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C,-Fredholm operators. 1

HARI BERCOVICI

In this note we introduce the notions of C,-Fredholm and C,-semi-Fredholm
operators, which are generalisations of the Fredholm and semi-Fredholm operators,
and we study some properties of these operators. The study of index problems
in connection with operators that intertwine contractions of class C, was suggested
. by [10], Theorem 2 and Conjecture.

In §1 of this note we introduce some notions and we define and study the
determinant function of an arbitrary operator of class C,. In §2 the notions of
C,-fredholmness, C,-semi-fredholmness, and index are defined. Here we find
(Corollary 2.8) a generalisation of [10], Theorem 2 under weaker assumptions.
We also show that the index defined for C,-semi-Fredholm operators is multi-
plicative. At the end of § 2 we prove a perturbation theorem. In § 3 we show that
there exist C,-Fredholm operators with given index (Proposition 3.1). We also
prove that the conjecture from [10] is generally false (Proposition 3.2) but is verified
in the bicommutant of a C, contraction of arbitrary multiplicity (Proposition 3.4).
At the end of § 3 we show that the set of C,-Fredholm operators is not generally open.

§ 1. Preliminaries. The determinant function
For any (linear and bounded) operator T acting on the Hilbert space $ we
denote by Lat (T) the set of invariant subspaces of T and by Lat,, (T) the set of
all semi-invariant subspaces of T (that is, subspaces of the form MOMN, where

M, NeLat (T) and MOR). It is known (see [4], Lemma 0) that a subspace M of
$ is semi-invariant for T if and only if

(1.1) T = PoT|M
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is a “power-compression”, that is, if

(1.2) : T; = PoT'|M, n=12,....

If T is a completely non-unitary contraction this. is equivalent to
(1.3) u(Ty) = Puu(T)|M, ucH=.

It is obvious that Lat, (T)=Lat,, (7*) (we have MON=N-©M*). Let
us recall that the multiplicity ur of the operator T is the minimum cardinality of
a subset A of H such that V T"U=$H. For each MeLat,,(T) let us put

nz=0

ur(M)=pry,. If T is an operator of class C,, we have by [7] that pr=pr. In
this case we shall have

(1.4) (D) = u(M), M€ Laty, (T).

7

For any two operators 7,7’ acting on $, $’, respectively, we denote by
F(T’, T) the set of those operators X: H—~$£" which satisfy the relation

(1.5) T'X = XT.

Obviously, (A(T, T))*=S(T"*, T™).
We are now going to define the determinant function of a C, operator acting
on a separable Hilbert space.

Definition 1.1. Let T be a C, operator acting on a separable space and
let S(M), M= {m ;)71 be the Jordan model of T [2]. We define the determinant
function d; as the limit of any convergent subsequence of {m;m,... m;}(j=1,2, ...).

The function dr is uniquely determined up to a constant factor of modulus

one because |dr|= J[|m;. If dy0 then dr is an inner function.
i=1

The C, operators of finite multiplicity have nonvanishing determinant func-
tion. Indeed, if S(m,,m,,...,m,) is the Jordan model [6] of T, we have
dr=mym,...m,. For any C, operator T the relation d,=d; holds (where
 @D=f®@). |

With this definition of the determinant function, it is obvious that d. is invariant
with respect to quasi-affine transforms. It is also obvious that d;=1 if and only
if T acts on the trivial space {0}. We shall use the general notation

(1.6) dr () = dry,
for any C, operator T and any MeLat,, (7).

Lemma 1.2. 4 contraction T of class C, on a separable Hilbert space is a weak
contraction if and only if dp#0. If T is a weak contraction of class C,, dr coincides
with the determinant of the characteristic function of T.
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.. .Proof. If d;0 it follows that the Jordan model S(M) of T is a weak con-
traction (cf. [3], Lemma 8.4). Thus, by Proposition 4.3.a of [3], it follows that T
is a weak contraction. Conversely, if 7 is a weak contraction, by Lemma 8.4 and
Theorem 8.5 of [3] we have d;0. The coincidence of d; with the determinant
of the characteristic function of T follows from [3], Theorem 8.7.

Theorem 1.3. For any C, operator T acting on a separable space and any
SeLlat (T) we have dpy=d;(H)dr(H"), where H"=9H"t.

