On the lattice of congruence varieties of locally equational classes

G. CZÉDLI

1. Introduction

For a class \mathscr{K} of algebras, let $\operatorname{Con}(\mathscr{K})$ denote the lattice variety generated by the class of congruence lattices of all members of \mathscr{K}. A lattice variety \mathscr{U} will be called an l-congruence variety if $\mathscr{U}=\mathbf{C o n}(\mathscr{K})$ for some locally equational class \mathscr{K} of algebras. In particular, every congruence variety is an l-congruence variety. Our aim is to show that l-congruence varieties form a complete lattice, which is a join-subsemilattice of the lattice of all lattice varieties (while meet is not preserved). We also show that the minimal modular congruence varieties described by Freese [1] and the minimal modular l-congruence varieties are the same.

The notion of locally equational class has been introduced by Hu [2]. For the definition, let F be a subset of an algebra A of type τ and let t_{1}, t_{2} be n-ary τ-terms. The identity $t_{1}=t_{2}$ is said to be valid in F if for all $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in F^{n}$ we have $t_{1}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=t_{2}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Suppose \mathscr{K} is a class of algebras of type τ and denote by $\mathbb{L}(\mathscr{K})$ the class of all algebras A of type τ having the following property:
for each finite subset G of A there is a finite family $\left\{B_{i}: i \in I\right\}$ in \mathscr{K} and there is for each $i \in I$ a finite subset $F_{i} \subseteq B_{i}$ such that every identity valid in F_{i} for all $i \in I$ is also valid in G.
Now, \mathbf{L} is a closure operator on classes of similar algebras. $\mathbf{L}(\mathscr{K})$ is called the locally equational class (or, briefly, local variety) generated by \mathscr{K}, and \mathscr{K} is said to be a local variety if $\mathbf{L}(\mathscr{K})=\mathscr{K}$. We often write $\mathbf{L}(A)$ instead of $\mathbf{L}(\{A\})$.

Denote by $\mathbf{H}, \mathbf{S}, \mathbf{P}_{f}, \mathbf{D}$ the operators of forming homomorphic images, subalgebras, direct products of finite families and directed unions, respectively, and let us recall

[^0]Theorem 1.1. (Hu [2]) (a) Every variety is a local variety. The converse does not hold, e.g. all torsion groups form a local variety.
(b) For a class \mathscr{K} of similar algebras $\mathbf{L}(\mathscr{K})=\mathbf{D H S P}_{f}(\mathscr{K})$; consequently,
(c) \mathscr{K} is locally equational if and only if it is closed under $\mathbf{D}, \mathbf{H}, \mathbf{S}, \mathbf{P}_{f}$.

Our main tool is the following
Theorem 1.2. (Pixley [11]) There is an algorithm which, for each lattice identity λ and pair of integers $n, k \geqq 2$, determines a strong Mal'cev condition (i.e., a finite set of equations of polynomial symbols of unspecified type) $U_{n, k}=U_{n, k}(\lambda)$ such that for an arbitrary algebra A of type τ the following three conditions are equivalent:
(i) λ is satisfied throughout $\operatorname{Con}(\mathbf{L}(A))$;
(ii) for each finite subset F of A and integer $n \geqq 2$ there is an integer $k=k(n, F, \lambda)$ and a τ-realization $U_{n, k}^{\tau}$ of $U_{n, k}$ such that $U_{n, k}^{\tau}$ is valid in F;
(iii) for each finite subset F of A and integer $n \geqq 2$ there is a $k_{0}=k_{0}(n, F, \lambda)$ such that for each $k \geqq k_{0}$ there is a τ-realization $U_{n, k}^{\tau}$ of $U_{n, k}$ which is valid in F.

We have supplemented Pixley's theorem with condition (iii) which is implicit in the proof in [11] of the theorem. We shall make essential use of

Proposition 1.3. In the above theorem each polynomial of $U_{n, k}^{\tau}$ is idempotent in F.

This follows easily from the construction of $U_{n, k}$ described in [11].

