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Essential spectrum for a Banach space operator

RICHARD BOULDIN

§ 1. Introduction

Essential spectrum has been much studied with papers [4], [5], [6], [10], [14]
taking the point of view of describing the Weyl spectrum or showing when different
notions of “essential spectrum’ coincide. A principal result of the significant paper
[8] says that if the Weyl spectrum of 7" coincides with the Fredholm spectrum and
T is essentially normal then T is the sum of a normal operator and a compact
operator. The papers [1], [2], [3], [7] develop theories such as triangular representa-
tions for nonnormal operators by using the fine structure of index theory. The pur-
pose of this note is to show that points identified by the fine structure of index
«theory are either very bad or very nice. Points in the semi-Fredholm domain which
satisfy a “modest” hypothesis are very nice.

Let X be a fixed Banach space. Throughout this note “operator” will mean
a linear map of X into X which is defined on a vector space dense in X and has
closed graph. We adopt the notation of [15], which is our basic source for the
theory of closed operators on a Banach space.

For the operator T let nul (T—2) be the dimension of the kernel of 7T—2,
denoted N(T'—4), and let def (T—1) be the codimension of the range of T—4,
denoted R(T—A). The operator T— A is semi-Fredholm provided R(T—4) is closed
and either nul (7 —2X) or def (T— 1) is finite; for such A the index of T—A, denoted
ind (T—7), is nul(T—A4)—def (T—/). The operator T—41 is Fredholm provided
R(T—17) is closed and both nul (T—4) and def(T—41) are finite.

Lemma 1. (Index Theorem) If the operator T—u is semi-Fredholm then there
is a neighborhood of u, say G, such that the following are true:
() A€G implies T—A is semi-Fredholm with nul(T—2)=nul(T—p),
def (T—N)=def (T—p) and ind (T—A)=ind (T—p);
(i) nul(T—2) and def (T'—2) are constant on G\{p} (that is {z: z€G, z#p});
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(iii) provided nul (T — y)< <o, nul (T~ 2) is constant on G if and only if N(T —p)C
cN{R((T-pH: k=1,2,...};

(iv) provided def (T—u)<oo, def (T—2) 1is constant on G if and only if
N(T'—w)c N{R((T' - w)"): k=1,2,...}.

Proof. Parts (i) and (ii) are well known; part (iii) is Problem 5.32 of [12, p. 242]
and (iv) results from applying (iii) to (77— 4). 4

The next lemma summarizes many useful facts. The spectrum of the operator
T is denoted o(T). The dimension of the subspace X, in the lemma is called the
algebraic multiplicity of A.

Lemma 2. Let T be an operator and let 2 be an isolated point of o(T). Then
there is a direct sum decomposition of X, say X, X, , such that X, and X, are invariant
under T— ). The restriction of T—2 to X,, denoted (T— )| X,, is quasinilpotent and
(T—M)|X, is invertible. If T— ). is semi-Fredholm then the dimension of X,, denoted
dim X, is finite.

Proof. There are many sources for the information about the decomposition
corresponding to {1} and its complement (for example, see [12, pp. 178—181]).
Since T—21 is semi-Fredholm, it follows that (7T—2)|X, is semi-Fredholm. Since
R((T—-M|X,) is closed, nul’ (T—A)|Xp=nul (T—2)|X, and def’ (T—1)|X,=
=def (T—1)|X, by [12, Theorem 5.10, p. 233]. By [12, Theorem 5.30, p. 240} we
know that dim X,=< implies nul’ (T—21)|X;=-<. This proves that dim X,< oo.

§ 2. Main result

The set of points u such that T—pu is a Fredholm operator is denoted @(T)
and the set of /. for which ind T—/ is zero is denoted ®,(7). Provided there are
nonnegative integers k such that N(7%) equals N(T**%), T is said to have finite
ascent and the smallest such k is the ascent of 7. Provided there are nonnegative
integers m such that R(T™) equals R(7T™*Y), T is said to have finite descent and
the smallest such m is the descent of T. .

To say that N(T— /) is not an asymptotic eigenspace for the operator 7 means
that whenever there is a sequence of distinct eigenvalues say {4,}, converging to
A then |},—A|=0(d(4,, 7)) where

d(2,, A) = sup{dist (x, N(T—2): x| = 1, xe N(T—1,)}.
This concept was introduced in [6].

Theorem 3. If T—21 is a semi-Fredholm operator with A€6(T) and one of
the conditions (1), (2), (3) below holds then ) is an isolated eigenvalue with finite
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algebraic multiplicity. Furthermore, if u is any isolated eigenvalue with finite algebraic
multiplicity then p belongs to ®y(T) and satisfies (2) and (3).

(1) 2 is an isolated point of o(T). '

(2) N(T—1) and N(T'—21") are not asymptotic eigenspaces for T and T’, re-
spectively.

(3) T—2 has finite ascent and finite descent.

Proof. First it is noted that (1) suffices for the conclusion about 1. Since 7—2
is semi-Fredholm, Lemma 2 implies that the spectral subspace X, corresponding
to A is finite dimensional. Consequently the quasinilpotent (T'—2)|X, is nilpotent,
and N((T—A)|X;) is non-trivial. Thus, A is an isolated eigenvalue with finite al-
gebraic multiplicity, and it suffices to show (1) is implied by each of the condi-
tions (2) and (3).