Proof. If dr=0, T is a weak contraction and the Theorem follows from [3],
Proposition 8.2. If dy;=0 we must show that either dp(9)=0 or dr(H")=0.
Equivalently, we have to show that T is a weak contraction whenever Tg. and T~
are weak contractions. So, let us assume that T and Tg. are weak contractions.
Let S(M), S(M’), S(M”") be the Jordan models of T, T’, T”, respectively. We
consider firstly the case up($)<eo. For every natural number k we can find
a subspace ,€Lat (T) such that T|$, is quasisimilar to S(my, m,, ..., my). The
subspace $H,=9H"VO€Lat(T) and 79, is also of finite multiplicity. From {3],
Proposition 8.2 we infer

(L7 - dr(D) = dr(H)dr(D), H = HOH =HNH".

Aga"in by [3], Proposition 8.2, mym,...m, divides dr(9;) and dr(9y) divides dr(H”).
Thus (1.7) implies that m,m,...m, divides dr(9)dr(9”). In particular dy=0 and
by':[3_], Proposition 8.2, we have dy=dr(H)d;(9”) in this case.

' , Let us remark now that from the preceding argument it follows that the equality
dr=d($)d(H”) also holds under the assumption pr($”)<oo. Indeed, we have
only to replace T by T* and to use the relation dro=dy .

" We are now considering the general case. Let §,, 9;, 97 have the same meaning
as before. It is clear that ur($;)<< and by the preceding remark it follows that
T is a weak contraction and (1.7) holds. Arguing as in the case ur(9H)<o we
obtain dr#=0, that is T is a weak contraction. This finishes the proof.

« Let T,T" be two operators and XeS#(T",T). For every MeLlat(T),
(XM)~€Lat(T"). We shall prove now a lemma which is not particularly con-.
cerned with operators of class C,.

Lemma 1.4. Let T, T" be two operators and let X€ #(T’, T). The mapping
K—(XR)~ is onto Lat (T”) if and only if K'~(X*K")~ is one-to-one on Lat(T"*)

Proof. Let us assume that & —(X*R®’)~ is one-to-one on Lat (7'*) and let
us take R’ € Lat (7). If we put K=X"1(R’) and K{=(XR)~, we have (X*(® 1)) =
=(ran X* Pyx)~ =(Ker Pg:r X)* =(X"1(]))* =(X"1(]))* and by the same
computation (X*(R1))~=(X"*(8&"))*. By the assumption we have K=K+,
K=K’ so that & =(X¥R)". .

2
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Conversely, let us assume that K—(XR)~ is onto Lat (7") and let us take
K’¢Llat (T'%). Then K+ =(XK)~ where K=X"1(R1). We have K =X8K)*=
=(ran XPy)* = ker Po X*= X* "1 (/) = X* (X YK 1)L) = X* (ker Po, X)* =
=X*"(ran X*Pg)~=X*"'((X*&’)") which shows that & is determined in this
case by (X*R")~. The lemma follows. oo

Remark 1.5. Because the Jordan model of a C, operator acting on a non-
separable Hilbert space contains uncountably many direct summands of the.form
S(m) (cf. [1]) it is natural to extend the definition of the determinant function by
taking dr=0 for T acting on a non-separable space. With this extension Lemma 1.2
and Theorem 1.3 remain valid with the condition of separability dropped. For
Lemma 1.4 it is enough to remark that a completely non-unitary weak contraction
acts on a necessarily separable space and for the Theorem 1.3 we have to remark
that T acts on a separable space if and only if § and $” are separable spaces.

§ 2. Cy-Fredholm operators

Definition 2.1. Let T, T’ be two operators and let X€ #(7T", T). X is called
a (T, T)-lattice-isomorphism if the mapping M—(XWM)~ is an isomorphism of
Lat (T) onto Lat (7).

For T=0 and T'=0 a (T’, T)-lattice-isomorphism is simply an invertible
operator. It is clear that a lattice-isomorphism is always a quasi-affinity but the
converse is not true as shown by the example 7=0, 7’=0. By Lemma 1.4, X s
a (T’, T)-lattice-isomorphism if and only if X™* is a (T*, T’ *)-lattice-isomorphism.
We shall say simply lattice-isomorphism instead of (77, T)-lattice-isomorphism
whenever it will be clear which are 7 and 7.