2. Lattice of l-congruence varieties

A lattice variety \mathscr{U} is called a congruence variety (Jónsson [8]) if $\mathscr{U}=\mathbf{C o n}(\mathscr{K})$ for some variety \mathscr{K}, and \mathscr{U} will be called an l-congruence variety if $\mathscr{U}=\operatorname{Con}(\mathscr{V})$ for some local variety \mathscr{V}. Let \mathbb{C} and \mathbb{C}^{*} denote the "sets" consisting of all l-congruence varieties and all l-congruence varieties of the form $\operatorname{Con}(\mathbf{L}(A))$, respectively. Let \mathbb{C} and \mathbb{C}^{*} be partially ordered by inclusion. Our main result is

Theorem 2.1. \mathbb{C} is a complete lattice. The (infinitary) join of arbitrary l-congruence varieties in \mathfrak{C} and their join taken in the lattice of all lattice varieties coincide.

Although there exists a local variety which cannot be generated by a single algebra (Hu [2]), we have

Theorem 2.2. For any local variety \mathscr{V} there is an algebra A (not necessarily of the same type as \mathscr{V}) such that $\operatorname{Con}(\mathscr{V})=\operatorname{Con}(\mathbb{L}(A))$. Thus $\mathfrak{C}=\mathbb{C}^{*}$.

Proof of Theorems 2.1 and 2.2. First we show the following statement:
(1) For any algebra A of type τ there exists an algebra B such that $\operatorname{Con}(\mathbf{L}(A))=$ $=\operatorname{Con}(L(B))$ and B has a one-element subalgebra.
Let $b_{0} \in A, \quad \Phi=\{\lambda: \lambda$ is a lattice identity satisfied throughout $\operatorname{Con}(L(A))\}$ and $H=\left\{F: F\right.$ is a finite subset of A containing $\left.b_{0}\right\}$. By Thm. 1.2 choose a $k=k(n, F, \lambda)$ and a τ-realization $U_{n, k}^{\tau}(F, \lambda)$ of $U_{n, k}(\lambda)$ for all $\lambda \in \Phi, F \in H$ and $n \geqq 2$ such that $U_{n, k}^{\tau}(F, \lambda)$ is valid in F. Denote by $P(n, F, \lambda)$ the set of τ-polynomials occuring in $U_{n, k}^{\tau}(F, \lambda)$ and define an algebra B as follows: B has the same carrier as A and the set of its operations is $\cup\{P(n, F, \lambda): n \geqq 2, F \in H, \lambda \in \Phi\}$ (i.e. B is a reduct of A). Since $U_{n, k}^{\mathrm{r}}$ is also valid in $F \backslash\left\{b_{0}\right\}, \operatorname{Con}(\mathbf{L}(A))=\operatorname{Con}(\mathbf{L}(B))$ follows from Thm. 1.2. By Prop. 1.3, $\left\{b_{0}\right\}$ is a subalgebra of B, which completes the proof of (1). Now we prove that
(2) For an arbitrary set Γ of indices and for any algebras $A_{\gamma}(\gamma \in \Gamma)$ there is an algebra A^{\prime} such that $\underset{\gamma \in \Gamma}{ } \operatorname{Con}\left(\mathbf{L}\left(A_{\gamma}\right)\right)=\operatorname{Con}\left(\mathbf{L}\left(A^{\prime}\right)\right)$ in the lattice of all lattice varieties.
We can assume $\Gamma \neq \emptyset$ (otherwise the statement is trivial) and

