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Extensions of Lomonosov's invariant subspace theorem 
C. K. F O N G , E. A. N O R D G R E N , M. R A D J A B A L I P O U R , 

H. R A D J A V I and P. R O S E N T H A L 

1. Introduction 

The famous invariant subspace theorem of V . LOMONOSOV [9] includes the 
assertion that each algebra of operators on a Banach space which commutes with 
a nonzero compact operator has a nontrivial invariant subspace. That is, if K is 
a compact operator other than 0, and if AK=KA for all A in some algebra si, 
then s4 has an invariant subspace. In [10] it was shown that this could be generalized, 
in the case where K is injective and si is uniformly closed, to the same conclusion 
under the assumption that siKaKsi (in the sense that A (is/ implies that AK=KAi 

for some Al£s/). In [12] it was shown that the hypothesis that K be injective is 
not needed. 

In the present note we prove that si uniformly closed and siKx a K2si, for 
Kl and K2 compact and nonzero, implies si has an invariant subspace (Theorem 3) 
and the commutant of si has an invariant subspace (Theorem 4). In fact, we obtain 
results slightly more general than this. The proofs presented are considerably simpler 
than those in [10] and [12]. 

Our work is merely a perturbation of LOMONOSOV'S [9] ; it relies on the 
following lemma. 

' L o m o n o s o v ' s L e m m a . ([9], [13, p. 156], [11]) If si is an algebra of bounded 
operators on a Banach space which has no nontrivial invariant subspace, and if K 
is any nonzero compact operator, then there is a vector x^O and an A in si such 
that AKx=x. 
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2. Preliminary results: An operator equation and operator ranges 

We need to consider maps which may be nonlinear, but which are bounded 
in a certain sense. 

D e f i n i t i o n . A function S taking a Banach space X into a Banach space 9) 
is a bounded map if there is a constant M such that 115x11 SM||jc| | for all 
a bounded operator is a bounded map which is linear. 

Note that a nonlinear bounded map need not be continuous. 
The next lemma is implicit in [10]. We are grateful to Ivan Kupka for pro-

viding a suggestion which led to the simpler proof given below. 

L e m m a 1. Suppose that S is a bounded map taking X into itself, K is a bounded 
linear operator on 9) with spectral radius r(K), and T is a bounded linear operator 
taking X into 2). If T=KTS, if e>0 , and if ||S;c|| =§(/•(*)-He)"1 \\x\\ for all x£X 
then T= 0. 

P r o o f . Fix jc€3£. For each positive integer n, Tx=KnTS"x (just keep apply-
ing K and S on the left and the right, respectively). Thus, for all n, 

\\TX\\ == ii/niimH(*)+£)-"M-

Given any ¿ > 0 , ||.K',||1/',<r(.K')+<5 for n sufficiently large. For sufficiently large 
n, then, 

| | 7* | | =§ {r(K) + 5)" ||I'll ( r ( / 0 + e ) - n | | * | | . 

If <5<£, then as so Tx=0. 
UrCfiO + fiJJ 

Recall that a Riesz operator is an operator with spectral properties like those 
of a compact operator; i.e., a Riesz operator is a noninvertible operator whose 
nonzero spectrum consists of eigenvalues of finite multiplicity with no limit points 
other than 0. 

D e f i n i t i o n . The operator K is decomposable at 0 if for each e > 0 there is an 
invariant subspace SDi ̂  {0} of K which has an invariant complement and is such 
that the spectral radius of the restriction of K to 9ft is less than E. 

T h e o r e m 1. If T=KTS, where S is a bounded map on X, K is a bounded 
operator on 3) and T is a bounded operator taking X into "3), then 

(i) K quasinilpotent implies T=0; 
(ii) K a Riesz operator implies T has finite rank; 

(iii) K decomposable at 0 implies the range of T is not dense. 

P r o o f of (i): For £ sufficiently small and positive, H^H^fi -1!!*!!, so the 
result follows immediately from Lemma 1. 
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P r o o f of ( i i ) : Choose e sufficiently small so that ||5x|| s (2f i ) _ 1 ||x|| for all x. 
Then the Riesz functional calculus yields an idempotent P which commutes with 
K such that the spectral radius of PK is less than e. From T=KTS it follows that 
PT=PKTS=(PK)(PT)S, so Lemma 1 implies that PT= 0. Hence T=(l-P)T, 
and the range of T is contained in the range of the finite-rank operator I—P. 