Definition 2.2. Let T and T’ be two operators of class C, and X€ #(T”, T).
X is called a (T, T)-semi-Fredholm operator if X|ker X)L is a
(T’|(ran X)~, Ty xy)-lattice-isomorphism  and  either  dp(ker X)=0  or
dr. (ker X*)=0. A (T’, T)-semi-Fredholm operator X is (T”, T)- Fredholm if both
dr (ker X) and dj (ker X*) are different from zero. The index of the (T”, T)-
Fredholm operator X is the meromorphic function

@1 J(X) = jor,7y(X) = dr(ker X)/dy. (ker X*).
If X is (T, T)-semi-Fredholm and not (7’, T)-Fredholm we define '
2.2) j&X)=0 if drkerX)=0; j(X)=o if dp(kerX*)=0.

We shall say simply C,-semi-Fredholm, CojFredholm instead of (77, T)-semi-
Fredholm, (7”, T)-Fredholm, respectively, whenever it will be clear which are
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the C, operators T and T’. We shall denote by sF (7", T) (respectively F (7, T))
the set of all (77, T)-semi-Fredholm (respectively (7", T)-Fredholm) operators.
If T=T" we shall write sF(T), F(T) instead of sF (T, T), F(T, T), respectively.
We can easily see how the preceding definition is related to the usual defini-
tion of Fredholm operators. Let us note that the operator T=0 acting on the
Hilbert space $ is a C, operator; it is a weak contraction if and only if
n=dim H <o and in this case d;(z)=z"(|z|<1). If T=T'=0 and Xe HA(T", T)=
=2(9) then X|(ker X)* is a lattice-isomorphism if and only if X has closed range.
From these remarks it follows that an operator X¢€ #(0, 0) is C,-Fredholm if and
only if it is Fredholm in the usual sense, and j(X)(z)=z'®), where i(X)=
=dim ker X —dim ker X* is the (usual) index of the Fredholm operator X.

Proposition 2.3. Let T, T’, T” be Cy-operators acting on 9,5, 9", respect-
ively, and let A€ #(T,T"), B€H(T, T") -be such that AH C(BH")~. If d =0,
we have:

23) (471(BH")~ = 9';
24 (AN BH")™ DAY

Proof. It is enough to prove (2.3) because (2.4) is a simple consequence of (2.3).

We may suppose that B is a quasi-affinity and A is one-to-one. Indeed, we have
only to replace A, B respectively by 4|(ker A)* and Bl(ker B)*, and $ by (BH")".
It follows that dr.=d, and T’ is quasisimilar to the restriction of 7" to some in-
variant subspace. By Theorem 1.3 we have d, =0 and therefore

(2.4) dT'@T" = dT’dT" = dT' dT ?ﬁ 0

The operator X: 9 @ 9H"—~$H defined by X (W ®h”)y=Ah"— Bh” has dense range
and satisfies TX=X(T" T"). :
Thus (T"@® T )gerx). 15 @ quasi-affine transform of 7, in partlcular

(2.5) - dp gr((ker X)1) = dr.
From (2.4) and (2.5) we infer
Q6 dprgpr(ker X) = dy..

The operator Y:ker X—$’ defined by Y(h'@h")=Fh is one-to-one. Indeed,
Y(W@h”)=0 and W'@h"cker X imply A’'=0 and Bh"=Ah=0; it follows that‘
h”=0 because B is one-to-one. Moreover, we have Y€S(T", (I" & T")|(ker X)).
It is easy to verify that ran Y=A4"1(B9H"). By the invariance of the determinant
function we have :

@7 dr (A7 (BS")") = dp-gr-(ker 0 =d

2*
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From Theorem 1.3 and relation (2.7) it follows that
Q8)  dr = dp((A"(BS")")dr- (A (BSN)L) = dr-dr (A~ (BS")*)
and therefore :
dr ((A"1(BH"NL) =1, (471(B9")+ ={0} and (2.3) follows.
The Proposition is proved.

Corollary 24. Let T, T’ be two C, operators such that d;=0 and let
Ac H(T', T) be a quasi-affinity. Then A is a lattice-isomorphism.

Proof. The correspondence K+—(ARK)~ is onto Lat (7”) by Proposition 2.3.
Corollary follows by Lemma 1.4 since A4* is also a quasi-affinity.

