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Essential spectrum for a Banach space operator 

R I C H A R D BOULDIN 

§ 1. Introduction 

Essential spectrum has been much studied with papers [4], [5], [6], [10], [14] 
taking the point of view of describing the Weyl spectrum or showing when different 
notions of "essential spectrum" coincide. A principal result of the significant paper 
[8] says that if the Weyl spectrum of T coincides with the Fredholm spectrum and 
T is essentially normal then T is the sum of a normal operator and a compact 
operator. The papers [1], [2], [3], [7] develop theories such as triangular representa-
tions for nonnormal operators by using the fine structure of index theory. The pur-
pose of this note is to show that points identified by the fine structure of index 

»theory are either very bad or very nice. Points in the semi-Fredholm domain which 
satisfy a "modest" hypothesis are very nice. 

Let J be a fixed Banach space. Throughout this note "operator" will mean 
a linear map of X into X which is defined on a vector space dense in X and has 
closed graph. We adopt the notation of [15], which is our basic source for the 
theory of closed operators on a Banach space. 

For the operator T let nul (T—l) be the dimension of the kernel of T—l, 
denoted N(T—l), and. let def (T—X) be the codimension of the range of T—l, 
denoted R(T—l). The operator T—X is semi-Fredholm provided R(T—X) is closed 
and either nul (T—X) or def (T—A) is finite; for such I the index of T—X, denoted 
ind (T-X), is nul (T—A) —def (T—X). The operator T - l is Fredholm provided 
R(T-l) is closed and both nul (T-X) and def (T—l) are finite. 

L e m m a 1. (Index Theorem) If the operator T—/J. is semi-Fredholm then there 
is a neighborhood of ¡J,, say G, such that the following are true: 

(i) l£G implies T—l is semi-Fredholm with nul (T— / ) ^ n u l (T-¿i), 
def (7"—A)^def (T~n) and ind ( r ~ A ) = ind (T-fi); 

(ii) nul (T—L) and def (T-X) are constant on G\{fi} (that is {z: z£G, Z^/J.}); 
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(iii) provided nul nul (T— A) is constant on G if and only ifN(T—p)a 
cn{R((.T-fi)k): k= 1 ,2 , . . . } ; 

Civ) provided def (T— / /)< def {T—)) is constant on G if and only if 
N(T'-ii)c n{/?((r-/i)1): k=\, 2, . . .}. 

P r o o f . Parts (i) and (ii) are well known; part (iii) is Problem 5.32 of [12, p. 242] 
and (iv) results from applying (iii) to (T'~ A). 

The next lemma summarizes many useful facts. The spectrum of the operator 
T is denoted a(T). The dimension of the subspace X0 in the lemma is called the 
algebraic multiplicity of A. 

L e m m a 2. Let T be an operator and let X be an isolated point of cr(T). Then 
there is a direct sum decomposition of X, say X0®Xlt such that X0 and X1 are invariant 
under T—X. The restriction of T—X to X0, denoted (T—X)\XQ, is quasinilpotent and 
(T—X)\X1 is invertible. If T—X is semi-Fredholm then the dimension of X0, denoted 
dim X0, is finite. 

P r o o f . There are many sources for the information about the decomposition 
corresponding to p.} and its complement (for example, see [12, pp. 178—181]). 
Since T—X is semi-Fredholm, it follows that (T— A)\XQ is semi-Fredholm. Since 
R ((T-X)\X0) is closed, nul' (T'-/l)|A r

0=nul (T-X)\X0 and dtf (T - >)\Xa = 
= def (T—X)\X0 by [12, Theorem 5.10, p. 233]. By [12, Theorem 5.30, p. 240] we 
know that dimA'0=°° implies nul' (T—A)|X0= This proves that dim 

§ 2. Main result 

The set of points fi such that T—n is a Fredholm operator is denoted <i>(7) 
and the set of X for which ind T—X is zero is denoted <£0(T). Provided there are 
nonnegative integers k such that N(Tk) equals N(Tk+1), T is said to have finite 
ascent and the smallest such k is the ascent of T. Provided there are nonnegative 
integers m such that R(Tm) equals R(Tm+1), T is said to have finite descent and 
the smallest such m is the descent of T. 

To say that N(T— A) is not an asymptotic eigenspace for the operator T means 
that whenever there is a sequence of distinct eigenvalues say {A„}, converging to 
A then \X„—X\=o(d(X„, A)) where 

d(X„,X) = sup{dist(x, N(T-Xj): ||x|| = 1, x € W ( r - A „ ) } . 

This concept was introduced in [6]. 

T h e o r e m 3. If T—X is a semi-Fredholm operator with X^o(T) and one of 
the conditions (1), (2), (3) below holds then X is an isolated eigenvalue with finite 
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algebraic multiplicity. Furthermore, if fi is any isolated eigenvalue with finite algebraic 
multiplicity then /J. belongs to <t>0(T) and satisfies (2) and (3). 

(1) X is an isolated point of a(T). 
(2) N(T—X) and N(T' — X') are not asymptotic eigenspaces for T and T', re-

spectively. 
(3) T—X has finite ascent and finite descent. 

P r o o f . First it is noted that (1) suffices for the conclusion about X. Since T— X 
is semi-Fredholm, Lemma 2 implies that the spectral subspace X0 corresponding 
to X is finite dimensional. Consequently the quasinilpotent (T—X) \X0 is nilpotent, 
and N((T— X)\X^) is non-trivial. Thus, X is an isolated eigenvalue with finite al-
gebraic multiplicity, and it suffices to show (1) is implied by each of the condi-
tions (2) and (3). 