- $\left\{a_{\gamma}\right\}$ is a one-element subalgebra of A_{γ} for each $\gamma \in \Gamma$,
- all the algebras $A_{\gamma}(\gamma \in \Gamma)$ are of the same similarity type τ (otherwise the set of operations of A_{y} can be supplemented with projections since for polynomially equivalent algebras B_{1} and B_{2} over the same carrier, $\operatorname{Con}\left(\mathbf{L}\left(B_{1}\right)\right)=\operatorname{Con}\left(\mathbf{L}\left(B_{2}\right)\right)$ by Thm. 1.2), and
- for each $\gamma \in \Gamma$, every τ-polynomial is equal to some τ-operation over A_{γ}. Denote by τ_{i} the set of i-ary operation symbols in τ and regard $\tau_{i}^{\prime}=\tau_{i}^{\Gamma}$ as a set of i-ary operation symbols $(i=0,1,2, \ldots)$. Now, $\tau=\bigcup_{i=0}^{\infty} \tau_{i}$ and set $\tau^{\prime}=\bigcup_{i=0}^{\infty} \tau_{i}^{\prime}$. For each $\gamma \in \Gamma, A_{\gamma}$ can be regarded as an algebra A_{γ}^{\prime} of type τ^{\prime} if we define, for $q \in \tau^{\prime}$, the operation q by $q=q(\gamma)\left(q(\gamma) \in \tau, A_{\gamma}\right.$ and A_{γ}^{\prime} have the same carrier). Evidently, $\operatorname{Con}\left(\mathrm{L}\left(A_{\gamma}^{\prime}\right)\right)=\operatorname{Con}\left(\mathrm{L}\left(A_{\gamma}\right)\right)$ by Thm. 1.2. Let A^{\prime} be a weak direct product of the algebras A_{γ}^{\prime} defined by
$A^{\prime}=\left\{f \in \prod_{\gamma \in \Gamma} A_{\gamma}^{\prime}:\right.$ for all but finitely many $\left.\gamma \in \Gamma, f(\gamma)=a_{\gamma}\right\}$.
By Thm. $1.1 \quad \mathbf{L}\left(A_{\gamma}^{\prime}\right) \subseteq \mathbf{L}\left(A^{\prime}\right)$, therefore

In order to prove the converse inclusion by means of Thm. 1.2, suppose a lattice identity λ is satisfied throughout each $\operatorname{Con}\left(\mathbf{L}\left(A_{\gamma}\right)\right)$. Fix an arbitrary finite subset F of A^{\prime} and $n \geqq 2$. For each $\gamma \in \Gamma$ set $F_{\gamma}=\{f(\gamma): f \in F\} \subseteq A_{\gamma}^{\prime}$ and choose a nonempty finite $\Delta \subseteq \Gamma$ such that $\gamma \in \Gamma \backslash \Delta$ implies $F_{\gamma}=\left\{a_{\gamma}\right\}$. Since λ holds in each $\operatorname{Con}\left(\mathbf{L}\left(A_{\gamma}\right)\right)$, by Thm 1.2 for each $\gamma \in \Gamma$ there exist $k_{\gamma} \geqq 2$ and for all $k \geqq k_{\gamma}$ a τ-realization $U_{n, k}^{\tau}(\gamma)$ of $U_{n, k}$ such that $U_{n, k}^{\tau}(\gamma)$ is valid in F_{γ}. We can suppose $k_{\gamma}=2$
if $\gamma \in \Gamma \backslash \Delta$, because F_{γ} is a subalgebra consisting of a single element. Set $k=\max \left\{k_{\gamma}: \gamma \in \Gamma\right\}$. Then for each $\gamma \in \Gamma$ there exists a realization $U_{n, k}^{\tau}(\gamma)$ of $U_{n, k}$ which is valid in F_{γ}. Let $U_{n, k}^{\tau}(\gamma)$ consist of τ-operations $q_{1, \gamma}, q_{2, \gamma}, \ldots, q_{s, \gamma}$. For $i=1,2, \ldots, s$ define $q_{i} \in \tau^{\prime}$ by $q_{i}(\gamma)=q_{i, \gamma}$ over $A_{\gamma}(\gamma \in \Gamma)$. Then the operations $q_{1}, q_{2}, \ldots, q_{s}$ yield a τ^{\prime}-realization of $U_{n, k}$ which is valid in F. This completes the proof of (2).