Lemma 2.5. Let T, T’ be C, operators and AcS(T’, T). We always have
dp.dy (ker A)=d d;, (ker 4%).

Proof. From Theorem 1.3 and the invariance of the determinant function
with respect to quasi-affine transforms we infer d=d;. (ker 4*)d.((ran 4)~)=
=d,, (ker A¥)dy ((ker A)*) and dy=d; (ker A)dy((ker A)*). The Lemma ob-
viously follows from these relations.

Corollary 2.6. Let T, T’ be weak contractions of class Cy. Then F(T", T)=
=T’ T) and j(A)=dilds., for A F (T, T). '

Proof. For each A€ #(T”, T), Al(ker A)* is a lattice-isomorphism by Corollary
24. Also we have dr(ker 4)=0 and d(ker A*)#0 by Theorem 1.3. The value
of j(A4) follows then from Lemma 2.5.

Remark 2.7. From the preceding proof it easily follows that sF(77,T)=
=#(T’, T) and F(T’, T)=9 if exactly one of the contractions T and T~ is weak.
The following Corollary is a generalisation of [10], Theorem 2.

Corollary 2.8. Let T and T’ be weak contractions of class C, such that
dy=d;.. Then each injection Ac#(T',T) is a lattice-isomorphism (in particular
a quasi-affinity).

Proof. Let A¢H(T’, T) be an injection. By Corollary 2.6 A€F(7°,T) and
j(d)=dy/d.=1; it follows that dp(ker A*)=dr(ker A)=1, thus ker 4*={0}
and A4 is a quasi-affinity. The conclusion follows by Corollary 2.4. '

Corollary 29. Let T be a weak contraction of class Cy and let AC{TY be
an injection. Then the restriction of A to each hyper-invariant subspace of T is a quasi-

affinity.
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Proof. Obviously follows from the preceding Corollary.

Lemma 2.10. For any two C, operators T and T’ we have sF(T,T')*=
=sF(T"*, T™), F(T, T)*=F (T"*, T*), and

(29)  j(4% =(j(4)7)t, AesF(T’,T) (here 0-' =c and =1 =0).

Proof. If A€#(T”, T), we have (A|(ker A)*)*=A*|(ker A*)*, dp..(ker 4¥)=
=d(ker 4%)" and d .(ker A)=dy(ker A)”. The Lemma follows.

Theorem 2.11. Let T,T’,T"” be operators of class C,, AcsF(T’, T),
BesF(T”, T7). If the product j(B)j(A) makes sense we have BAEsF(T”,T)
and j(BA)=j(B)j(A4).

Proof. We shall show firstly that BA|(ker BA)* is a lattice-isomorphism.
To do this we will show that the range of BA is dense in each cyclic subspace of
7’7, contained in (ran BA)~. The whole statement will follow from Lemma 1.4
and Lemma 2.10 and the same argument applied to (BA)*=A*B*..

Let us remark that from the C,-semi-fredholmness of B it follows that

B~1((ran BA)~) ((ran 4)~ +ker B)"~.

Therefore, for each f¢(ran B4A)~ and ¢>0 we-can find gé((ran 4)~ +ker B)~
such that

(2.10) ' Bge$; =\ T"f and |Bg—fll <e.

=0

Now, let us denote by R the subspace ((ran 4)~+ker B)~©(ran 4)~ and by P
the orthogonal projection of ((ran 4)~ +ker B)~ onto R We claim that

.11) dr(R) = 0.

Indeed, if j(4)# e, we have dp(ker 4¥)=0 and RKcker A" If j(A)=< it
follows from the hypothesis that j(B)>0 and therefore d,.(ker B)><0. But

(2.12) ((ran (P|ker B)- = &
and
(2.13) T4 = PT’|((ran A)~ +ker B)~.

From Theorem 1.3 and the invariance of the determinant function with respect
to quasi-affine transforms we infer that d,.(R) divides d.(ker B); thus (2.11)
is proved.

From the relations (2.11-—13) it follows, via Proposition 2.3, that {kESfyg;
PLeP (ker B)} is dense in $§,, that is $,N((ran 4)~ +ker B) is dense in $,. Thus
there exist u€(ran 4)~ and v€ker B such that

(2.14) u+ve9,, llutv—gl<e
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Now, by the C,-semi-fredholmness of A, there exists k€9 such that
(2.15) AkED,, |Ak—ull <e.