Assume (2) holds and for the sake of a contradiction assume a(T) contains 
{X„} which converges to X with X„^X. Lemma 1 shows that it may be assumed 
that each T—X„ is semi-Fredholm. Either nul T—Xn or def T—Xn is positive, and 
first we consider the case nul T—A„>0. I t will be shown that since N(T—X) is 
not an asymptotic eigenspace, R(T—?,) is not closed, a contradiction. Since 
{\X„—X\/d(X„,X)} converges to zero there is a sequence of unit vectors {x„} such 
that x„£N(T-Xn) and 

dist (xn, N(T-X)) > d(X„,X) — \Xn — X\. 
It follows that 

| | (r-AK|| /dist(x„, N(T-X))=\Xn-X\/dist{x„,N(T-X))^\Xn-X\/(d(Xn,X)-\Xn-X\) 

and clearly the last fraction converges to zero. Thus, R(T—X) is not closed (see 
Theorem 5.3, p. 72, [15]) and this contradiction proves that X is an isolated point 
of a(T). If def (T—X„) where positive then one would use that N(T'—X) is not an 
asymptotic subspace to show R(T' — X) to be not closed. 

If (3) holds then (1) follows immediately f rom [13, Theorem 2.1, p. 200]. 
It only remains to establish the properties of the isolated eigenvalue fx. If Y0 

is the algebraic eigenspace associated with /< and Yx is the complementary subspace 
in X then (T-~j.i)\Yy is one-to-one and onto. Since dim Y0 is finite, it is straight-
forward to see that (T— n)\Y0 is Fredholm with index zero, and conditions (2) and 
(3) must hold. 

If X belongs to o(T)0 <P0(T) then clearly X is an eigenvalue for the operator T. 
Thus, the hypothesis of the next corollary would be stronger if one of the con-
ditions (1), (2), (3), (4) was required for each eigenvalue X. Hence, the hypothesis 
of the corollary is weaker than the hypotheses for similar results in [4], [5], [11]. 

C o r o l l a r y 4. Let T be an operator on X. If every X in a(T)C\^>0(T) satisfies 
one of the conditions of Theorem 3 or (4) below then each X is an isolated eigenvalue 
with finite algebraic multiplicity. 

3' 
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(4) N(T—X) and N(T' — X) are not subspaces of f | {^((7-A)*)} and 

f ) -/.)')}, respectively, 
k—1 

P r o o f . Let (4) hold and take e > 0 such that 0 < | A - / i | < e implies that all 
of the conclusions of Lemma 1 hold. Lemma 1 and condition (4) imply nul (J— 
<nu l (T — A). If nul (T—fi) were positive then one of the conditions (1), (2), (3), (4) 
would apply and the resulting conclusion would contradict that nul (T—^t) is a 
positive constant for 0<|A —/i|<e; hence, nul ( r—A)=0 for such ¡i. Similarly, 
def(J—A) is zero for 0<|A—/¿|<e and so T—fi is invertible, which proves that 
A is an isolated point of o(T). 

The conditions (1), (2), (3) of Theorem 3 can be weakened provided the 
hypothesis for T—X is strengthened. 

C o r o l l a r y 5. Let Tbe an operator on X. Every X in o(T)C\<P0(T) which satisfies 
one of the conditions (1'), (2'), (3') below is an isolated eigenvalue with finite algebraic 
multiplicity. 

(1') A is an isolated point of a{T). 
(2') N(T—X) is not an asymptotic eigenspace for T. 
(3') T—X has finite ascent. 

P r o o f . If A is an isolated point then Theorem 3 proves the desired conclusion. 
The argument given in the second paragraph of the proof of Theorem 3 shows 

that (2') above suffices. 
That (3') suffices follows from [14, Theorem 1.1]. 
In the final corollary the previous results are applied to get a simple alternative 

proof for a recent result on Riesz operators. An operator T is a Riesz operator 
provided the following hold for every nonzero A: 

(i) T—X has finite ascent and finite descent; 
(ii) N((T—X)k) is finite dimensional for k= 1,2, ...; 

(iii) R((T—X)k) is closed with finite codimension for k = 1,2, ...; 
(iv) nonzero points of a(T) are eigenvalues and the only possible accumula-

tion point of <r(T) is zero. 
Note that the sum of any quasinilpotent operator and a compact operator 

is a Riesz operator. For bounded T the next result was proved by CARADUS 

[9, p. 42]. 

C o r o l l a r y 6. Let T be an operator with nonempty resolvent set. If <P(T) 
contains {z: z^O} then T is a Riesz operator. 

P r o o f . The index, being locally constant, is continuous and integer valued; 
thus, it is constant on connected components, and <&0(T) contains {z: z^O}. If 
o(T)C\ {z: z^O} contains accumulation points of a(T) then the intersection of 
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{z: z^Oj with the boundary of a(T) contains X, an accumulation point of a(T). 
Since nul (T—z) is constant on N={z: 0< | / l—z |<e} for some e > 0 and N inter-
sects the resolvent set of T, it must be that nul (T—z)=0 for z£N. Since 
ind (T—z)=0 for z£N, X is an isolated point and the only possible accumulation 
point of a(T) is zero. Now Corollary 5 and Theorem 3 complete the proof. 

Because of the astonishing lack of examples of (unbounded) operators in the 
literature, we mention the following. If C is the complex plane -endowed with 
Lebesgue measure and Mz is multiplication by the independent variable defined 
on { / ( Z ) € L 2 ( C ) : zf(z)iL-(C)} then Mz is an operator with no X such that Mz-X 
is semi-Fredholm. So the resolvent set of an operator might be empty. 
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