C_{0}-Fredholm operators. I

HARI BERCOVICI

In this note we introduce the notions of C_{0}-Fredholm and C_{0}-semi-Fredholm operators, which are generalisations of the Fredholm and semi-Fredholm operators, and we study some properties of these operators. The study of index problems in connection with operators that intertwine contractions of class C_{0} was suggested by [10], Theorem 2 and Conjecture.

In § 1 of this note we introduce some notions and we define and study the determinant function of an arbitrary operator of class C_{0}. In $\S 2$ the notions of C_{0}-fredholmness, C_{0}-semi-fredholmness, and index are defined. Here we find (Corollary 2.8) a generalisation of [10], Theorem 2 under weaker assumptions. We also show that the index defined for C_{0}-semi-Fredholm operators is multiplicative. At the end of § 2 we prove a perturbation theorem. In § 3 we show that there exist C_{0}-Fredholm operators with given index (Proposition 3.1). We also prove that the conjecture from [10] is generally false (Proposition 3.2) but is verified in the bicommutant of a C_{0} contraction of arbitrary multiplicity (Proposition 3.4). At the end of $\S 3$ we show that the set of C_{0}-Fredholm operators is not generally open.

§ 1. Preliminaries. The determinant function

For any (linear and bounded) operator T acting on the Hilbert space 5 we denote by Lat (T) the set of invariant subspaces of T and by Lat $_{1 / 2}(T)$ the set of all semi-invariant subspaces of T (that is, subspaces of the form $\mathfrak{M} \ominus \mathfrak{N}$, where $\mathfrak{M}, \mathfrak{N} \in \operatorname{Lat}(T)$ and $\mathfrak{M} \supset \mathfrak{N}$). It is known (see [4], Lemma 0) that a subspace \mathfrak{M} of $\mathfrak{5}$ is semi-invariant for T if and only if

$$
\begin{equation*}
T_{\mathfrak{M}}=P_{\mathfrak{M}} T \mid \mathfrak{M} \tag{1.1}
\end{equation*}
$$

is a "power-compression", that is, if

$$
\begin{equation*}
T_{\mathfrak{2 n}}^{n}=P_{\mathfrak{M}} T^{n} \mid \mathfrak{M}, \quad n=1,2, \ldots \tag{1.2}
\end{equation*}
$$

If T is a completely non-unitary contraction this is equivalent to

$$
\begin{equation*}
u\left(T_{\mathfrak{m})}=P_{\mathfrak{s p}} u(T) \mid \mathfrak{M}, \quad u \in H^{\infty} .\right. \tag{1.3}
\end{equation*}
$$

It is obvious that $\operatorname{Lat}_{1 / 2}(T)=\operatorname{Lat}_{1 / 2}\left(T^{*}\right)$ (we have $\mathfrak{M} \ominus \mathfrak{N}=\mathfrak{N}^{\perp} \ominus \mathfrak{M}^{\perp}$). Let us recall that the multiplicity μ_{T} of the operator T is the minimum cardinality of a subset \mathfrak{U} of \mathfrak{G} such that $\bigvee_{n \geq 0}^{\bigvee} T^{n} \mathfrak{U}=\mathfrak{H}$. For each $\mathfrak{M} \in \operatorname{Lat}_{1 / 2}(T)$ let us put $\mu_{T}(\mathfrak{M})=\mu_{T_{\mathfrak{M}}}$. If T is an operator of class C_{0}, we have by [7] that $\mu_{T}=\mu_{T^{*}}$. In this case we shall have

$$
\begin{equation*}
\mu_{T}(\mathfrak{M l})=\mu_{T^{*}}(\mathfrak{M l}), \quad M \in \operatorname{Lat}_{1 / 2}(T) . \tag{1.4}
\end{equation*}
$$

For any two operators T, T^{\prime} acting on $\mathfrak{S}, \mathfrak{S}^{\prime}$, respectively, we denote by $\mathscr{I}\left(T^{\prime}, T\right)$ the set of those operators $X: \mathfrak{G} \rightarrow \mathfrak{G}^{\prime}$ which satisfy the relation

$$
\begin{equation*}
T^{\prime} X=X T . \tag{1.5}
\end{equation*}
$$

Obviously, $\left(\mathscr{A}\left(T, T^{\prime}\right)\right)^{*}=\mathscr{A}\left(T^{\prime *}, T^{*}\right)$.
We are now going to define the determinant function of a C_{0} operator acting on a separable Hilbert space.

Definition 1.1. Let T be a C_{0} operator acting on a separable space and let $S(M), M=\left\{m_{j}\right\}_{j=1}^{\infty}$ be the Jordan model of $T[2]$. We define the determinant function d_{T} as the limit of any convergent subsequence of $\left\{m_{1} m_{2} \ldots m_{j}\right\}(j=1,2, \ldots)$.

The function d_{T} is uniquely determined up to a constant factor of modulus one because $\left|d_{T}\right|=\prod_{j=1}^{\infty}\left|m_{j}\right|$. If $d_{T} \neq 0$ then d_{T} is an inner function.

The C_{0} operators of finite multiplicity have nonvanishing determinant function. Indeed, if $S\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ is the Jordan model [6] of T, we have $d_{T}=m_{1} m_{2} \ldots m_{n}$. For any C_{0} operator T the relation $d_{T^{*}}=d_{T}$ holds (where $\left.f^{\sim}(z)=\overline{f(\bar{z})}\right)$.

With this definition of the determinant function, it is obvious that d_{T} is invariant with respect to quasi-affine transforms. It is also obvious that $d_{T}=1$ if and only if T acts on the trivial space $\{0\}$. We shall use the general notation

$$
\begin{equation*}
d_{T}(\mathfrak{M})=d_{T_{\mathfrak{M}}} \tag{1.6}
\end{equation*}
$$

for any C_{0} operator T and any $\mathfrak{M} \in \operatorname{Lat}_{1 / 2}(T)$.
Lemma 1.2. A contraction T of class C_{0} on a separable Hilbert space is a weak contraction if and only if $d_{T} \neq 0$. If T is a weak contraction of class C_{0}, d_{T} coincides with the determinant of the characteristic function of T.

Proof. If $d_{T} \neq 0$ it follows that the Jordan model $S(M)$ of T is a weak contraction (cf. [3], Lemma 8.4). Thus, by Proposition 4.3.a of [3], it follows that T is a weak contraction. Conversely, if T is a weak contraction, by Lemma 8.4 and Theorem 8.5 of [3] we have $d_{T} \neq 0$. The coincidence of d_{T} with the determinant of the characteristic function of T follows from [3], Theorem 8.7.

Theorem 1.3. For any C_{0} operator T acting on a separable space and any $\mathfrak{S}^{\prime} \in \operatorname{Lat}(T)$ we have $d_{T}=d_{T}\left(\mathfrak{Y}^{\prime}\right) d_{T}\left(\mathfrak{H}^{\prime \prime}\right)$, where $\mathfrak{H}^{\prime \prime}=\mathfrak{S}^{\prime \perp}$.