-We have Bu=B(u-+v)€B9H,C9H, and it follows that B$,C$,. Therefore
BAk¢BH,CH,. From (2.10), (2.14) and (2.15) we infer |[BAk—~f||=|BAk —Bul +
+|B(u+v)—Bg|| +||1Bg—f|<QI|Bll +1)e. Because ¢ is arbitrarily small, the first
part of the proof is done.

We obviously have

(2.16) ker BA = A~ '(ker B), ker(BA)* = B*~1(ker A*).
T, X
0 7,
composition ker BA=ker A ® (ker BASker 4). By the C,-semi-fredholmness of
A, T, is a quasi-affine transform of T7|9,, where

Let us consider the triangularisation T'|ker BA= ] determined by the de-

2.17) H: = (ran 4)~ N ker B.
If dr(ker B)=20 and dy(ker 4)=0 it follows that
(2.18) dy(ker BA) = d(ker A)d(9,) = 0,

thus BA€sF(T”, T). Analogously, if dj.(ker B¥)=0 and d,(ker A")=0 it
follows that BA€sF(T”, T). From the hypothesis it follows that at least one
of the situations considered must occur. Thus we always have BA€EsF (77, T).

It is obvious that dj.(ker (BA)*)=0 whenever dp.(ker B*)=0 since
ker (BA)* Dker B*. Thus the relation j(BA)=o<o=j(B)j(A4) is proved in this case.
Let us suppose now that j(B)=0. Then, by Theorem 1.3 we have

0 = dr.(ker B) = dr.(H1)dr (ker BS $)).

The projection onto ker A* is one-to-one on ker BO9,, thus Ty, 554 Is 2 quasi-
affine transform of some restriction of Tp, ... It follows that d.(ker B&$,)=0
and the preceding relation implies d.(9H;)=0. By (2.18), the relation j(BA)=
=j(B)j(4) (=0) is proved in this case also. If j(4)€{0, <} we have j(BA)=
= (J(BA ) =(j(4%) j(B*) )*=j(B)j(4) by Lemma 2.10.

It remains now to prove the relation j(BA4)=j(B)j(4) for A€F(T’,T) and
BEF(T”, T’). From the second relation (2.14) we infer, as before,

(2.18) dr-(ker (BAY*) = dr-(ker B*)dr.(H})
where
Q.17* 9t = (ran B*)~Nker 4* = (ker B): N (ran 4)+.

Let us denote by Q the orthogonal projection of " onto (ran A)* =ker A4*. If
we consider the decompositions

(2.19) ker B= 5,05, ker 4* = St @95,
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we claim that Q|9, is a quasi-affinity from 9, into 9;. Indeed, if #€9H, and g€ Hy,
we have (g, Oh)=(g, h)=0 as g€(ker B)L, thus 0H,C H. Because H,=ker B
N(ran 4)~ =ker (Qlker B), Q is one-to-one on $,. We have only to show that
ker A7S(09,)~=9]. If hcker A*6(Q%,)~ and g€ker B we have (h, g)=(h, Qg)=0
because (Q9H.)~ =(Q(ker B))~ (as Q|9,=0); the inclusion ker 4*©(0H.)~ < H*%
follows and the assertion concerning Q|$, is proved.
Now, because $,=ker (Q|ker B), we have the intertwining relation Tgx (Q|9,)=
=(Q|9) Tg,; in particular
(2.20) C dr(9) =dr (99
By (2.18—20) and Theorem 1.3 we have
j(BA) = dr(ker BA)/dr(ker (BA)*) =

= (dr(ker A)/dr-(ker BY))(dr- (Hp)/dr (D)) =

= (dr(ker A)/dr-(ker BY))(dr- (91 dr (9)/dr (9 dr (D)) =

= (dr(ker A)/dr.(ker A%))(dr. (ker B)/dr.(ker B*)) = j(B)j(A).
Theorem 2.11 is proved.

Theorem 2.12. Let T be an operator of class C, acting on $ and let Xc{TY
be such that dr((X9)™)=0. Then I+X€F(T) and jI+X)=1.