P r o o f of ( i i i ) : Begin as in (ii) above; get P by the assumption of decom-
posability at 0. Then T = ( l —P) T, and the range of T is contained in the range 
of l-P and thus is not dense. 

HALMOS and DOUGLAS showed (see [4]) that if A and B are operators on 
Hilbert space, and if the range of A is contained in the range of B, then A=BS 
for some operator S. This result is false, in general, on Banach spaces (cf. [5]), 
unless B is injective. We note that the result is true in general if we do not require 
S to be linear. 

L e m m a 2. Let A be a bounded operator taking X into 9) and B a bounded 
operator taking 3 into 9). If the range of A is contained in the range of B, then there 
is a bounded mapping S from X into 3 such that A=BS. 

Proof . Let ker B= {z£3: Bz=0}. Define B: (3/ker by 

5 ( z + ke r5 ) = Bz; 

then B is an injective bounded operator. Now B~1A: 9)->-3/ker B is trivially seen 
to be a closed operator, so the closed graph theorem implies that B~1A=§ for 
some bounded operator X—3/ker B. Then A=B§. Define the map 5: 3E—3 
by letting, for each x£X, Sx be any element in Sx of norm at most ||&C|| + ||JC||; 
the definition of the norm on a quotient space implies that such an Sx exists. Then 
||Sx||3i(||£|| + l ) M . Also A = BS, for if x£X, then Ax = B§x = Bz for any 
z^Sx. Since Sx is such a z, Ax = BSx, and the lemma is proven. 

D e f i n i t i o n . A linear manifold 9K in a Banach space X is an operator range 
if there is a Banach space 'J) and a bounded operator T: — X such that 7(9)) = 

A comprehensive treatment of operator ranges in Hilbert space is given in [6]. 
GRABINER [7] contains some results about operator ranges in Banach spaces, in-
cluding part (i) of the next theorem (with a proof different from ours). 

T h e o r e m 2. If 9JI is an operator range in 9), and if K is a bounded operator 
on 9) such that STCc/^Dl, then 

(i) ([7]) K quasinilpotent implies .351 ={0}; 
(ii) K a Riesz operator implies 9JI is finite-dimensional; 

(iii) K decomposable at 0 implies 9Jt is not dense. 
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P r o o f . Suppose that T: 5) and r(3E)=S)l. Then the range of T is con-
tained in the range of KT, so Lemma 2 implies that T=KTS for some bounded 
map S. Now parts (i), (ii) and (iii) of this theorem follow from the corresponding 
parts of Theorem 1. 

3. Invariant subspaces for certain operator algebras 

If si is an algebra of operators contained in the commutant of a compact 
operator K, then the closure of si in any of the standard operator topologies is 
also contained in the commutant of K. Thus no closure assumption on such an 
si will be helpful in obtaining invariant subspaces. In the case where si merely 
intertwines a compact operator some closure assumption is essential (cf. remark 
(iii), p. 118 of [10]). For certain applications discussed below, however, we need 
to include cases where s i is not closed even in the norm topology. It turns out 
to be sufficient that si be an operator range, in the sense that there is a bounded 
linear operator taking some Banach space into the space of operators such that 
the range of T is si. (If si is uniformly closed it is an operator range; it is the 
range of the injection of si into the space of operators.) 

T h e o r e m 3. If si is an algebra of operators and srf is an operator range, and 
if there exist a nonzero compact operator and an operator K2 which is decomposable 
at 0 such that siK1cK2si, then si has a nontrivial invariant subspace. 

P r o o f . If si had no invariant subspaces, then Lomonosov's Lemma would 
imply that A0K1x=x for some A0£si and some x^O. Now si= for some 
Banach space 9). Define Ty=(Sy){x) for each Then the range of X is six= 
= {Ax: A£s/j, so six is an operator range. If six={0} then the one-dimensional 
space spanned by x is invariant under si. If stfx^ {0} then six is an operator range 
invariant under si. For A£si, 

Ax = AA0Kxx = K2A2x for some A2£si. 
Hence six<zK2six. Thus part (iii) of Theorem 2 implies six is not dense, so its 
closure is a proper invariant subspace for si. 

