations (2.11—13) it follows, via Proposition 2.3, that {k£%>g; 
Pkf^P (ker B)} is dense in §>g, that is §9П((гап A)~ + ker B) is dense in Thus 
there exist г/€(гап A)~ and vdker В such that 

(2 Л 4) u + vebg, ||« + t>-g|| < e. 
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Now, by the C0-semi-fredholmness of A, there exists k£?> such that 

(2.15) Ak£%u, \\Ak — u\\ e. 

We have Bu = B(u + v)£B$jg(z§)f and it follows that B9)ua$jf. Therefore 
BAk£B9)ucz9)r From (2.10), (2.14) and (2.15) we infer \\BAk-f\\s\\BAk-Bu\\ + 
+ | |5(M+y)-fig| | + | | ^ - / | | < ( 2 | | 5 | | + l)e. Because e is arbitrarily small, the first 
part of the proof is done. 

We obviously have 

(2.16) ker BA = A~1(kerB), kzx (BA)* = B*~\kex A*). 
T X~\ q1 j , determined by the de-Let us consider the triangularisation Tjker BA = 

composition ker BA= ker A ©(ker BA ©ker A). By the C0-semi-fredholmness of 
A, T2 is a quasi-affine transform of T'\9)l, where 

(2.17) § ! = (ran A)~ Piker B. 

If (ker 5 ) ^ 0 and (ker , 4 ) ^ 0 it follows that 

(2.18) d r (ker BA) = dT(ker A)dT.(%1) ^ 0, 

thus BA£sF(T", T). Analogously, if dT,(kcr B*)^0 and dr(ker A*)^0 it 
follows that BA£sF(T", T). From the hypothesis it follows that at least one 
of the situations considered must occur. Thus we always have BAdsF (T", T). 

It is obvious that dT,(kex (BA)*)=0 whenever dr,(ker B*)=0 since 
ker (BA)* 3 ker B*. Thus the relation j{BA) = °o = j(B) j(A) is proved in this case. 
Let us suppose now that j(B)=0. Then, by Theorem 1.3 we have 

0 = dr (ker B) = ¿r (§i) ¿7-(ker 5 ©SO. 

The projection onto ker A* is one-to-one on ker BQ§>1, thus rk ' e r B Q g i is a quasi-
affine transform of some restriction of T(,erAt. It follows that dr(kex BQ^^O 
and the preceding relation implies dT,($)1)=0. By (2.18), the relation j(BA) = 
=j(B) j(A) (=0) is proved in this case also. If j(A)(: {0, we have j(BA) — 
= {j( iBA)*y)-i={j{A*y j { B * y ) - i = № j ( A ) by Lemma 2.10. 

It remains now to prove the relation j(BA)=j(B)j(A) for A£F (T\ T) and 
B£F(T",T'). From the second relation (2.14) we infer, as before, 

(2.18)* dT• (ker (BA?) = dr (ker B*) dT. (§*) 
where 
(2.17)* $>f = ( ran^*)-Dker i<* = (ker B y D (ran A y . 

Let us denote by Q the orthogonal projection of onto (ran A)x =ke r A*. If 
we consider the decompositions 

(2.19) kertf = ker ,4* = 
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we claim that g | § 2 is a quasi-affinity from § 2 into § 2 . Indeed, if / j€§ 2 and 
we have (g, Qh)=(g, h) =0 as g€(ker B)L, thus Q§>2c=§2. Because § x = ker Bf] 
0(ran A)~ =ker (£>|ker B), Q is one-to-one on § 2 . We have only to show that 
ker = If heker A*Q(Qb2)- and g£kex B we have (h, g) = (h, Qg) = 0 
because (Q§>2)~ = (2 (ker B))- (as 0 | § i = O); the inclusion ker 
follows and the assertion concerning Q\§>2 is proved. 

Now, because § x = ker (2¡ker B), we have the intertwining relation (Q|§2) = 

= (6IS>2)^s2; in particular 
(2.20) dT,(§>2) = dT.(§*2). . 

By (2.18—20) and Theorem 1.3 we have 

j(BA) = dT(kerBA)/dr.(ker(BA)*) = 

= (dT(ker A)/dr(ker B*))(dr, (SJAMSi)) = 

= (dT (ker A)/dr, (ker B*)) (dT. (&) dT (%2)/dT. (§*) dT. (§*)) = 

= (dT(ker A)ldT. (ker A*))(dr (ker B)/dr(ker B*)) = j(B)j(A). 

Theorem 2.11 is proved. 

T h e o r e m 2.12. Let T be an operator of class C0 acting on § and let X^{T}' 
be such that dT((Xf>)~)^0. Then I+X£F(T) and j(I+X)=l. 