Now, let \mathscr{V} be an arbitrary local variety and let Φ consist of all lattice identities which are not satisfied throughout $\operatorname{Con}(\mathscr{V})$. For each $\lambda \in \Phi$ we can choose $A_{\lambda} \in \mathscr{V}$ such that λ is not satisfied in the congruence lattice of A_{λ}. Since $\mathbf{L}\left(A_{\lambda}\right) \subseteq \mathscr{V}$ and λ is not satisfied throughout $\operatorname{Con}\left(\mathrm{L}\left(A_{\lambda}\right)\right)$, it can be easily seen that $\operatorname{Con}(\mathscr{V})=$ $=\bigvee_{\lambda \in \Phi} \operatorname{Con}\left(\mathbf{L}\left(A_{\lambda}\right)\right)$. Hence Thm. 2.2 follows from (2). Since any complete joinsemilattice having a 0 -element is a complete lattice, Thm. 2.1 follows from (2) and Thm. 2.2. Q.E.D.

3. Minimal modular l-congruence varieties

Let P be the set of all prime numbers and set $P_{0}=P \cup\{0\}$. For $p \in P_{0}$ denote by Q_{p} the prime field of characteristic p and by \mathscr{V}_{p} the variety of all vector spaces over Q_{p}. The following theorem was announced by Freese [1]:

Theorem 3.1. For any modular but not distributive congruence variety \mathscr{U} there is a $p \in P_{0}$ such that $\operatorname{Con}\left(\mathscr{V}_{p}\right) \subseteq \mathscr{U}$. Consequently, congruence varieties do not form a sublattice in the lattice of all lattice varieties.

Christian Herrmann has also proved the above theorem. We shall slightly modify his (unpublished) proof to obtain the following

Theorem. 3.2. For any modular but not distributive l-congruence variety \mathscr{U} there is a $p \in P_{0}$ such that $\operatorname{Con}\left(\mathscr{V}_{p}\right) \subseteq \mathscr{U}$. Consequently, l-congruence varieties do not form a sublattice in the lattice of all lattice varieties.

The proof is based on the following theorem (which is presented here in a weakened form):

Theorem 3.3. (HuHn [4]) For an arbitrary modular lattice M and $n \geqq 3$ the following two conditions are equivalent:
(i) M is not n-distributive, i.e., the n-distributivity law

$$
x \wedge \bigvee_{i=0}^{n} y_{i}=\bigvee_{j=0}^{n}\left(x \wedge \bigvee_{\substack{i=0 \\ i \neq j}}^{n} y_{i}\right)
$$

(cf. Huhn [3] and [5]) is not satisfied in M.
(ii) The lattice variety generated by M contains $L_{n+1}\left(Q_{p}\right)$ for some $p \in P_{0}$ where $L_{n+1}\left(Q_{p}\right)$ denotes the congruence lattice of the $(n+1)$-dimensional vector space over Q_{p}.

For a pair of non-negative integers m, k let us define the divisibility condition $D(m, k)$ by the formula $(\exists x)(m \cdot x=k \cdot 1)$ where $m \cdot x$ and $k \cdot 1$ mean $x+x+\ldots+x$ (m times) and $1+1+1+\ldots+1$ (k times), respectively. We need the following

Proposition 3.4. For any lattice identity λ there exist non-negative integers n_{0}, m, k such that for each $p \in P_{0}$ the following three conditions are equivalent:
(i) λ is satisfied throughout $\operatorname{Con}\left(\mathscr{V}_{p}\right)$,
(ii) there exists $n \geqq n_{0}$ such that λ is satisfied in $L_{n}\left(Q_{p}\right)$,
(iii) the divisibility condition $D(m, k)$ holds in Q_{p}.

Proof. The equivalence of (i) and (iii) is a special case of [6, Thm. 3]. As for (ii) \rightarrow (i), we can argue as follows: Let us construct the identity $\hat{\lambda}$ from λ by replacing the operation symbols \wedge and \vee by \cap and \circ (composition of relations), respectively. By congruence permutability, (i) holds iff $\hat{\lambda}$ is satisfied by arbitrary congruences of any algebra in \mathscr{V}_{p}. Now, Wille's theorem [12] (see also Pixley [11, Thm. 2.2]) involves implicitly that if $\hat{\lambda}$ is satisfied by certain congruences of the free \mathscr{V}_{p}-algebra of rank n_{0}, for some n_{0} depending on $\hat{\lambda}$, then $\hat{\lambda}$ is satisfied by arbitrary congruences of any algebra in \mathscr{V}_{p}. Finally, the congruence lattice of the free \mathscr{V}_{p} algebra of rank n_{0} is a sublattice of $L_{n}\left(Q_{p}\right)$ whence $\hat{\lambda}$ is satisfied by arbitrary congruences of the free \mathscr{V}_{p}-algebra of rank n_{0}. Q.E.D.