Proof. If $d_{T} \neq 0, T$ is a weak contraction and the Theorem follows from [3], Proposition 8.2. If $d_{T}=0$ we must show that either $d_{T}\left(\mathfrak{S}^{\prime}\right)=0$ or $d_{T}\left(\mathfrak{S}^{\prime \prime}\right)=0$. Equivalently, we have to show that T is a weak contraction whenever $T_{\mathfrak{5}}$, and $T_{\mathfrak{5}}$ " are weak contractions. So, let us assume that $T_{\mathfrak{S}^{\prime}}$, and $T_{\mathfrak{5}^{\prime \prime}}$ are weak contractions. Let $S(M), S\left(M^{\prime}\right), S\left(M^{\prime \prime}\right)$ be the Jordan models of $T, T^{\prime}, T^{\prime \prime}$, respectively. We consider firstly the case $\mu_{T}\left(\mathfrak{S}^{\prime}\right)<\infty$. For every natural number k we can find a subspace $\mathfrak{S}_{k} \in \operatorname{Lat}(T)$ such that $T \mid \mathfrak{S}_{k}$ is quasisimilar to $S\left(m_{1}, m_{2}, \ldots, m_{k}\right)$. The subspace $\mathfrak{S}_{k}^{\prime}=\mathfrak{G}^{\prime} \vee \mathfrak{S}_{k} \in \operatorname{Lat}(T)$ and $T \mid \mathfrak{S}_{k}^{\prime}$ is also of finite multiplicity. From [3], Proposition 8.2 we infer

$$
\begin{equation*}
d_{T}\left(\mathfrak{S}_{k}^{\prime}\right)=d_{T}\left(\mathfrak{S}^{\prime}\right) d_{T}\left(\mathfrak{S}_{k}^{\prime \prime}\right), \quad \mathfrak{S}_{k}^{\prime \prime}=\mathfrak{S}_{k}^{\prime} \Theta \mathfrak{S}^{\prime}=\mathfrak{S}_{k}^{\prime} \cap \mathfrak{S}^{\prime \prime} \tag{1.7}
\end{equation*}
$$

Again by [3], Proposition 8.2, $m_{1} m_{2} \ldots m_{k}$ divides $d_{T}\left(\mathfrak{H}_{k}^{\prime}\right)$ and $d_{T}\left(\mathfrak{G}_{k}^{\prime \prime}\right)$ divides $d_{T}\left(\mathfrak{H}^{\prime \prime}\right)$. Thus (1.7) implies that $m_{1} m_{2} \ldots m_{k}$ divides $d_{T}\left(\mathfrak{H}^{\prime}\right) d_{T}\left(\mathfrak{H}^{\prime \prime}\right)$. In particular $d_{T} \neq 0$ and by [3], Proposition 8.2, we have $d_{T}=d_{T}\left(\mathfrak{H}^{\prime}\right) d_{T}\left(\mathfrak{S}^{\prime \prime}\right)$ in this case.

Let us remark now that from the preceding argument it follows that the equality $d_{T}=d_{T}\left(\mathfrak{G}^{\prime}\right) d_{T}\left(\mathfrak{G}^{\prime \prime}\right)$ also holds under the assumption $\mu_{T}\left(\mathfrak{G}^{\prime \prime}\right)<\infty$. Indeed, we have only to replace T by T^{*} and to use the relation $d_{T^{*}}=d_{T}^{\sim}$.

We are now considering the general case. Let $\mathfrak{S}_{k}, \mathfrak{S}_{k}^{\prime}, \mathfrak{S}_{k}^{\prime \prime}$ have the same meaning as before. It is clear that $\mu_{T}\left(\mathfrak{S}_{k}^{\prime \prime}\right)<\infty$ and by the preceding remark it follows that $T_{\mathfrak{S}_{k}^{\prime}}$ is a weak contraction and (1.7) holds. Arguing as in the case $\mu_{T}\left(\mathfrak{5}^{\prime}\right)<\infty$ we obtain $d_{T} \neq 0$, that is T is a weak contraction. This finishes the proof.

Let T, T^{\prime} be two operators and $X \in \mathscr{F}\left(T^{\prime}, T\right)$. For every $\mathfrak{M} \in \operatorname{Lat}(T)$; $(X \mathfrak{M})^{-} \in \operatorname{Lat}\left(T^{\prime}\right)$. We shall prove now a lemma which is not particularly concerned with operators of class C_{0}.

Lemma 1.4. Let T, T^{\prime} be two operators and let $X \in \mathscr{I}\left(T^{\prime}, T\right)$. The mapping $\Omega_{\mapsto}(X \Re)^{-}$is onto Lat $\left(T^{\prime}\right)$ if and only if $\Omega^{\prime} \mapsto\left(X^{*} \boldsymbol{\Omega}^{\prime}\right)^{-}$is one-to-one on Lat $\left(T^{\prime *}\right)$

Proof. Let us assume that $\Omega^{\prime} \mapsto\left(X^{*} \Omega^{\prime}\right)^{-}$is one-to-one on Lat $\left(T^{\prime *}\right)$ and let us take $\Omega^{\prime} \in \operatorname{Lat}\left(T^{\prime}\right)$. If we put $\Omega=X^{-1}\left(\Omega^{\prime}\right)$ and $\Omega_{1}^{\prime}=(X \Omega)^{-}$, we have $\left(X^{*}\left(\Omega_{1}^{\prime \perp}\right)\right)^{-}=$ $=\left(\operatorname{ran} X^{*} P_{\Omega_{1}^{\prime \perp}}\right)^{-}=\left(\operatorname{ker} P_{\Omega_{1}^{\prime \perp}} X\right)^{\perp}=\left(X^{-1}\left(\Omega_{1}^{\prime}\right)\right)^{\perp}=\left(X^{-1}\left(\Omega^{\prime}\right)\right)^{\perp} \quad$ and \quad by the same computation $\left(X^{*}\left(\Omega^{\prime \perp}\right)\right)^{-}=\left(X^{-1}\left(\Omega^{\prime}\right)\right)^{\perp}$. By the assumption we have $\Omega_{1}^{\prime \perp}=\Omega^{\prime \perp}$, $\boldsymbol{\Omega}_{1}^{\prime}=\boldsymbol{\Omega}^{\prime}$ so that $\boldsymbol{\Omega}^{\prime}=(X \boldsymbol{\Omega})^{-}$.

Conversely, let us assume that $\Omega_{\mapsto}(X \Omega)^{-}$is onto Lat (T^{\prime}) and let us take $\boldsymbol{\Omega}^{\prime} \in \operatorname{Lat}\left(T^{\prime *}\right)$. Then $\boldsymbol{\Omega}^{\prime 1}=(X \Omega)^{-}$where $\boldsymbol{\Omega}=X^{-1}\left(\Omega^{\prime 1}\right)$. We have $\boldsymbol{\Omega}^{\prime}=(X \Omega)^{-1}=$ $=\left(\operatorname{ran} X P_{\Omega}\right)^{\perp}=\operatorname{ker} P_{\Omega} X^{*}=X^{*-1}\left(\Omega^{\perp}\right)=X^{*-1}\left(\left(X^{-1}\left(\Omega^{\prime}\right)\right)^{\perp}\right)=X^{*-1}\left(\operatorname{ker} P_{\Omega^{\prime}} X\right)^{\perp}=$ $=X^{*-1}\left(\operatorname{ran} X^{*} P_{\boldsymbol{R}^{\prime}}\right)^{-}=X^{*-1}\left(\left(X^{*} \Omega^{\prime}\right)^{-}\right)$which shows that Ω^{\prime} is determined in this case by $\left(X^{*} \mathfrak{\Omega}^{\prime}\right)^{-}$. The lemma follows.

Remark 1.5. Because the Jordan model of a C_{0} operator acting on a nonseparable Hilbert space contains uncountably many direct summands of the form $S(m)$ (cf. [1]) it is natural to extend the definition of the determinant function by taking $d_{T}=0$ for T acting on a non-separable space. With this extension Lemma 1.2 and Theorem 1.3 remain valid with the condition of separability dropped. For Lemma 1.4 it is enough to remark that a completely non-unitary weak contraction acts on a necessarily separable space and for the Theorem 1.3 we have to remark that T acts on a separable space if and only if \mathfrak{G}^{\prime} and $\mathfrak{y}^{\prime \prime}$ are separable spaces.

§ 2. C_{0}-Fredholm operators

Definition 2.1. Let T, T^{\prime} be two operators and let $X \in \mathscr{F}\left(T^{\prime}, T\right)$. X is called
 Lat (T) onto Lat $\left(T^{\prime}\right)$.