Proof. We firstly show that the mapping Lat (T)3M—((/+X)M)~ is onto
Lat (T|(I+X)$)~). To do this let us take NeLat(T), Rc((J+X)H)~ and let
P denote the orthogonal projection of $ onto (ker X)*. Because PRc(P(I+X)9)",
Tyermyr P=PT and  dr((ker X)*)=0, it follows by Proposition 2.3 that
N ={heMN; Phe P(I+X)9H} is dense in N. Now we can show that N c([+X)9;
indeed WC(I+X)H+ker X and ket Xc(I+X)9 (h=(I+X)h for hcker X).
Therefore we have N=((I+X)M)~, where M=(I+X)"'N.

" From the preceding argument applied to 74+ X* and from Lemma 1.4 it follows
that (J+X )|(ker (I+X))t is a lattice-isomorphism. Because ker (/+X)c X9
(h=—Xh whenever (I+X)h=0) and ker ([+X)*CX*5:‘) by Theorem 1.3 it
follows that I+X€eF (T).

It remams only to compute j(/+ X). To do this let us consider the decomposi-

tion =UpB, U=(XH)~. With respect to this decomposition we have
I= [0 Im] ’(‘)ﬂ "6” , where X’¢{T|U}. Since by the hypothesis TjU is
a weak contraction, we infer by Corollary 2.6

2.21) dr(ker (I + X")) = dr(ker (I+X')*).

Now, we can easily verify that ker (/4 X)=ker (/+ X’). The inclusion ker (/+X")C
cker (I+X) is obvious. If hcker (/+X) we have h=—Xhell so that h=—X"y
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=X[U) and heker (/+X"). In particular
(2.22) dr(ker (I+ X)) = dy(ker (I+X")).

It is easy to see, using the matrix representation of X, that u@ vecker (/4 X)*
if and only if
(2.23) ucker(I+X)* and v=-X"*u.

1f we denote by Q the orthogonal projection of $ onto U, it follows from (2.23)
that Qlker (J+X)* is an invertible operator from ker (I+X)* onto ker (J4+X')*,
the inverse being given by ker (/+X")*3ur—»u®d(—X"*u). Because we have also
TiQ=0QT* it follows that Tyl|ker (/+X’)* and T*|ker (/+X)* are similar, in
particular

2.24) dr(ker (I+X)*) = dy(ker (I+X")*).

From (2.21), (2.22), and (2.24) it obviously follows that j(/+X)=1. The Theorem
is proved.

§ 3. Some examples

Proposition 3.1. For any two inner functions m and n there exist a C, operator
T and X€F(T) such that j(X)=mjn.

Proof. The operator T=(S(m)®1)®(S(M)®I), where I denotes the identity
operator on /%, is of class C,. If we denote by U, the unilateral shift on /3,

obviously
X = (Igm®U)®Ugm@U,)E{TY.

Moreover, X has closed range so that X|(ker X)* is invertible. Because T lkerX
is unitarily equivalent to S(m) and T . is unitarily equivalent to S(n), it follows
that X is C,-Fredholm and j(X)=m/n.

The following proposition infirms the Conjecture from [10]. Proposmon 34
shows however that this Conjecture is true under the assumption X¢{T}” and
with the condition pr< < dropped. e

Proposition 3.2. Let K and K, be C, operators of finite multiplicities such
that dy=dy . Then there exist a C, operator T of finite multiplicity and an X& S {T}
such that T|kerX and T\, x+ are quasisimilar to K and K_, respectively.

Proof. Let S=8(m,,m,,...,m,) and S,=S(m;,m,, ..., m,) be the Jordan
models of K, K, respectively (it may happen that some of the m; or m be equal to 1.
By the hypothe51s we have :
3.1) mymy ... m, = myni ... m,.
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Let us consider the operator
(3.2 T = S(@,, @s, .., ©,), Where
B3 ey=mmy...m,, @=mMsMy...M,, Q3= MgMzMg...M,, ...,
¢, = mimg ... m,m,.