It follows from a more general result of Nation [10, Thm. 2] that any n-distributive congruence variety is distributive ($n \geqq 1$). Now we need the following generalization of this fact:

Proposition 3.5. Let $n \geqq 1$ and \mathscr{U} be an arbitrary l-congruence variety. If \mathscr{U} is n-distributive, then \mathscr{U} is distributive.

Proof. Certain arguments using Mal'cev conditions for congruence varieties can easily be reformulated for l-congruence varieties. Pixley [11] has pointed out that Jónsson's criterion for congruence distributivity [7] remains valid for l-congruence varieties. Similarly, Mederly's criterion for n-distributivity [9, Theorem 2.1] also remains valid. Thus the have:

Proposition 3.6. For an arbitrary algebra of type τ and $n \geqq 1$ the following two conditions are equivalent:
i. (i) $\operatorname{Con}(\mathbf{L}(A))$ is n-distributive,
(ii) For each finite $F \subseteq A$ there exist $k \geqq 2$ and ($n+2$)-ary τ-polynomials
$t_{0}, t_{1}, \ldots, t_{k}$ on A such that the identities

$$
\begin{gathered}
t_{0}\left(x_{0}, x_{1}, \ldots, x_{n+1}\right)=x_{0}, \quad t_{k}\left(x_{0}, x_{1}, \ldots, x_{n+1}\right)=x_{n+1}, \\
t_{i}\left(x_{0}, x_{1}, \ldots, x_{n}, x_{0}\right)=x_{0} \quad(i=0,1, \ldots, k), \\
t_{i}(\underbrace{x, x, \ldots, x}_{j+1}, y, y, \ldots, y)=t_{i+1}(\underbrace{x, x, \ldots, x}_{j+1}, y, y, \ldots, y)
\end{gathered}
$$

$(0 \leqq i<k, 0 \leqq j \leqq n$ and $i \equiv j(\bmod n+1))$ are valid in F.
Now, suppose $\operatorname{Con}(\mathbf{L}(A))$ is n-distributive for some $n \geqq 1$. Fix a finite $F \cong A$. Then, by Prop. 3.6, there are $k \geqq 2$ and τ-polynomials $t_{0}, t_{1}, \ldots, t_{k}$ satisfying the required identities in F. Define $j(-1)=0$ and for $i=0,1, \ldots, k, j(i) \equiv i(\bmod n+1)$, $0 \leqq j(i) \leqq n$. Define ternary τ-polynomials $q_{0}, q_{1}, \ldots, q_{2 k+2}$ as follows: $q_{0}(x, y, z)=x$ and for $i=0,1, \ldots, k$

$$
q_{2 i+1}(x, y, z)=t_{i}(\underbrace{x, x, \ldots, x}_{j(i-1)+1}, y, y, \ldots, y, z)
$$

and

$$
q_{2 i+2}(x, y, z)=t_{i}(\underbrace{x, x, \ldots, x}_{j(i)+1}, y, y, \ldots, y, z)
$$

It is easy to check that the polynomials $q_{0}, q_{1}, \ldots, q_{2 k+2}$ satisfy the equations of Prop. 3.6 (ii) in F for ($1,2 k+2$) instead of (n, k). Hence, by Prop. 3.6, 1-distributivity - which is the usual distributivity - holds throughout $\operatorname{Con}(\mathbf{L}(A))$. Thus Thm. 2.2 completes the proof.

