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On the lattice of congruence varieties of Locally 
equational classes 

G. CZEDLI 

1. Introduction 

For a class J f of algebras, let Con ( J f ) denote the lattice variety generated by 
the class of congruence lattices of all members of №. A lattice variety ^ will be called 
an l-congruence variety if <%,= Con(.yT) for some locally equational class X o f al-
gebras. In particular, every congruence variety is an /-congruence variety. Our aim 
is to show that /-congruence varieties form a complete lattice, which is a join-sub-
semilattice of the lattice of all lattice varieties (while meet is not preserved). We 
also show that the minimal modular congruence varieties described by FREESE [1] 

and the minimal modular /-congruence varieties are the same. 
The notion of locally equational class has been introduced by Hu [2]. For 

the definition, let F be a subset of an algebra A of type T and let t1, t2 be n-ary 
r-terms. The identity t1 = t2 is said to be valid in F if for all (a i , a 2 , ..., a„)6F" 
we have tx(ax,a2, ..., a„) = t2(a1, a2, ...,an). Suppose J f is a class of algebras of 
type T and denote by L ( J f ) the class of all algebras A of type T having the follow-
ing property: 

for each finite subset G of A there is a finite family {Bt \ / £ / } in j f a n d there 
is for each i f j a finite subset Fi Q Bi such that every identity valid in F ; for 
all i£I is also valid in G. 

Now, L is a closure operator on classes of similar algebras. L ( J f ) is called the 
locally equational class (or, briefly, local variety) generated by JT, and X is said to 
be a local variety if L ( J f ) = JC We often write L(^ ) instead of L({^}). 

Denote by H, S, Pp D the operators of forming homomorphic images, sub-
algebras, direct products of finite families and directed unions, respectively, and 
let us recall 
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T h e o r e m 1.1. (Hu [2]) (a) Every variety is a local variety. The converse does 
not hold, e.g. all torsion groups form a local variety. 

(b) For a class tfof similar algebras L ( j f ) = D H S P ^ J f ) ; consequently, 
(c) Jf is locally equational if and only if it is closed under D, H, S, Vf. 

Our main tool is the following 

T h e o r e m 1.2. (PIXLEY [11]) There is an algorithm which, for each lattice identity 
A and pair of integers n,k^2, determines a strong Mal'cev condition (i.e., a finite 
set of equations of polynomial symbols of unspecified type) Unk=Unk(A) such 
that for an arbitrary algebra A of type x the following three conditions are equivalent: 

(i) A is satisfied throughout Con 
(ii) for each finite subset F of A and integer 2 there is an integer 

k=k(n, F, A) and a i-realization U*k of Unk such that ZJ*k is valid in F; 
(iii) for each finite subset F of A and integer 2 there is a k0=k0(n, F, A) 

such that for each k^k0 there is a x-realization U* k of Unk which is valid in F. 

We have supplemented Pixley's theorem with condition (iii) which is implicit 
in the proof in [11] of the theorem. We shall make essential use of 

P r o p o s i t i o n 1.3. In the above theorem each polynomial of U*k is idempotent 
in F. 

This follows easily from the construction of U k described in [11]. 

2. Lattice of /-congruence varieties 

A lattice variety is called a congruence variety (J6NSSON [8]) if &=Con(Jf) 
for some variety J f , and will be called an l-congruence variety if ^ = C o n ( Y O 
for some local variety "V. Let (E and (E* denote the "sets" consisting of all /-con-
gruence varieties and all /-congruence varieties of the form Con (L(A)), respectively. 
Let (£ and (£* be partially ordered by inclusion. Our main result is 

T h e o r e m 2.1. (£ is a complete lattice. The (infinitary) join of arbitrary 
l-congruence varieties in £ and their join taken in the lattice of all lattice varieties 
coincide. 