P r o o f . We firstly show that the mapping Lat (7)3501--((/+X)SR)- is onto 
~Lat(T\((I+X)%)-). To do this let us take 91 {Lat (T), 9 l c ( ( /+X) .^ )~ and let 
P denote the orthogonal projection of § onto (ker X)-1. Because 
T{^rX)i_P=PT and i/ r((kerZ)-L)?i0, it follows by Proposition 2.3 that 
9l'={/?€9t; Ph£P(I+X)§>} is dense in 91. Now we can show that 
indeed 9 t ' c ( / + * ) § +ker X and ker Z c ( / + * ) § (h = (I+X)h for h£ ker Z). 
Therefore we have N=((I+X)Wl)-, where an = ( /+JQ- 1 9 i . 

From the preceding argument applied to I + X * and from Lemma 1.4 it follows 
that (/+A')|(ker(/+A'))-L is a lattice-isomorphism. Because ker ( / + I ) c I § 
(h = - Xh whenever (I+X)h=0) and ker (I+X)*czX*§>, by Theorem 1.3 it 
follows that l+XeF(T). 

It remains only to compute j(I+X). To do this let us consider the decomposi-
tion § = U©33, U=(X§)~ . With respect to this decomposition we have 
/ = [ o 7°]' X = [ o Xo } ' w h e r e X ' i { T \ U Y - S i n c e by the hypothesis 7 |U is 

a weak contraction, we infer by Corollary 2.6 

(2.21) dT (ker (/ + X')) = dT (ker ( / + X')*). 

Now, we can easily verify that ker ( 7 + Z ) = k e r ( I+X' ) . The inclusion ker ( I + X ' ) c . 
c k e r (I+X) is obvious. If h£ker(I+X) we have h=-Xh£U so that h=-X'i{ 
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(X'=X\1X) and A 6 ker (7+ j r ) - I" particular 

(2.22) cfT(ker (7+ X)) = dT{ ker ( / + X')). 

It is easy to see, using the matrix representation of X, that u@v£ker (1+ X)* 
if and only if 
(2.23) u 6 k e r ( / + A " ) * and v = -X"*u. 

If we denote by Q the orthogonal projection of §> onto U, it follows from (2.23) 
that £>|ker (7+AO* is an invertible operator from ker (74-AO* onto ker (7+A")*» 
the inverse being given by ker(7+^0*31"— «©(—X"*u). Because we have also 
KQ = QT* it follows that 7"*|ker(7+*')* and r* |ker(7+A0* are similar, in 
particular 
(2.24) d r (ker ( / + * ) * ) = i/T(ker (I+X'f). 

From (2.21), (2.22), and (2.24) it obviously follows that j(I+X) = l. The Theorem 
is proved. 

§ 3. Some examples 

P r o p o s i t i o n 3.1. For any two inner functions m and n there exist a C0 operator 
T and XCF(T) such that j(X) = mln. 

P r o o f . The operator T—(S(m)^iI)®(S(n)<S)l), where I denotes the identity 
operator on !?•, is of class C0. If we denote by U+ the unilateral shift on I2, 
obviously 

x = (i^rn)®uimi!b(n)®u+)e{Ty. 

Moreover, X has closed range so that X|(ker X)x is invertible. Because r jke r X 
is unitarily equivalent to S(m) and TkerX, is unitarily equivalent to S(n), it follows 
that X is C0-Fredholm and j(X)=m/n. 

The following proposition infirms the Conjecture from [10]. Proposition 3.4 
shows however that this Conjecture is true under the assumption X£ {T}" and 
with the condition dropped. 

P r o p o s i t i o n 3.2. Let K and K+ be C0 operators of finite multiplicities such 
that dK=dK . Then there exist a C0 operator T of finite multiplicity and an Xz {T}' 
such that T|ker X and Tke[X* are quasisimilar to K and K^, respectively. 

P r o o f . Let S=S(m1, m2, ..., m„) and Sjf = S(m'1,m'2, ...,m'n) be the Jordan 
models of K, , respectively (it may happen that some of the mj or m'j be equal to 1). 
By the hypothesis we have 
(3.1) m1m2...m„ = m'1m'2...m'n. 
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Let us consider the operator 

(3.2) T = S(<px,<p2,..., (pn), where 

(3.3) (p1= m1m2...m„, (p2 = m'2m2... m„, <p3 = m'2m'3m3... m„, .. 

<Pn = m'2ma... m'„m„. 