Assume (2) holds and for the sake of a contradiction assume ¢(7) contains
{%,} which converges to A with 4,1 Lemma 1 shows that it may be assumed
that each T—/, is semi-Fredholm. Either nul 7—J1, or def T—J, is positive, and
first we consider the case nul 7—21,=0. It will be shown that since N(T—21) is
not an asymptotic eigenspace, R(T—4) is not closed, a contradiction. Since
{|4a—Al/d(4,, A)} converges to zero there is a sequence of unit vectors {x,} such
that x,e N(T—4,) and

dist (x,, N(T—2)) > d(4,, ))—|A,— 4.
It follows that
I(T— A x, [l /dist (x,, N(T—2A) = |A,— Al/dist(x,, N(T—2) < |4, — 2| (d(A,, H—[A,—A]) -
and clearly the last fraction converges to zero. Thus, R(T—/) is not closed (see
Theorem 5.3, p. 72, [15]) and this contradiction proves that 1 is an isolated point
of o(T). If def (T—4,) where positive then one would use that N(T’—2) is not an
_ asymptotic subspace to show R(T'—41) to be not closed.

If (3) holds then (1) follows immediately from [13, Theorem 2.1, p. 200].

It only remains to establish the properties of the isolated eigenvalue u. If Y,
is the algebraic eigenspace associated with u and ¥, is the complementary subspace
in X then (T—p)|Y, is one-to-one and onto. Since dim Y, is finite, it is straight-
forward to see that (T—u)|Y, is Fredholm with index zero, and conditions (2) and
(3) must hold.

If 2 belongs to o (T)N P, (T) then clearly A is an eigenvalue for the operator T.
Thus, the hypothesis of the next corollary would be stronger if one of the con-
'ditions (1), (2), (3), (4) was required for each eigenvalue 1. Hence, the hypothesis
of the corollary is weaker than the hypotheses for similar results in [4], [5], [11].

Corollary 4. Let T be an operator on X. If every A in o(T)N®(T) satisfies
one of the conditions of Theorem 3 or (4) below then each 1 is an isolated eigenvalue
with finite algebraic multiplicity.

3*
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(4) N(T—2) and N(T'—72) are not subspaces of 5 {R((T—2))} and
ﬁ {R((T"—2)")}, respectively. )
k=1

Proof. Let (4) hold and take e¢=0 such that O<|2—p|<e implies that all
of the conclusions of Lemma 1 hold. Lemma 1 and condition (4) imply nul (T —u)<
<nul (T—2). If nul (T—y) were positive then one of the conditions (1), (2), (3), (4)
would apply and the resulting conclusion would contradict that nul (7—y) is a
positive constant for 0<|A—pu|<e; hence, nul (T—2)=0 for such u. Similarly,
def (T—7) is zero for O<|i—pu|<e and so T—yu is invertible, which proves that
A is an isolated point of (7).

The conditions (1), (2), (3) of Theorem 3 can be weakened provided the
hypothesis for T— /1 is strengthened.

Corollary 5. Let T be an operator on X. Every 2. in 6 (T) N ®y(T) which satisfies
one of the conditions (1), (2'), (3") below is an isolated eigenvalue with finite algebraic
multiplicity.

(1) A is an isolated point of o(T).

2"y N(T—2) is not an asymptotic eigenspace for T.

(3") T—2 has finite ascent.

Proof. If A is an isolated point then Theorem 3 proves the desired conclusion.

The argument given in the second paragraph of the proof of Theorem 3 shows
that (2’) above suffices.

That (3°) suffices follows from [14, Theorem 1.1].

In the final corollary the previous results are applied to get a simple alternative
proof for a recent result on Riesz operators. An operator T is a Riesz operator
provided the following hold for every nonzero Z:

(i)' T—J has finite ascent and finite descent;

(i) N((T—2)) is finite dimensional for k=1,2, ...;

(i) R((T—A)"*) is closed with finite codimension for k=1,2, ...;

(iv) nonzero points of (T are eigenvalues and the only possible accumula-
tion point of o(7T) is zero.’

Note that the sum of any quasinilpotent operator and a compact operator
1s a Riesz operator. For bounded T the next result was proved by CARADUS
9, p. 42).

Corollary 6. Let T be an operator with nonempty resolvent set. If @(T)
contains {z: z5%0} then T is a Riesz operator.

Proof. The index, being locally constant, is continuous and integer valued;
thus, it is constant on connected components, and @,(7) contains {z: z0}. If
o(T)N{z: 220} contains accumulation points of ¢(T) then the intersection of
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{z: z=0} with the boundary of ¢(7T) contains 4, an accumulation point of ¢ (T).
Since nul (T—z) is constant on N={z: 0<|i—z]|<e¢} for some &=>0 and N inter-
sects the resolvent set of 7, it must be that nul (T—2z)=0 for z¢N. Since
ind (T—z)=0 for z¢ N, A is an isolated point and the only possible accumulation
point of a(T) is zero. Now Corollary 5 and Theorem 3 complete the proof.

Because of the astonishing lack of examples of (unbounded) operators in the
literature, we mention the following. If C is the complex plane -endowed with
Lebesgue measure and M, is multiplication by the independent variable defined
on {f(2)€L*(C): zf(z)€L*(C)} then M, is an operator with no A such that M, —2
is semi-Fredholm. So the resolvent set of an operator might be empty.
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