(T is generally not a Jordan operator). The matrix over H> given by

0 0..0 m
my 0..00

G4) . A=|0 m;...0 0| =I[a;h=jzn
0 0..m,0

satisfies the conditions
3.5 a;;9;€p H*

and therefore (cf. [2], relations (6.5—7)) the operator X defined by

(3.6) X= [Xij]lgi,jém ' Xijh = P!_\((Pi)aijh (hE 5(%))

commutes with 7. Now it is easy to see that

3.7) Tlker X = @ T|(ker XN $(@)), Taerxs = D Tierxenisiony:

Using [8], p. 315, we see that T|(ker XN$H(gp)) is unitarily equivalent to S(m;)
and T, xeng(oy 1S UNitarily equivalent to S(m;) so that T'ker X is unitarily equiv-
alent to S and T, 4« is unitarily equivalent to S,. Proposition 3.2 follows.

Lemma 3.3. If T and T’ are two quasisimilar operators of class C, and @€ H™
then T\ker ¢(T) and T’iker ¢(T’) are quasisimilar.

Proof. Let X, Y be two quasi-affinities such that 7°X=XT and TY=YT".
Then we have also ¢@(T")X=X@(T) and ¢(T)Y=Ye(T") which shows that
3.8 ' Xker o(T)C ker o(I”), Y ker ¢(T")C ker o(T).

From (3.8) it follows that T'|ker ¢(7) can be injected into 7”[ker ¢(7") and
T’|ker 9(T’) can be injected into T|ker ¢ (7). The Lemma follows by [10],
Theorem 1.

~ Proposition 3.4. Let T be an operator of class Cy and X€{TY". Then T|ker X
and T, x« are quasisimilar. In particular we have

sE(T)N{TY =F (T)N{TY and j(X)=1 for XcF (T)N{TY".

~



26 . Hari Bercovici

Proof. From [2] and [1] it follows that X=(u/v)(T), where u, v€c H~ and
vhAmp=1. It is easy to see that ker X=ker u(T) and ker X*=ker ¥~ (T*). By
Lemma 3.3 it suffices to prove our Proposition for 7'a Jordan operator and X =u(T).
Now, a Jordan operator is a direct sum of operators of the form S(m) and it is
easy to see that S(m)|ker u(S(m)) and (S(m)*|ker (u(S(m)))*)* are both unitarily
equivalent to S(mAu). Thus for T a Jordan operator Tlkeru(T) and Ty . (ry»
are unitarily equivalent. Thus Proposition follows.

Proposition 3.5. Let T be an operator of class C, and let X€{T}" be an in-
Jection. Then X is a lattice-isomorphism.

Proof. Let Mclat(7T); by [9] we have XIMcIN. Moreover we have
XMeAlg Lat (T|M) and obviously X[Me{T|M). Again by [9] we infer
X|Me{T|M}". From Proposition 3.4 applied to the injection X|M we infer
ker (X[M)*={0} so that

(3.9 X9~ =M.

This shows that the mapping Pt—(X M)~ is the identity on Lat (7). The Proposi-
tion is proved.

Proposition 3.6. There exist an operator T of class C, and operators X,,
Xe{T} such that lim |X,—X|=0, X¢F(T) but X,¢F(T), n=1,2, ... Thus
the set F(T) is not generally an open subset of {T}.

Proof. We shall construct Blaschke products m, b and b, (n=1, 2, ...) such that
(3.10) bAm =1, b,Am s 1;
3.11) '!LI'E |b,—blle = 0.
Then the required example is given by
(3.12) | T=SmMQeI,
where 7 denotes the identity operator on an infinite dimensional Hilbert space, and
(3.A13) . X=bT), X,=b,T) (n=1,2,..).

It is' clear that T|ker X, is unitarily equivalent to S(mAb,)®I which is not
a weak contraction and therefore X,¢F(7T) (by Proposition 3.4, X,¢sF(7)).
Because bAm=1, b(T) is a lattice-isomorphism by Proposition 3.5, in particular
XeF (T). The convergence X,—X follows from (3.11).
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It remains only to construct the functions m, b and b, (n=1, 2, ...). Let us put

(3.14) b= ﬁB", b, = ﬁBﬁ(n =1,2,..), m= ﬁB’,ﬁ
=1 k=1

where B* (respectively BY) is the Blaschke factor with the zero k=% (respectively
k=2 exp (ir¥), 15>0). Because |b—b,|= 2’ |B¥— Bk, one can verify that (3.11)
holds whenever lim Zk“t" 0. Condmons {3.10) are also verified and

ne—co k=
— n
b,Am=B].
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