For $T=0$ and $T^{\prime}=0$ a $\left(T^{\prime}, T\right)$-lattice-isomorphism is simply an invertible operator. It is clear that a lattice-isomorphism is always a quasi-affinity but the converse is not true as shown by the example $T=0, T^{\prime}=0$. By Lemma $1.4, X$ is a (T^{\prime}, T)-lattice-isomorphism if and only if X^{*} is a ($T^{*}, T^{\prime *}$)-lattice-isomorphism. We shall say simply lattice-isomorphism instead of (T^{\prime}, T)-lattice-isomorphism whenever it will be clear which are T and T^{\prime}.

Definition 2.2. Let T and T^{\prime} be two operators of class C_{0} and $X \in \mathscr{I}\left(T^{\prime}, T\right)$. X is called a $\left(T^{\prime}, T\right)$-semi-Fredholm operator if $X \mid(\operatorname{ker} X)^{\perp}$ is a $\left(T^{\prime} \mid(\operatorname{ran} X)^{-}, T_{(\operatorname{ker} X)^{\mu}}\right)$-lattice-isomorphism and either $d_{T}(\operatorname{ker} X) \neq 0$ or $d_{T^{\prime}}\left(\operatorname{ker} X^{*}\right) \neq 0$. A $\left(T^{\prime}, T\right)$-semi-Fredholm operator X is $\left(T^{\prime}, T\right)$-Fredholm if both $d_{T}(\operatorname{ker} X)$ and $d_{T^{\prime}}\left(\operatorname{ker} X^{*}\right)$ are different from zero. The index of the ($\left.T^{\prime}, T\right)$ Fredholm operator X is the meromorphic function

$$
\begin{equation*}
j(X)=j_{\left(T, T^{\prime}\right)}(X)=d_{T}(\operatorname{ker} X) / d_{T^{\prime}}\left(\operatorname{ker} X^{*}\right) \tag{2.1}
\end{equation*}
$$

If X is $\left(T^{\prime}, T\right)$-semi-Fredholm and not $\left(T^{\prime}, T\right)$-Fredholm we define

$$
\begin{equation*}
j(X)=0 \quad \text { if } \quad d_{T}(\operatorname{ker} X)=0 ; j(X)=\infty \quad \text { if } \quad d_{T^{\prime}}\left(\operatorname{ker} X^{*}\right)=0 . \tag{2.2}
\end{equation*}
$$

We shall say simply C_{0}-semi-Fredholm, C_{0}-Fredholm instead of (T^{\prime}, T)-semiFredholm, ($\left.T^{\prime}, T\right)$-Fredholm, respectively, whenever it will be clear which are
the C_{0} operators T and T^{\prime}. We shall denote by $\mathrm{sF}\left(T^{\prime}, T\right)$ (respectively $\mathrm{F}\left(T^{\prime}, T\right)$) the set of all (T^{\prime}, T)-semi-Fredholm (respectively (T^{\prime}, T)-Fredholm) operators. If $T=T^{\prime}$ we shall write $\mathrm{sF}(T), \mathrm{F}(T)$ instead of $\mathrm{sF}(T, T), \mathrm{F}(T, T)$, respectively.

We can easily see how the preceding definition is related to the usual definition of Fredholm operators. Let us note that the operator $T=0$ acting on the Hilbert space \mathfrak{G} is a C_{0} operator; it is a weak contraction if and only if $n=\operatorname{dim} \mathfrak{G}<\infty$ and in this case $d_{T}(z)=z^{n}(|z|<1)$. If $T=T^{\prime}=0$ and $X \in \mathscr{I}\left(T^{\prime}, T\right)=$ $=\mathscr{L}(\mathfrak{S})$ then $X \mid(\operatorname{ker} X)^{\perp}$ is a lattice-isomorphism if and only if X has closed range. From these remarks it follows that an operator $X \in \mathscr{I}(0,0)$ is C_{0}-Fredholm if and only if it is Fredholm in the usual sense, and $j(X)(z)=z^{i(X)}$, where $i(X)=$ $=\operatorname{dim} \operatorname{ker} X-\operatorname{dim} \operatorname{ker} X^{*}$ is the (usual) index of the Fredholm operator X.

Proposition 2.3. Let $T, T^{\prime}, T^{\prime \prime}$ be C_{0}-operators acting on $\mathfrak{G}, \mathfrak{S}^{\prime}, \mathfrak{5}^{\prime \prime}$, respectively, and let $A \in \mathscr{I}\left(T, T^{\prime}\right), B \in \mathscr{I}\left(T, T^{\prime \prime}\right)$. be such that $A \mathfrak{S}^{\prime} \subset\left(B \mathfrak{S}^{\prime \prime}\right)^{-}$. If $d_{T} \neq 0$, we have:

$$
\begin{align*}
& \left(A^{-1}\left(B \mathfrak{Y}^{\prime \prime}\right)\right)^{-}=\mathfrak{S}^{\prime} \tag{2.3}\\
& \left(A \mathfrak{G}^{\prime} \cap B \mathfrak{G}^{\prime \prime}\right)^{-} \supset A \mathfrak{S}^{\prime} .
\end{align*}
$$

Proof. It is enough to prove (2.3) because (2.4) is a simple consequence of (2.3).
We may suppose that B is a quasi-affinity and A is one-to-one. Indeed, we have only to replace A, B respectively by $A \mid(\operatorname{ker} A)^{\perp}$ and $B \mid(\operatorname{ker} B)^{\perp}$, and \mathfrak{H} by $\left(B \mathfrak{S}^{\prime \prime}\right)^{-}$. It follows that $d_{T^{*}}=d_{T}$ and T^{\prime} is quasisimilar to the restriction of T to some invariant subspace. By Theorem 1.3 we have $d_{T^{\prime}} \neq 0$ and therefore

$$
\begin{equation*}
d_{T^{\prime} \oplus T^{\prime \prime}}=d_{T^{\prime}}, d_{T^{\prime \prime}}=d_{T^{\prime}} d_{T} \neq 0 \tag{2.4}
\end{equation*}
$$

The operator $X: \mathfrak{S}^{\prime} \oplus \mathfrak{G}^{\prime \prime} \rightarrow \mathfrak{G}$ defined by $X\left(h^{\prime} \oplus h^{\prime \prime}\right)=A h^{\prime}-B h^{\prime \prime}$ has dense range and satisfies $T X=X\left(T^{\prime} \oplus T^{\prime \prime}\right)$.
Thus $\left(T^{\prime} \oplus T^{\prime \prime}\right)_{(\text {ker } X)^{\perp}}$ is a quasi-affine transform of T, in particular

$$
\begin{equation*}
d_{T^{\prime} \oplus T^{\prime \prime}}\left((\operatorname{ker} X)^{\perp}\right)=d_{T} \tag{2.5}
\end{equation*}
$$

From (2.4) and (2.5) we infer

$$
\begin{equation*}
d_{T^{\prime} \oplus T^{\prime \prime}}(\operatorname{ker} X)=d_{T^{\prime}} \tag{2.6}
\end{equation*}
$$

The operator Y : ker $X \rightarrow \mathfrak{G}^{\prime}$ defined by $Y\left(h^{\prime} \oplus h^{\prime \prime}\right)=h^{\prime}$ is one-to-one. Indeed, $Y\left(h^{\prime} \oplus h^{\prime \prime}\right)=0$ and $h^{\prime} \oplus h^{\prime \prime} \in \operatorname{ker} X$ imply $h^{\prime}=0$ and $B h^{\prime \prime}=A h^{\prime}=0$; it follows that $h^{\prime \prime}=0$ because B is one-to-one. Moreover, we have $Y \in \mathscr{I}\left(T^{\prime},\left(T^{\prime} \oplus T^{\prime \prime}\right) \mid(\operatorname{ker} X)\right)$. It is easy to verify that ran $Y=A^{-1}\left(B \mathfrak{S}^{\prime \prime}\right)$. By the invariance of the determinant function we have

$$
\begin{equation*}
d_{T^{\prime}}\left(\left(A^{-1}\left(B \mathfrak{G}^{\prime \prime}\right)\right)^{-}\right)=d_{T^{\prime} \oplus T^{\prime \prime}}(\operatorname{ker} X)=d_{T^{\prime}} . \tag{2.7}
\end{equation*}
$$