Although there exists a local variety which cannot be generated by a single 
algebra (Hu [2]), we have 

T h e o r e m 2.2. For any local variety there is an algebra A ('not necessarily 
of the same type as Y ) such that Con = Con (L (/!))• Thus & = (£*. 
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P r o o f of T h e o r e m s 2.1 a n d 2.2. First we show the following statement: 
(1) For any algebra A of type x there exists an algebra B such that Con (L(^)) = 

= Con(L(£)) and B has a one-element subalgebra. 
Let b0£A, — {X:X is a lattice identity satisfied throughout Con(L(/4))} and 
H= {F: F is a finite subset of A containing 60}. By Thm. 1.2 choose a k=k(n, F, A) 
and a T-realization U^K(F, X) of Unk(X) for all Xe<P, F£H and « s 2 such that 
U^k(F, X) is valid in F. Denote by P(n, F, X) the set of t-polynomials occuring 
in U^k(F, X) and define an algebra B as follows: B has the same carrier as A and 
the set of its operations is U {P(n, F, /.): FeH, /.6 (i.e. B is a reduct of A). 
Since U„r

 k is also valid in F \{6 0 } , Con ( L = C o n (L (B) ) follows from Thm. 
1.2. By Prop. 1.3, {¿„} is a subalgebra of B, which completes the proof of (1). 

Now we prove that 
(2) For an arbitrary set F of indices and for any algebras Ay(y(T) there is an 

algebra A' such that V Con (L (A y)) = Con (L(A ' ) ) in the lattice of all lattice 
varieties. y £ r 

We can assume / V 0 (otherwise the statement is trivial) and 

— {ay} is a one-element subalgebra of Ay for each y € T, 
— all the algebras Ay(y£F) are of the same similarity type t (otherwise the 

set of operations of Av can be supplemented with projections since for 
polynomially equivalent algebras B1 and B2 over the same carrier, 
Con (L (5X)) = Con (L (B2)) by Thm. 1.2), and 

— for each y £ f , every r-polynomial is equal to some r-operation over Ay. 
Denote by zi the set of /-ary operation symbols in T and regard T- = Tf as a set 

of /-ary operation symbols ( / = 0 , 1 , 2 , . . . ) . Now, T= | J T,. and set T '= (J z'r 

i=0 i=0 
For each y£T, Ay can be regarded as an algebra A'y of type T' if we define, for q£R', 
the operation q by q = q(y) (i?(y)€f, AY and A'Y have the same carrier). Evidently, 
Con (L(Ay)) = Con (L(Ay)) by Thm. 1.2. Let A' be a weak direct product of the 
algebras A'y defined by 

= 17 A': for all but finitely many y<El\ f ( y ) = a\. 1 ytr 7 

By Thm. 1.1 M A ' ^ Q U A ' ) , therefore 

v Con(L04)) = V Con (L(/!.;)) g V Con(L(,4')) = Con(L(^'))-
yzr yzr yzr 

In order to prove the converse inclusion by means of Thm. 1.2, suppose a lattice 
identity X is satisfied throughout each Con(L(.i4 )). Fix an arbitrary finite subset 
F of A' and n^2. For each y£r set Fy = {f(y): f£F}QAy and choose a non-
empty finite A Q T such that y£r\A implies Fy={ay). Since X holds in each 
Con(L(yiy)), by Thm 1.2 for each y€T there exist k y ^ 2 and for all k ^ k y a 
T-realization U^k(y) of Un k such that U^k(y) is valid in Fy. We can suppose ky = 2 
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if y£r\A, because F is a subalgebra consisting of a single element. Set 
k=max {ky: y£r}. Then for each y£F there exists a realization U*k(y) of Unk 

which is valid in Fy. Let U*k(y) consist of i-operations qly, q2y, ..., qs For 
i ' = l , 2 , . . . , s define qti\x' by qi(y) = qify over Ay(y£T). Then the operations 
qx,q2, yield a r'-realization of Unk which is valid in F. This completes the 
proof of (2). 