(T is generally not a Jordan operator). The matrix over 77" given by 

(3.4) A = 

0 Ô ... 0 m{ 
m'2 0 ... 0 0 
0 m'3... 0 0 

satisfies the conditions 
(3.5) 

0 0 ... m'„ 0 ^ 

a u (pjÇ. (P iH 2 

and therefore (cf. [2], relations (6.5—7)) the operator X defined by 

(3.6) X = [Xu]lsiJSn, Xuh = P^ôauh (hiZ(<Pj)) 

commutes with T. Now it is easy to see that 

(3.7) r | k e r X = © T|(ker ATI §(<?,)), ^kerX* = © 
/=1 1=1 

Using [8], p. 315, we see 
that r |(ker Affl §(<?,•)) is unitarily equivalent to S(m^) 

and T'dterx'n$(«>))unitarily equivalent to S(m'{) so that T|ker X is unitarily equiv-
alent to S and 7"kerX* is unitarily equivalent to S*. Proposition 3.2 follows. 

L e m m a 3.3. If T and T' are two quasisimilar operators of class C„ and (p£H°° 
then T\ker<p(T) and 7'jker <p(T') are quasisimilar. 

Proof . Let X, Y be two quasi-affinities such that T'X=XT and TY=YT'. 
Then we have also (p(T')X=X<p(T) and <p(T) Y= Y(p(T') which shows that 

(3.8) X ker <p (71) c ker q>(T'), Y ker (p(T')a ker <p(T). 

From (3.8) it follows that T|ker (p(T) can be injected into r ' jker (p(T') and 
J ' |ker <p(T') can be injected into r |ker <p(T). The Lemma follows by [10], 
Theorem 1. 

P r o p o s i t i o n 3.4. Let T be an operator of class C0 and {T}". Then T|ker A' 
and TkcrX* are quasisimilar. In particular we have 

sF (70fl {T}" = F (TOD {T}" and j(X) = 1 for XÇF (T)Cl {T}". 
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P r o o f . From [2] and [1] it follows that X=(u/v)(T), where u,v£H°° and 
vt\mT=\. It is easy to see that ker Z = k e r u(T) and ker Z* = ker u" (T*). By 
Lemma 3.3 it suffices to prove our Proposition for 7'a Jordan operator and X=u(T). 
Now, a Jordan operator is a direct sum of operators of the form S(m) and it is 
easy to see that S(m)|ker u{S(m)) and (S(m)*|kei (u(S(m)))*)* are both unitarily 
equivalent to S(mf\u). Thus for T a Jordan operator r |ker u(T) and 7'ker(li(n)* 
are unitarily equivalent. Thus Proposition follows. 

P r o p o s i t i o n 3.5. Let T be an operator of class C0 and let X£{T}" be an in-
jection. Then X is a lattice-isomorphism. 

P r o o f . Let 9Ji6Lat (7) ; by [9] we have Z9Jic=SR. Moreover we have 
A^DJii Alg Lat (T^SDi) and obviously A^ORf {r|SK}'. Again by [9] we infer 
A'lOJiG {7~|50i}". From Proposition 3.4 applied to the injection A" we infer 
ker (Z|93i)* = {0} so that 

(3.9) (A-ffli)- = 2R. 

This shows that the mapping (A'SDl)- is the identity on Lat (T). The Proposi-
tion is proved. 

P r o p o s i t i o n 3.6. There exist an operator T of class C0 and operators Xn, 
X£{T}" such that lim \\Xn-X\\ =0 , X£F (T) but ^ n $ F ( r ) , n= 1 , 2 , . . . . Thus 

n 00 

the set F (T) is not generally an open subset of {T}'. 

P r o o f . We shall construct Blaschke products m, b and b„ (n = 1, 2, ...) such that 

(3.10) bf\m = 1, ¿»„Am ^ 1; 

(3.11) lim \\bn — b\\„ = 0. 
n~* OO 

Then the required example is given by 

(3.12) T = S(m)<S> 7, 

where 7 denotes the identity operator on an infinite dimensional Hilbert space, and 

(3.13) . X=b(T), X„ = b„(T) (n = 1,2, . . . ) . 

It is'clear that T|ker X„ is unitarily equivalent to S(mAb„)(g)I which is not 
a weak contraction and therefore ^ „ ^ ( 7 ) (by Proposition 3.4, <Vn$sF(7")). 
Because bf\m=\, b(T) is a lattice-isomorphism by Proposition 3.5, in particular 
X£F(T). The convergence Xn-~X follows from (3.11). 
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It remains only to construct the functions m, b and b„ (n = 1,2, ...). Let us put 

(3.14) Ь=ПВ\ b„=ffBk„(n = 1,2, . . . ) , m=ffBk
k 

k = l к = 1 к = 1 

where Вк (respectively Вк) is the Blaschke factor with the zero k~2 (respectively 

к~г exp (itk), /'=-0). Because \b-b„\^ £ \Bk-B% one can verify that (3.11) 
oo k = 1 

holds whenever lim ^ k*tk — 0. Conditions (3.10) are also verified and n - ~ k = 1 
bnt\m—Bn

n. 
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