From Theorem 1.3 and relation (2.7) it follows that

$$
\begin{equation*}
d_{T^{\prime}}=d_{T^{\prime}}\left(\left(A^{-1}\left(B \mathfrak{S}^{\prime \prime}\right)\right)^{-}\right) d_{T^{\prime}}\left(\left(A^{-1}\left(B \mathfrak{G}^{\prime \prime}\right)\right)^{\perp}\right)=d_{T^{\prime}} d_{T^{\prime}}\left(\left(A^{-1}\left(B \mathfrak{S}^{\prime \prime}\right)\right)^{\perp}\right) \tag{2.8}
\end{equation*}
$$

and therefore

$$
d_{T^{\prime}}\left(\left(A^{-1}\left(B \mathfrak{S}^{\prime \prime}\right)\right)^{\perp}\right)=1, \quad\left(A^{-1}\left(B \mathfrak{S}^{\prime \prime}\right)\right)^{\perp}=\{0\} \quad \text { and }(2.3) \text { follows. }
$$

The Proposition is proved.
Corollary 2.4. Let T, T^{\prime} be two C_{0} operators such that $d_{T} \neq 0$ and let $A \in \mathscr{I}\left(T^{\prime}, T\right)$ be a quasi-affinity. Then A is a lattice-isomorphism.

Proof: The correspondence $\Omega_{\mapsto} \rightarrow(A \Omega)^{-}$is onto Lat (T^{\prime}) by Proposition 2.3. Corollary follows by Lemma 1.4 since A^{*} is also a quasi-affinity.

Lemma 2.5. Let T, T^{\prime} be C_{0} operators and $A \in \mathscr{I}\left(T^{\prime}, T\right)$. We always have $d_{T^{\prime}} d_{T}(\operatorname{ker} A)=d_{T} d_{T^{\prime}}\left(\operatorname{ker} A^{*}\right)$.

Proof. From Theorem 1.3 and the invariance of the determinant function with respect to quasi-affine transforms we infer $d_{T^{\prime}}=d_{T^{\prime}}\left(\operatorname{ker} A^{*}\right) d_{T^{\prime}}\left((\operatorname{ran} A)^{-}\right)=$ $=d_{T^{\prime}}\left(\operatorname{ker} A^{*}\right) d_{T}\left((\operatorname{ker} A)^{\perp}\right)$ and $d_{T}=d_{T}(\operatorname{ker} A) d_{T}\left((\operatorname{ker} A)^{\perp}\right)$. The Lemma obviously follows from these relations.

Corollary 2.6. Let T, T^{\prime} be weak contractions of class C_{0}. Then $\mathrm{F}\left(T^{\prime}, T\right)=$ $=\mathscr{I}\left(T^{\prime}, T\right)$ and $j(A)=d_{T} / d_{T^{\prime}}$, for $A \in \mathscr{I}\left(T^{\prime}, T\right)$.

Proof. For each $A \in \mathscr{F}\left(T^{\prime}, T\right), A \mid(\operatorname{ker} A)^{\perp}$ is a lattice-isomorphism by Corollary 2.4. Also we have $d_{T}(\operatorname{ker} A) \neq 0$ and $d_{T^{\prime}}\left(\operatorname{ker} A^{*}\right) \neq 0$ by Theorem 1.3. The value of $j(A)$ follows then from Lemma 2.5 .

Remark 2.7. From the preceding proof it easily follows that $\mathrm{sF}\left(T^{\prime}, T\right)=$ $=\mathscr{I}\left(T^{\prime}, T\right)$ and $\mathrm{F}\left(T^{\prime}, T\right)=\emptyset$ if exactly one of the contractions T and T^{\prime} is weak.

The following Corollary is a generalisation of [10], Theorem 2.
Corollary 2.8. Let T and T^{\prime} be weak contractions of class C_{0} such that $d_{T}=d_{T^{\prime}}$. Then each injection $A \in \mathscr{I}\left(T^{\prime}, T\right)$ is a lattice-isomorphism (in particular a quasi-affinity).

Proof. Let $A \in \mathscr{I}\left(T^{\prime}, T\right)$ be an injection. By Corollary 2.6 $A \in \mathrm{~F}\left(T^{\prime}, T\right)$ and $j(A)=d_{T} / d_{T^{\prime}}=1$;' it follows that $d_{T^{\prime}}\left(\operatorname{ker} A^{*}\right)=d_{T}(\operatorname{ker} A)=1$, thus $\operatorname{ker} A^{*}=\{0\}$ and A is a quasi-affinity. The conclusion follows by Corollary 2.4.

Corollary 2.9. Let T be a weak contraction of class C_{0} and let $A \in\{T\}^{\prime}$ be an injection. Then the restriction of A to each hyper-invariant subspace of T is a quasiaffinity.

Proof. Obviously follows from the preceding Corollary.
Lemma 2.10. For any two C_{0} operators T and T^{\prime} we have $\operatorname{sF}\left(T, T^{\prime}\right)^{*}=$ $=\mathrm{sF}\left(T^{\prime *}, T^{*}\right), \mathrm{F}\left(T, T^{\prime}\right)^{*}=\mathrm{F}\left(T^{\prime *}, T^{*}\right)$, and

$$
\begin{equation*}
j\left(A^{*}\right)=\left(j(A)^{\sim}\right)^{-1}, \quad A \in \mathrm{sF}\left(T^{\prime}, T\right) \quad\left(\text { here } 0^{-1}=\infty \text { and } \infty^{-1}=0\right) \tag{2.9}
\end{equation*}
$$

Proof. If $A \in \mathscr{I}\left(T^{\prime}, T\right)$, we have $\left(A \mid(\operatorname{ker} A)^{\perp}\right)^{*}=A^{*} \mid\left(\operatorname{ker} A^{*}\right)^{\perp}, d_{T^{* *}}\left(\operatorname{ker} A^{*}\right)=$ $=d_{T^{\prime}}\left(\operatorname{ker} A^{*}\right)^{\sim}$ and $d_{T^{*}}(\operatorname{ker} A)=d_{T}(\operatorname{ker} A)^{\sim}$. The Lemma follows.

Theorem 2.11. Let $T, T^{\prime}, T^{\prime \prime}$ be operators of class $C_{0}, A \in \mathrm{sF}\left(T^{\prime}, T\right)$, $B \in \mathrm{sF}\left(T^{\prime \prime}, T^{\prime}\right)$. If the product $j(B) j(A)$ makes sense we have $B A \in \mathrm{sF}\left(T^{\prime \prime}, T\right)$ and $j(B A)=j(B) j(A)$.

Proof. We shall show firstly that $B A \mid(\operatorname{ker} B A)^{\perp}$ is a lattice-isomorphism. To do this we will show that the range of $B A$ is dense in each cyclic subspace of $T^{\prime \prime}$, contained in $(\operatorname{ran} B A)^{-}$. The whole statement will follow from Lemma 1.4 and Lemma 2.10 and the same argument applied to $(B A)^{*}=A^{*} B^{*}$.