Now, let V be an arbitrary local variety and let <P consist of all lattice identities 
which are not satisfied throughout Con(~V). For each we can choose A , ^ 
such that X is not satisfied in the congruence lattice of AX. Since L ( A J Q - F and 
A is not satisfied throughout Con (L(A;)), it can be easily seen that Con (I R) = 
= V Con (L(^ ; ) ) . Hence Thm. 2.2 follows from (2). Since any complete join-

x 
semilattice having a 0-element is a complete lattice, Thm. 2.1 follows from (2) and 
Thm. 2.2. Q.E.D. 

3. Minimal modular /-congruence varieties 

Let P be the set of all prime numbers and set P0=PU {0}. For p£P0 denote 
by Qp the prime field of characteristic p and by "V the variety of all vector spaces 
over Qp. The following theorem was announced by FREESE [1]: 

T h e o r e m 3.1. For any modular but not distributive congruence variety °U there 
is a p£P0 such that Con ( f ^ ) ^ ali. Consequently, congruence varieties do not form 
a sublattice in the lattice of all lattice varieties. 

Christian Herrmann has also proved the above theorem. We shall slightly 
modify his (unpublished) proof to obtain the following 

T h e o r e m . 3.2. For any modular but not distributive l-congruence variety % 
there is a pdP0 such that Con (i^) Q 6U. Consequently, l-congruence varieties do 
not form a sublattice in the lattice of all lattice varieties. 

* 

The proof is based on the following theorem (which is presented here in a 
weakened form): 

T h e o r e m 3.3. ( H U H N [4]) For an arbitrary modular lattice M and the 
following two conditions are equivalent: 

(i) M is not n-distributive, i.e., the n-distributivity law 

*A V yt = V (*A V J'i) 
1=0 j = 0 V 1=0 ' 

ivy 
(cf. H U H N [3] and [5]) is not satisfied in M. 
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(ii) The lattice variety generated by M contains Ln+1(Qp) for some p£P0 where 
Ln+1(Qp) denotes the congruence lattice of the (n + l)-dimensional vector space 
over Qp. 

For a pair of non-negative integers m, k let us define the divisibility condition 
D(m, k) by the formula (3.x:) (m-x=k-1) where m-x and k-1 mean x + x + . . . + ; c 
(m times) and 1 + 1 + 1 + .. . + 1 (k times), respectively. We need the following 

P r o p o s i t i o n 3.4. For any lattice identity X there exist non-negative integers 
n0,m,k such that for each p£P0 the following three conditions are equivalent: 

(i) X is satisfied throughout Con(T^), 
(ii) there exists n = «0

 such that X is satisfied in Ln(Qp), 
(iii) the divisibility condition D(m,k) holds in Op. 

P r o o f . The equivalence of (i) and (iii) is a special case of [6, Thm. 3]. As for 
(ii)—(i), we can argue as follows: Let us construct the identity X from X by replacing 
the operation symbols A and V by D and o (composition of relations), respect-
ively. By congruence permutability, (i) holds iff X is satisfied by arbitrary con-
gruences of any algebra in V . Now, WILLE'S theorem [ 1 2 ] (see also PIXLEY [ 1 1 , 

Thm. 2.2]) involves implicitly that if X is satisfied by certain congruences of the 
free "^-algebra of rank n0, for some n0 depending on X, then X is satisfied by arbitrary 
congruences of any algebra in i ^ . Finally, the congruence lattice of the free i 
algebra of rank n0 is a sublattice of Ln(Qp) whence X is satisfied by arbitrary con-
gruences of the free T^-algebra of rank n0. Q.E.D. 

It follows from a more general result of NATION [ 1 0 , Thm. 2 ] that any «-distri-
butive congruence variety is distributive ( n ^ 1). Now we need the following 
generalization of this fact: 

P r o p o s i t i o n 3.5. Let «Si and % be an arbitrary l-congruence variety. If 
°ll is n-distributive, then °U is distributive. 