R e m a r k . If K2 is compact then the linear manifold six occurring in the proof 
of Theorem 3 is finite-dimensional. This does not prove, however, the obviously 
false assertion that the hypotheses of Theorem 3 and the additional requirement 
that K2 be compact yield a finite-dimensional invariant subspace for stf. We get 
the finite-dimensional subspace six via Lomonosov's Lemma, on the assumption 
that we have no invariant subspaces at all. 

On the other hand, if si is any algebra of operators with a finite-dimensional 
invariant subspace 9Jt, then 9JI could arise from Theorem 3. For let s i a be the set 
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of all operators leaving 90t invariant and let P denote an idempotent with range 
50i. Then rf/cW,, so Theorem 3 applies to si0 (with K1=K2=P). An in-
variant subspace for si0 is also invariant under its subalgebra si. In particular, 
the answer to question 1 of [12] is "no" ; si0 is a counter-example. 

T h e o r e m 4. If si is an algebra of operators which is an operator range, if there 
exist compact operators Kt and K2 different from 0 such that siK^K2si, and if 

contains an operator which is not a multiple of the identity, then the commutant 
of si has a nontrivial invariant subspace. 

Proof . If the commutant of si had no invariant subspace then Lomonosov's 
Lemma would imply that there exists a B commuting with si and an x^O such 
that BK1x=x. For A in si, then, 

Ax = ABKxx = BAKxx = (BK2)AlX 

for some A1^si. Thus the linear manifold six satisfies A c ( B K 2 ) {six). Part (ii) 
of Theorem 2 above implies that six is finite-dimensional, (since BK2 is compact). 
Choose an A0 in si which is not a multiple of the identity. Since A0 has the finite-
dimensional invariant subspace six, A0 has a nontrivial eigenspace (if six={0}, 
then A0 has nullspace). Since an eigenspace of A0 is invariant under all operators 
commuting with A0, the commutant of si has a nontrivial invariant subspace. 

C o r o l l a r y 1. If A is an operator for which there exist a bounded open set D 
containing a(A), an analytic function <p taking D into D and a nonzero compact 
operator K such that AK=K<p(A), then A has a nontrivial hyperinvariant subspace 
(unless A is a multiple of the identity). 

: P roo f . Let H°°(D) denote the Banach algebra of all bounded analytic func-
tions on D, with supremum norm, and let 

si={f(A):f£H°°(D)}. 

Choose a fixed Cauchy domain S contained in D and containing a (A). Then for 
f£H°°(D) 

n ^ 1 1 = ¿ 1 1 f / ( * ) ( * - ¿ r 1 ¿4 -
ZK as 

S ^ - - ( l eng th of &>)• 11/11- • sup | | ( z - 4 ) - 1 | | . 
¿n zeds 

Hence there is a constant M such that | | / (^) | | = s M | | / | L for /€H°°(Z>), and it 
follows that si is the range of the operator f-*f(A) (that si is an algebra follows 
from the fact that this map is an algebraic homomorphism). 

Also, if f£H°°(D) then f(A)K=Kf(cp(A)). One way to verify this is to note 

that, regarded as operators on £ © £ , commutes with ?., .), and hence 
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with / ( ( i <?(%)) = f(y(A))\' Now f((P(A))=(f0(P)(A) is a8ain in 

so Theorem 4 applies. 

C o r o l l a r y 2. If A is power bounded (i.e., there exists a constant M such that 
\\A"\\ ^M for all positive integers n), and if there exist an integer k and a nonzero 
compact operator K such that AK=KAk, then A has a nontrivial hyperinvariant 
subspace (or is a multiple of the identity). 

P r o o f . Let s/=\ 2 A": ^ \an\< ool. The fact that A is power bounded 
ln = 0 n — 0 J 

implies that the map of {a„} into 2 anA" is a continuous map of I1 into the 
n = o 

bounded operators, so si is an operator range. Note that si is an algebra, since 
I1 is an algebra under convolution. Now AK—KAk yields A"K=KAnk for all 
n, so | J ^ and Theorem 4 applies. 