Let us remark that from the C_{0}-semi-fredholmness of B it follows that

$$
B^{-1}\left((\operatorname{ran} B A)^{-}\right) \subset\left((\operatorname{ran} A)^{-}+\operatorname{ker} B\right)^{-}
$$

Therefore, for each $f \in(\operatorname{ran} B A)^{-}$and $\varepsilon>0$ we $\cdot \operatorname{can}$ find $g \in\left((\operatorname{ran} A)^{-}+\operatorname{ker} B\right)^{-}$ such that

$$
\begin{equation*}
B g \in \mathfrak{H}_{f}=\bigvee_{n \geqq 0} T^{\prime \prime n} f \quad \text { and } \quad\|B g-f\|<\varepsilon \tag{2.10}
\end{equation*}
$$

Now, let us denote by Ω the subspace $\left((\operatorname{ran} A)^{-}+\operatorname{ker} B\right)^{-} \ominus(\operatorname{ran} A)^{-}$and by P the orthogonal projection of $\left((\operatorname{ran} A)^{-}+\operatorname{ker} B\right)^{-}$onto Ω. We claim that

$$
\begin{equation*}
d_{T^{\prime}}(\mathfrak{R}) \neq 0 \tag{2.11}
\end{equation*}
$$

Indeed, if $j(A) \neq \infty$, we have $d_{T^{\prime}}\left(\operatorname{ker} A^{*}\right) \neq 0$ and $\mathcal{A} \subset \operatorname{ker} A^{*}$. If, $j(A)=\infty$ it follows from the hypothesis that $j(B) \neq 0$ and therefore $d_{T^{\prime}}(\operatorname{ker} B) \neq 0$. But

$$
\begin{equation*}
\left(\left(\operatorname{ran}(P \mid \operatorname{ker} B)^{-}=\Omega\right.\right. \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{\Re}^{\prime}=P T^{\prime} \mid\left((\operatorname{ran} A)^{-}+\operatorname{ker} B\right)^{-} \tag{2.13}
\end{equation*}
$$

From Theorem 1.3 and the invariance of the determinant function with respect to quasi-affine transforms we infer that $d_{T^{\prime}}(\Re)$ divides $d_{T^{\prime}}(\operatorname{ker} B)$; thus (2.11) is proved.

From the relations (2.11-13) it follows, via Proposition 2.3, that $\left\{k \in \mathfrak{S}_{g}\right.$; $P k \in P(\operatorname{ker} B)\}$ is dense in \mathfrak{H}_{g}, that is $\mathfrak{H}_{g} \cap\left((\operatorname{ran} A)^{-}+\operatorname{ker} B\right)$ is dense in \mathfrak{H}_{g}. Thus there exist $u \in(\operatorname{ran} A)^{-}$and $v \in \operatorname{ker} B$ such that

$$
\begin{equation*}
u+v \in \mathfrak{S}_{g}, \quad\|u+v-g\|<\varepsilon . \tag{2.14}
\end{equation*}
$$

Now, by the C_{0}-semi-fredholmness of A, there exists $k \in \mathfrak{H}$ such that

$$
\begin{equation*}
A k \in \mathfrak{S}_{u}, \quad\|A k-u\|<\varepsilon \tag{2.15}
\end{equation*}
$$

We have $B u=B(u+v) \in B \mathfrak{S}_{g} \subset \mathfrak{S}_{f}$ and it follows that $B \mathfrak{F}_{u} \subset \mathfrak{S}_{f}$. Therefore $B A k \in B \mathfrak{S}_{u} \subset \mathfrak{S}_{f}$. From (2.10), (2.14) and (2.15) we infer $\|B A k-f\| \leqq\|B A k-B u\|+$ $+\|B(u+v)-B g\|+\|B g-f\|<(2\|B\|+1) \varepsilon$. Because ε is arbitrarily small, the first part of the proof is done.

We obviously have

$$
\begin{equation*}
\operatorname{ker} B A=A^{-1}(\operatorname{ker} B), \quad \operatorname{ker}(B A)^{*}=B^{*-1}\left(\operatorname{ker} A^{*}\right) . \tag{2.16}
\end{equation*}
$$

Let us consider the triangularisation $T \left\lvert\, \operatorname{ker} B A=\left[\begin{array}{cc}T_{1} & X \\ 0 & T_{2}\end{array}\right]\right.$ determined by the decomposition $\operatorname{ker} B A=\operatorname{ker} A \oplus(\operatorname{ker} B A \ominus \operatorname{ker} A)$. By the C_{0}-semi-fredholmness of A, T_{2} is a quasi-affine transform of $T^{\prime} \mid \mathfrak{S}_{1}$, where

$$
\begin{equation*}
\mathfrak{S}_{1}=(\operatorname{ran} A)^{-} \cap \operatorname{ker} B \tag{2.17}
\end{equation*}
$$

If $d_{T^{\prime}}(\operatorname{ker} B) \neq 0$ and $d_{T}(\operatorname{ker} A) \neq 0$ it follows that

$$
\begin{equation*}
d_{T}(\operatorname{ker} B A)=d_{T}(\operatorname{ker} A) d_{T},\left(\mathfrak{H}_{1}\right) \neq 0 \tag{2.18}
\end{equation*}
$$

thus $B A \in \mathrm{sF}\left(T^{\prime \prime}, T\right)$. Analogously, if $d_{T^{\prime}}\left(\operatorname{ker} B^{*}\right) \neq 0$ and $d_{T^{\prime}}\left(\operatorname{ker} A^{*}\right) \neq 0$ it follows that $B A \in \mathrm{sF}\left(T^{\prime \prime}, T\right)$. From the hypothesis it follows that at least one of the situations considered must occur. Thus we always have $B A \in \mathrm{sF}\left(T^{\prime \prime}, T\right)$.

It is obvious that $d_{T^{\prime}}\left(\operatorname{ker}(B A)^{*}\right)=0 \quad$ whenever $\quad d_{T^{\prime}}\left(\operatorname{ker} B^{*}\right)=0 \quad$ since $\operatorname{ker}(B A)^{*} \supset \operatorname{ker} B^{*}$. Thus the relation $j(B A)=\infty=j(B) j(A)$ is proved in this case. Let us suppose now that $j(B)=0$. Then, by Theorem 1.3 we have

$$
0=d_{T^{\prime}}(\operatorname{ker} B)=d_{T^{\prime}}\left(\mathfrak{H}_{1}\right) d_{T^{\prime}}\left(\operatorname{ker} B \ominus \mathfrak{S}_{1}\right)
$$

The projection onto $\operatorname{ker} A^{*}$ is one-to-one on $\operatorname{ker} B \ominus \mathfrak{S}_{1}$, thus $T_{\text {ker } B \ominus \mathfrak{S}_{1}}^{\prime}$ is a quasiaffine transform of some restriction of $T_{\operatorname{ker} A^{*}}^{\prime}$. It follows that $d_{T^{\prime}}\left(\operatorname{ker} B \ominus \mathfrak{S}_{1}\right) \neq 0$ and the preceding relation implies $d_{T^{\prime}}\left(\mathfrak{G}_{1}\right)=0$. By (2.18), the relation $j(B A)=$ $=j(B) j(A)(=0)$ is proved in this case also. If $j(A) \in\{0, \infty\}$ we have $j(B A)=$ $=\left(j\left((B A)^{*}\right)^{\sim}\right)^{-1}=\left(j\left(A^{*}\right)^{\sim} j\left(B^{*}\right)^{\sim}\right)^{-1}=j(B) j(A)$ by Lemma 2.10.