Proof of Theorem 3.2. Let \mathscr{U} be an l-congruence variety as in the theorem. By Prop. 3.5, \mathscr{U} is not distributive for $n=1,2,3, \ldots$. Hence, by Thm. 3.3, for each $n>2$ we can choose $p_{n} \in P_{0}$ such that $L_{n+1}\left(Q_{p_{n}}\right) \in \mathscr{U}$. Set $S=\left\{p_{n}: n>2\right\}$. If the set $\left\{n: n>2\right.$ and $\left.p_{n}=p_{t}\right\}$ is infinite for some t, then $\left\{L_{n+1}\left(Q_{p_{n}}\right): p_{n}=p_{t}\right\}$ generates $\operatorname{Con}\left(\mathscr{V}_{p_{t}}\right)$ by Prop. 3.4 (i, ii). Hence $\operatorname{Con}\left(\mathscr{V}_{p_{t}} \subseteq \mathscr{U}\right.$. Suppose $\left\{n: n>2\right.$ and $\left.p_{n}=p_{t}\right\}$ is finite for all $t>2$. Then it suffices to show that $\operatorname{Con}\left(\mathscr{V}_{0}\right)$ is a subvariety of the variety generated by $\left\{L_{n+1}\left(Q_{p_{n}}\right): n>2\right\}$. Suppose λ holds in $L_{n+1}\left(Q_{p_{n}}\right)$ for each $n>2$. For a sufficiently large t, λ holds throughout $\operatorname{Con}\left(\mathscr{V}_{p_{n}}\right)$ for any $n \geqq t$ by Prop 3.4 (i, ii). Hence there exists an infinite $S^{\prime} \subseteq S \backslash\{0\}$ such that λ holds in Con $\left(\mathscr{V}_{p}\right)$ for each $p \in S^{\prime}$. Then, by Prop. 3.4, the divisibility condition $D(m, k)$ associated with λ holds in Q_{p} for each $p \in S^{\prime}$. Therefore, $D(m, k)$ holds in Q_{0} (otherwise $m=0$ and $k \neq 0$, so each $p \in S^{\prime}$ divides k). Hence, by Prop. 3.4, λ holds throughout $\operatorname{Con}\left(\mathscr{V}_{0}\right)$, Q.E.D.

Remark. If \mathscr{K} is a class of similar algebras closed under \mathbf{S} and \mathbf{P}_{f} then $\operatorname{Con}(\mathscr{K})$ is an l-congruence variety, namely $\operatorname{Con}(\mathscr{K})=\mathbf{C o n}(\mathbf{L}(\mathscr{K}))$.

The author would like to express his thanks to A. P. Huhn for the idea of introducing l-congruence varieties.

References

[1] R. Freese, Minimal modular congruence varieties, Notices Amer. Math. Soc., 23 (1976), No. 1, A-4.
[2] T. K. Hu, Locally equational classes of universal algebras, Chinese J. Math. 1 (1973), 143-165.
[3] A. P. Huhn, Schwach distributive Verbände. I, Acta Sci. Math., 33 (1972), 297-305.
[4] A. P. Huhn, Two notes on n-distributive lattices, in Lattice theory, Colloq. Math. Soc. János Bolyai, vol. 14, North-Holland, (1976), 137-147.
[5] A. P. HUHN, n-distributivity and some questions of the equational theory of lattices, in Contributions to universal algebra, Colloq. Math. Soc. J. Bolyai, vol. 17, North-Holland, (1977), 167-178.
[6] G. Hutchinson, G. Czédli, A test for identities satisfied in lattices of submodules, Algebra Universalis, 8 (1978), 269-309.
[7] B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand., 21 (1967), 110-121.
[8] B. Jónsson, Varieties of algebras and their congruence varieties, in Proc. of the International Congress of Math., Vancouver (1974).
[9] P. Mederly, Three Mal'cev type theorems and their application, Mat. Casopis Sloven. Akad. Vied., 25 (1975), 83-95.
[10] J. B. Nation, Varieties whose congruences satisfy certain lattice identities, Algebra Universalis, 4 (1974), 78-88.
[11] A. F. Pixley, Local Mal'cev conditions, Canad. Math. Bull., 15 (1972), 559—568.
[12] R. Wille, Kongruenzklassengeometrien, Lecture Notes in Math., vol. 113, Springer-Verlag (1970).

[^0]: Received February 15, 1978.