P r o o f . Certain arguments using Mal'cev conditions for congruence varieties 
can easily be reformulated for /-congruence varieties. PIXLEY [ 1 1 ] has pointed out 
that JONSSON'S criterion for congruence distributivity [7] remains valid for /-con-
gruence varieties. Similarly, MEDERLY'S criterion for «-distributivity [9 , Theorem 2 . 1 ] 

also remains valid. Thus the have: 

P r o p o s i t i o n 3.6. For an arbitrary algebra of type x and nS1 the following 
two conditions are equivalent: 

; (i) Con(L(/4)) is n-distributive, 
(ii) For each finite FQ A there exist and (n + 2)-ary x-polynomials 

/ 
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t0, t1 , ... , tk on A such that the identities 

f0(*0> xl> ••• > *n + l) = X0> h(.x0> xl> ••• ; *n + l) = Xn +1' 

x l i ••• 5 X n' *o) = *0 ( ' — 0> 1> ••• , 

if(x, x, = ti+1(x, x, ...,x, y,y, ..., _y) 

j+1 j'+i 

(0^i<k, O^j^n and i=j(mod n +1)) are ua/W in F. 

Now, suppose Con(L(/4)) is «-distributive for some « S i . Fix a finite FQA. 
Then, by Prop. 3.6, there are and i-polynomials t0, tx, ..., tk satisfying the 
required identities in F. Define j(—1)=0 and for i '=0, 1, ...,k, j(i) = i(mo d/? +1), 
0 D e f i n e ternary r-polynomials q0, q1, ..., q2k+2 as follows: q0(x. y, z) = x 
and for i '=0, 1, . . . , k 

?M+I(x,y,z) = ti(x,x, ...,x, y,y, . . . , y , z ) 
j ( / - i ) + i 

and 
+ y, z) = tt(x, x, ..., x, y, y, ..., y, z). 

J(0+1 

It is easy to check that the polynomials q0,qx, •••,q2k+2 satisfy the equations of 
Prop. 3.6 (ii) in F f o r (1, 2k+2) instead of («, k). Hence, by Prop. 3.6, 1-distributiv-
ity — which is the usual distributivity — holds throughout Con(L(/4)). Thus Thm. 
2.2 completes the proof. 

P r o o f of T h e o r e m 3.2. Let be an /-congruence variety as in the theorem. 
By Prop. 3.5, % is not distributive for « = 1, 2, 3 Hence, by Thm. 3.3, for each 
« > 2 we can choose p„£P0 such that Ln+1(Qp Set S= {/?„: «>2}. If the set 
{n: « > 2 and p„—p,} is infinite for some t, then {L„+1(QP)' p„=p,} generates 
Con(T^) by Prop. 3.4 (i, ii). Hence C o n S u p p o s e {« :«>2 and p„=p,} 
is finite for all / > 2 . Then it suffices to show that Con (iQ is a subvariety of the 
variety generated by {Ln+1(Qp ): «>2}. Suppose X holds in Ln+1(Qp) for each 
« > 2 . For a sufficiently large t, X holds throughout Con(Vp ) for any n^t by 
Prop 3.4 (i, ii). Hence there exists an infinite S'Q 5 \ { 0 } such that X holds in 
Con(T^) for each p£S'. Then, by Prop. 3.4, the divisibility condition D(m, k) 
associated with X holds in Qp for each p£S'. Therefore, D(m,k) holds in Q0 

(otherwise m=0 and k^O, so e a c h p £ S ' divides k). Hence, by Prop. 3.4, X holds 
throughout Con (T^O). Q.E.D. 
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R e m a r k . If JT is a class of similar algebras closed under S and P^then Con (Jf) 
is an /-congruence variety, namely Con (,#")=Con (L(Jf)) . 

The author would like to express his thanks to A. P. Huhn for the idea of 
introducing /-congruence varieties. 
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