It remains now to prove the relation $j(B A)=j(B) j(A)$ for $A \in \mathrm{~F}\left(T^{\prime}, T\right)$ and $B \in \mathrm{~F}\left(T^{\prime \prime}, T^{\prime}\right)$. From the second relation (2.14) we infer, as before,

$$
\begin{equation*}
d_{T^{\prime \prime}}\left(\operatorname{ker}\left(B A_{4}\right)^{*}\right)=d_{T^{\prime \prime}}\left(\operatorname{ker} B^{*}\right) d_{T^{\prime}}\left(\mathfrak{S}_{1}^{*}\right) \tag{2.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{H}_{1}^{*}=\left(\operatorname{ran} B^{*}\right)^{-} \cap \operatorname{ker} A^{*}=(\operatorname{ker} B)^{\perp} \cap(\operatorname{ran} A)^{\perp} \tag{2.17}
\end{equation*}
$$

Let us denote by Q the orthogonal projection of \mathfrak{G}^{\prime} onto $(\operatorname{ran} A)^{\perp}=\operatorname{ker} A^{*}$. If we consider the decompositions

$$
\begin{equation*}
\operatorname{ker} B=\mathfrak{G}_{1} \oplus \mathfrak{S}_{2}, \quad \text { ker } A^{*}=\mathfrak{G}_{1}^{*} \oplus \mathfrak{S}_{2}^{*} \tag{2.19}
\end{equation*}
$$

we claim that $Q \mid \mathfrak{S}_{2}$ is a quasi-affinity from \mathfrak{S}_{2} into \mathfrak{G}_{2}^{*}. Indeed, if $h \in \mathfrak{S}_{2}$ and $g \in \mathfrak{S}_{1}^{*}$, we have $(g, Q h)=(g, h)=0$ as $g \in(\operatorname{ker} B)^{\perp}$, thus $Q \mathfrak{S}_{2} \subset \mathfrak{H}_{2}^{*}$. Because $\mathfrak{H}_{1}=\operatorname{ker} B \cap$ $\cap(\operatorname{ran} A)^{-}=\operatorname{ker}(Q \mid \operatorname{ker} B), Q$ is one-to-one on \mathfrak{H}_{2}. We have only to show that $\operatorname{ker} A^{*} \ominus\left(Q \mathfrak{S}_{2}\right)^{-}=\mathfrak{G}_{1}^{*}$. If $h \in \operatorname{ker} A^{*} \ominus\left(Q \mathfrak{G}_{2}\right)^{-}$and $g \in \operatorname{ker} B$ we have $(h, g)=(h, Q g)=0$ because $\left(Q \mathfrak{H}_{2}\right)^{-}=(Q(\operatorname{ker} B))^{-}\left(\right.$as $\left.Q \mid \mathfrak{H}_{1}=0\right)$; the inclusion ker $A^{*} \ominus\left(Q \mathfrak{H}_{2}\right)^{-} \subset \mathfrak{S}_{1}^{*}$ follows and the assertion concerning $Q \mid \mathfrak{H}_{2}$ is proved.

Now, because $\mathfrak{H}_{1}=\operatorname{ker}(Q \mid \operatorname{ker} B)$, we have the intertwining relation $T_{\mathfrak{S}_{2}^{*}}^{\prime}\left(Q \mid \mathfrak{S}_{2}\right)=$ $=\left(Q \mid \mathfrak{G}_{2}\right) T_{\mathfrak{S}_{2}}^{\prime}$; in particular

$$
\begin{equation*}
d_{T^{\prime}}\left(\mathfrak{S}_{2}\right)=d_{T^{\prime}}\left(\mathfrak{S}_{2}^{*}\right) \tag{2.20}
\end{equation*}
$$

By (2.18-20) and Theorem 1.3 we have

$$
\begin{aligned}
j(B A) & =d_{T}(\operatorname{ker} B A) / d_{T^{\prime \prime}}\left(\operatorname{ker}(B A)^{*}\right)= \\
& =\left(d_{T}(\operatorname{ker} A) / d_{T^{\prime \prime}}\left(\operatorname{ker} B^{*}\right)\right)\left(d_{T^{\prime}}\left(\mathfrak{S}_{1}\right) / d_{T^{\prime}}\left(\mathfrak{S}_{1}^{*}\right)\right)= \\
& =\left(d_{T}(\operatorname{ker} A) / d_{T^{\prime \prime}}\left(\operatorname{ker} B^{*}\right)\right)\left(d_{T^{\prime}}\left(\mathfrak{H}_{1}\right) d_{T^{\prime}}\left(\mathfrak{H}_{2}\right) / d_{T^{\prime}}\left(\mathfrak{H}_{1}^{*}\right) d_{T^{\prime}}\left(\mathfrak{G}_{2}^{*}\right)\right)= \\
& =\left(d_{T}(\operatorname{ker} A) / d_{T^{\prime}}\left(\operatorname{ker} A^{*}\right)\right)\left(d_{T^{\prime}}(\operatorname{ker} B) / d_{T^{\prime \prime}}\left(\operatorname{ker} B^{*}\right)\right)=j(B) j(A) .
\end{aligned}
$$

Theorem 2.11 is proved.
Theorem 2.12. Let T be an operator of class C_{0} acting on \mathfrak{S} and let $X \in\{T\}^{\prime}$ be such that $d_{T}\left((X \mathfrak{H})^{-}\right) \neq 0$. Then $I+X \in \mathrm{~F}(T)$ and $j(I+X)=1$.

Proof. We firstly show that the mapping Lat $(T) \ni \mathfrak{M}_{\mapsto}((I+X) \mathfrak{M})^{-}$is onto $\operatorname{Lat}\left(T \mid((I+X) \mathfrak{G})^{-}\right)$. To do this let us take $\mathfrak{N} \in \operatorname{Lat}(T), \mathfrak{N} \subset((I+X) \mathfrak{H})^{-}$and let P denote the orthogonal projection of \mathfrak{y} onto (ker $X)^{\perp}$. Because $P \mathfrak{M} \subset(P(I+X) \mathfrak{H})^{-}$, $T_{(\text {ker } X)^{\perp}} P=P T$ and $d_{T}\left((\operatorname{ker} X)^{\perp}\right) \neq 0$, it follows by Proposition 2.3 that $\mathfrak{N}^{\prime}=\{h \in \mathfrak{N} ; P h \in P(I+X) \mathfrak{S}\}$ is dense in \mathfrak{N}. Now we can show that $\mathfrak{Y}^{\prime} \subset(I+X) \mathfrak{H}$; indeed $\mathfrak{N}^{\prime} \subset(I+X) \mathfrak{H}+\operatorname{ker} X$ and $\operatorname{ker} X \subset(I+X) \mathfrak{H}(h=(I+X) h$ for $h \in \operatorname{ker} X)$. Therefore we have $N=((I+X) \mathfrak{M})^{-}$, where $\mathfrak{M}=(I+X)^{-1} \mathfrak{M}$.

From the preceding argument applied to $I+X^{*}$ and from Lemma 1.4 it follows that $(I+X)(\operatorname{ker}(I+X))^{\perp}$ is a lattice-isomorphism. Because $\operatorname{ker}(I+X) \subset X \mathfrak{F}$ ($h=-X h$ whenever $(I+X) h=0$) and $\operatorname{ker}(I+X)^{*} \subset X^{*} \mathfrak{G}$, by Theorem 1.3 it follows that $I+X \in \mathrm{~F}(T)$.

It remains only to compute $j(I+X)$. To do this let us consider the decomposition $\mathfrak{G}=\mathfrak{U} \oplus \mathfrak{B}, \mathfrak{U}=(X \mathfrak{H})^{-}$. With respect to this decomposition we have $I=\left[\begin{array}{cc}I_{\mathfrak{u}} & 0 \\ 0 & I_{\mathfrak{g}}\end{array}\right], X=\left[\begin{array}{cc}X^{\prime} & X^{\prime \prime} \\ 0 & 0\end{array}\right]$, where $\left.X^{\prime} \in\{T \mid \mathfrak{U}\}\right\}^{\prime}$. Since by the hypothesis $T \mid \mathfrak{U}$ is a weak contraction, we infer by Corollary 2.6

$$
\begin{equation*}
d_{T}\left(\operatorname{ker}\left(I+X^{\prime}\right)\right)=d_{T}\left(\operatorname{ker}\left(I+X^{\prime}\right)^{*}\right) \tag{2.21}
\end{equation*}
$$

Now, we can easily verify that $\operatorname{ker}(I+X)=\operatorname{ker}\left(I+X^{\prime}\right)$. The inclusion $\operatorname{ker}\left(I+X^{\prime}\right) \subset$ $\subset \operatorname{ker}(I+X)$ is obvious. If $h \in \operatorname{ker}(I+X)$ we have $h=-X h \in \mathfrak{U}$ so that $h=-X^{\prime} y$
($\left.X^{\prime}=X \mid \mathfrak{u}\right)$ and $h \in \operatorname{ker}\left(I+X^{\prime}\right)$. In particular

$$
\begin{equation*}
d_{T}(\operatorname{ker}(I+X))=d_{T}\left(\operatorname{ker}\left(I+X^{\prime}\right)\right) \tag{2.22}
\end{equation*}
$$

It is easy to see, using the matrix representation of X, that $u \oplus v \in \operatorname{ker}(\dot{I}+X)^{*}$ if and only if

$$
\begin{equation*}
u \in \operatorname{ker}\left(I+X^{\prime}\right)^{*} \quad \text { and } \quad v=-X^{\prime \prime *} u \tag{2.23}
\end{equation*}
$$

If we denote by Q the orthogonal projection of $\mathfrak{5}$ onto \mathfrak{U}, it follows from (2.23) that $Q \mid \operatorname{ker}(I+X)^{*}$ is an invertible operator from $\operatorname{ker}(I+X)^{*}$ onto $\operatorname{ker}\left(I+X^{\prime}\right)^{*}$, the inverse being given by $\operatorname{ker}\left(I+X^{\prime}\right)^{*} \ni u \mapsto u \oplus\left(-X^{\prime \prime *} u\right)$. Because we have also $T_{\mathfrak{u}}^{*} Q=Q T^{*}$ it follows that $T_{\mathfrak{u}}^{*} \mid \operatorname{ker}\left(I+X^{\prime}\right)^{*}$ and $T^{*} \mid \operatorname{ker}(I+X)^{*}$ are similar, in particular

$$
\begin{equation*}
d_{T}\left(\operatorname{ker}(I+X)^{*}\right)=d_{T}\left(\operatorname{ker}\left(I+X^{\prime}\right)^{*}\right) \tag{2.24}
\end{equation*}
$$

From (2.21), (2.22), and (2.24) it obviously follows that $j(I+X)=1$. The Theorem is proved.

§ 3. Some examples

Proposition 3.1. For any two inner functions m and n there exist a C_{0} operator T and $X \in \mathrm{~F}(T)$ such that $j(X)=m / n$.

Proof. The operator $T=(S(m) \otimes I) \oplus(S(n) \otimes I)$, where I denotes the identity operator on l^{2}, is of class C_{0}. If we denote by U_{+}the unilateral shift on l^{2}, obviously

$$
X=\left(I_{5(m)} \otimes U_{+}^{*}\right) \oplus\left(I_{5(n)} \otimes U_{+}\right) \in\{T\}^{\prime}
$$

Moreover, X has closed range so that $X \mid(\operatorname{ker} X)^{\perp}$ is invertible. Because $T \mid \operatorname{ker} X$ is unitarily equivalent to $S(m)$ and $T_{\operatorname{ker} X^{*}}$ is unitarily equivalent to $S(n)$, it follows that X is C_{0}-Fredholm and $j(X)=m / n$.

The following proposition infirms the Conjecture from [10]. Proposition 3.4 shows however that this Conjecture is true under the assumption $X \in\{T\}^{\prime \prime}$ and with the condition $\mu_{T}<\infty$ dropped.

Proposition 3.2. Let K and K_{*} be C_{0} operators of finite multiplicities such that $d_{K}=d_{K_{*}}$. Then there exist a C_{0} operator T of finite multiplicity and an $X \in\{T\}^{\prime}$ such that $T \mid \operatorname{ker} X$ and $T_{\text {ker } X^{*}}$ are quasisimilar to K and K_{*}, respectively.

Proof. Let $S=S\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ and $S_{*}=S\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n}^{\prime}\right)$ be the Jordan models of K, K_{*}, respectively (it may happen that some of the m_{j} or m_{j}^{\prime} be equal to 1). By the hypothesis we have

$$
\begin{equation*}
m_{1} m_{2} \ldots m_{n}=m_{1}^{\prime} m_{2}^{\prime} \ldots m_{n}^{\prime} \tag{3.1}
\end{equation*}
$$

Let us consider the operator

$$
\begin{gather*}
T=S\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right) \text {, where } \tag{3.2}\\
\varphi_{1}=m_{1} m_{2} \ldots m_{n}, \quad \varphi_{2}=m_{2}^{\prime} m_{2} \ldots m_{n}, \quad \varphi_{3}=m_{2}^{\prime} m_{3}^{\prime} m_{3} \ldots m_{n}, \quad \ldots, \tag{3.3}\\
\varphi_{n}=m_{2}^{\prime} m_{3}^{\prime} \ldots m_{n}^{\prime} m_{n}
\end{gather*}
$$

(T is generally not a Jordan operator). The matrix over H^{∞} given by

$$
A=\left[\begin{array}{ccccc}
0 & \dot{0} & \ldots & 0 & m_{1}^{\prime} \tag{3.4}\\
m_{2}^{\prime} & 0 & \ldots & 0 & 0 \\
0 & m_{3}^{\prime} & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & . \\
0 & 0 & \ldots & m_{n}^{\prime} & 0
\end{array}\right]=\left[a_{i j}\right]_{1 \leqq i, j \leqq n}
$$

satisfies the conditions

$$
\begin{equation*}
a_{i j} \varphi_{j} \in \varphi_{i} H^{2} \tag{3.5}
\end{equation*}
$$

and therefore (cf. [2], relations (6.5-7)) the operator X defined by

$$
\begin{equation*}
X=\left[X_{i j}\right]_{1 \leqq i, j \leq n}, \quad X_{i j} h=P_{5\left(\varphi_{i}\right)} a_{i j} h \quad\left(h \in \mathfrak{5}\left(\varphi_{j}\right)\right) \tag{3.6}
\end{equation*}
$$

commutes with T. Now it is easy to see that

$$
\begin{equation*}
T\left|\operatorname{ker} X=\bigoplus_{i=1}^{n} T\right|\left(\operatorname{ker} X \cap \mathfrak{S}\left(\varphi_{i}\right)\right), \quad T_{\mathrm{ker} X^{*}}=\bigoplus_{i=1}^{n} T_{\left(\mathrm{ker} X^{*} \cap \mathfrak{S}\left(\varphi_{i}\right)\right)} \tag{3.7}
\end{equation*}
$$

Using [8], p. 315, we see that $T \mid\left(\operatorname{ker} X \cap \mathfrak{G}\left(\varphi_{i}\right)\right)$ is unitarily equivalent to $S\left(m_{i}\right)$ and $T_{\left(\operatorname{ker} X * \cap 5\left(\varphi_{i}\right)\right)}$ is unitarily equivalent to $S\left(m_{i}^{\prime}\right)$ so that $T \mid \operatorname{ker} X$ is unitarily equivalent to S and $T_{\text {ker } X^{*}}$ is unitarily equivalent to S_{*}. Proposition 3.2 follows.

Lemma 3.3. If T and T^{\prime} are two quasisimilar operators of class C_{0} and $\varphi \in H^{\infty}$ then $T \mid \operatorname{ker} \varphi(T)$ and $T^{\prime} \mid \operatorname{ker} \varphi\left(T^{\prime}\right)$ are quasisimilar.

Proof. Let X, Y be two quasi-affinities such that $T^{\prime} X \doteq X \dot{T}$ and $T Y=Y T^{\prime}$. Then we have also $\varphi\left(T^{\prime}\right) X=X \varphi(T)$ and $\varphi(T) Y=Y \varphi\left(T^{\prime}\right)$ which shows that

$$
\begin{equation*}
X \operatorname{ker} \varphi(T) \subset \operatorname{ker} \varphi\left(T^{\prime}\right), \quad Y \operatorname{ker} \varphi\left(T^{\prime}\right) \subset \operatorname{ker} \varphi(T) \tag{3.8}
\end{equation*}
$$

From (3.8) it follows that $T \mid \operatorname{ker} \varphi(T)$ can be injected into $T^{\prime} \mid \operatorname{ker} \varphi\left(T^{\prime}\right)$ and $T^{\prime} \mid \operatorname{ker} \varphi\left(T^{\prime}\right)$ can be injected into $T \mid \operatorname{ker} \varphi(T)$. The Lemma follows by [10], Theorem 1.

Proposition 3.4. Let T be an operator of class \dot{C}_{0} and $X \in\{T\}^{\prime \prime}$. Then $T \mid \operatorname{ker} X$ and $T_{\text {ker } X^{*}}$ are quasisimilar. In particular we have

$$
\operatorname{sF}(T) \cap\{T\}^{\prime \prime}=\mathrm{F}(T) \cap\{T\}^{\prime \prime} \quad \text { and } \quad j(X)=1 \quad \text { for } \quad X \in \mathrm{~F}(T) \cap\{T\}^{\prime \prime}
$$

Proof. From [2] and [1] it follows that $X=(u / v)(T)$, where $u, v \in H^{\infty}$ and $v / m_{T}=1$. It is easy to see that $\operatorname{ker} X=\operatorname{ker} u(T)$ and $\operatorname{ker} X^{*}=\operatorname{ker} u^{\sim}\left(T^{*}\right)$. By Lemma 3.3 it suffices to prove our Proposition for 7 ' a Jordan operator and $X=u(T)$. Now, a Jordan operator is a direct sum of operators of the form $S(m)$ and it is easy to see that $S(m) \mid \operatorname{ker} u(S(m))$ and $\left(S(m)^{*} \mid \operatorname{kel}_{(}(u(S(m)))^{*}\right)^{*}$ are both unitarily equivalent to $S(m \wedge u)$. Thus for T a Jordan operator $T \mid \operatorname{ker} u(T)$ and $T_{\text {ker }(u(T))^{*}}$ are unitarily equivalent. Thus Proposition follows.

Proposition 3.5. Let T be an operator of class C_{0} and let $X \in\{T\}^{\prime \prime}$ be an injection. Then X is a lattice-isomorphism.

Proof. Let $\mathfrak{M} \in \operatorname{Lat}(T)$; by [9] we have $X \mathfrak{M} \subset \mathfrak{M}$. Moreover we have $X \mid \mathfrak{M} \in \operatorname{Alg}$ Lat $(\vec{T} \mid \mathfrak{M})$ and obviously $X \mid \mathfrak{M} \in\{T \mid \mathfrak{M}\}^{\prime}$. Again by [9] we infer $X \mid \mathfrak{M} \in\{T \mid \mathfrak{M}\}^{\prime \prime}$. From Proposition 3.4 applied to the injection $X \mid \mathfrak{M}$ we infer $\operatorname{ker}(X \mid \mathfrak{M})^{*}=\{0\}$ so that

$$
\begin{equation*}
(X \mathfrak{M})^{-}=\mathfrak{M} \tag{3.9}
\end{equation*}
$$

This shows that the mapping $\mathfrak{M l}_{\mapsto}(X \mathfrak{P})^{-}$is the identity on Lat (T). The Proposition is proved.

Proposition 3.6. There exist an operator T of class C_{0} and operators X_{n}, $X \in\{T\}^{\prime \prime}$ such that $\lim _{n \rightarrow \infty}\left\|X_{n}-X\right\|=0, X \in \mathrm{~F}(T)$ but $X_{n} \notin \mathrm{~F}(T), n=1,2, \ldots$ Thus the set $\mathrm{F}(T)$ is not generally an open subset of $\{T\}^{\prime}$.

Proof. We shall construct Blaschke products m, b and $b_{n}(n=1,2, \ldots)$ such that

$$
\begin{gather*}
b \wedge m=1, \quad b_{n} \wedge m \neq 1 \tag{3.10}\\
\lim _{n \rightarrow \infty}\left\|b_{n}-b\right\|_{\infty}=0 \tag{3.11}
\end{gather*}
$$

Then the required example is given by

$$
\begin{equation*}
T=S(m) \otimes I \tag{3.12}
\end{equation*}
$$

where I denotes the identity operator on an infinite dimensional Hilbert space, and

$$
\begin{equation*}
X=b(T), \quad X_{n}=b_{n}(T) \quad(n=1,2, \ldots) \tag{3.13}
\end{equation*}
$$

It is clear that $T \mid \operatorname{ker} X_{n}$ is unitarily equivalent to $S\left(m \wedge b_{n}\right) \otimes I$ which is not a weak contraction and therefore $X_{n} \not \ddagger \mathrm{~F}(T)$ (by Proposition 3.4, $X_{n} \notin \mathrm{sF}(T)$). Because $b \wedge m=1, b(T)$ is a lattice-isomorphism by Proposition 3.5, in particular $X \in \mathrm{~F}(T)$. The convergence $X_{n} \rightarrow X$ follows from (3.11).

It remains only to construct the functions m, b and $b_{n}(n=1,2, \ldots)$. Let us put

$$
\begin{equation*}
b=\prod_{k=1}^{\infty} B^{k}, \quad b_{n}=\prod_{k=1}^{\infty} B_{n}^{k}(n=1,2, \ldots), \quad m=\prod_{k=1}^{\infty} B_{k}^{k} \tag{3.14}
\end{equation*}
$$

where B^{k} (respectively B_{n}^{k}) is the Blaschke factor with the zero k^{-2} (respectively $k^{-2} \exp \left(i t_{n}^{k}\right), t_{n}^{k}>0$). Because $\left|b-b_{n}\right| \leqq \sum_{k=1}^{\infty}\left|B^{k}-B_{n}^{k}\right|$, one can verify that (3.11) holds whenever $\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} k^{4} t_{n}^{k}=0$. Conditions (3.10) are also verified and $b_{n} \wedge m=B_{n}^{n}$.

References

[1] H. Bercovici, On the Jordan model of C_{0} operators, Studia Math., 60 (1977), 267-284.
[2] H. Bercovici, C. Foiaş, B. Sz.-Nagy, Compléments à l'étude des opérateurs de classe C_{0}. III, Acta Sci. Math., 37 (1975), 313-322.
[3] H. Bercovici, D. Voiculescu, Tensor operations on characteristic functions of C_{0} contractions, Acta Sci. Math., 39 (1977), 205-233.
[4] D. Sarason, On spectral sets having connected complement, Acta Sci. Math., 26 (1966), 289299.
[5] B. Sz.-Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland/ Akadémiai Kiadó (Amsterdam/Budapest, 1970).
[6] B. Sz.-Nagy, C. FoIaş, Modèle de Jordan pour une classe d'opérateurs de l'espace de Hilbert, Acta Sci. Math., 31 (1970), 91-115.
[7] B. Sz.-Nagy, C. Foias, Compléments à l'étude des opérateurs de classe C_{0}, Acta Sci. Math., 31 (1970), 287-296.
[8] B. Sz.-Nagy, C. Foias, Jordan model for contractions of class $C_{.0}$, Acta Sci. Math., 36 (1974), 305-322.
[9] B. Sz.-Nagy, C. Foias, Commutants and bicommutants of operators of class C_{0}, Acta Sci. Math., 38 (1976), 311-315.
[10] B. Sz.-Nagy, C. Foias, On injections, intertwining operators of class C_{0}, Acta Sci. Math., 40 (1978), 163-167.