N o t e . Corollary 2 follows from Corollary 1 only under the additional assump-
tion that o(A)a{z: |z |< 1}, in which case the function tp (z)=zk will serve. 

E x a m p l e s . The hypotheses of Corollary 2 hold under various circumstances. 
(i) Let {e„}~=0 be an orthonormal basis for a Hilbert space H and let {&„} 

be a sequence converging to 0. If A is a complex number of modulus 1 and A is 
defined by Ae„ = l2"e„, then AK=KA2 where K is the compact weighted shift 
defined by Ke„=knen+1. Then the unitary operator A satisfies the hypotheses of 
Corollary 2. 

(ii) Let K0 be a compact operator and B and C be power bounded operators 
such that BK0=K0Ci. If A is the operator B(BC and K is the operator on X©X 
defined by K(xx © x2)=K0x2(B 0, then AK—KA2, and A satisfies the hypotheses 
of Corollary 2. 

A natural question is whether Theorems 3 and 4 hold if the intertwining takes 
place on the other side; i.e., if Kxsi<zsiK2. Upon reading a preliminary version 
of this manuscript L. G. Brown discovered the following two theorems. We are 
grateful to him for permission to include them here. These results were also 
obtained independently by S. GRABINER [14]. 

T h e o r e m 5. If si is an algebra of operators and si is an operator range, 
and if there exist a nonzero compact operator Kx and an operator K2 that is decom-
posable at. 0 such that KxsicsiK2, then si has a nontrivial invariant subspace. 

P r o o f . If we suppose si has no invariant subspace, then, as in the prooif 
of Theorem 3, Lomonosov's Lemma produces an A0 in si with 1 €o(K1A0). 
Hence 1 €ff(A0K1), and taking Banach space adjoints yields 1 € a(A^Kx). Note 
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that si* = {A*: A £s/} is also an operator range, K* is compact, K2 is decom-
posible at 0 and si*K*cK2si*. It follows as in the proof of Theorem 3, that 
there is a nonzero vector x* in X* such that si* x* is not dense in X*. In fact 
an examination of the proofs of Theorems 1 and 2 reveals that there is a non-
trivial projection P on X such that si*x* is included in the range of 1 — P*. 
Since that range is weak* closed as well as nontrivial, there is a nonzero vector 
x in X that annihilates si* x*. Hence either six = {0}, in which case x spans a 
one dimensional invariant subspace of si, or else the closure of six is a proper 
invariant subspace of si. The contradiction of the original supposition establishes 
the result. 

T h e o r e m 6. If si is an algebra of operators wich is an operator range, if 
there exist compact operators Kx and K2 different from 0 such that KxsiasiK2, 
and if si contains an operator that is not a multiple of the identity, then the 
commutant of si has a nontrivial invariant subspace. 

P r o o f . Suppose the commutant of si has no invariant subspace. Then 
Lomonosov's Lemma implies the existence of a B commuting with si such that 
1 6f f (KiB) , and hence 1 €<r(B*Kf). As in the proof of Theorem 4, there exists a 
nonzero vector x* in X* such that si* x* is finite dimensional. 

Choose an A0 in si that is not a multiple of the identity. Either si*x* = {0}, 
in wich case has a nontrivial null space, or else si*x* is a finite dimensional 
invariant subspace of AJ. In either event A* has an eigenvector. If A is the 
corresponding eigenvalue, then it follovs that the closure of the range of A0 — A 
is a nontrivial subspace of X wich is invariant under the commutant of si. 

It might be worth noting that the compactness assumption on Kx in Theorem 3 
can be replaced by the hypothesis that has nonzero eigenvalues. 

T h e o r e m 1. If si is an algebra of operators which is an operator range, if 
siKyc:K2si where K2 is decomposable at 0 and has a nonzero eigenvalue, then 
si has a nontrivial invariant subspace. 

P r o o f . If A1x0=Ax0 with xo^0 and A^O, then, for any A£si, 
Ax0 = A~1AK1x0 — ?>~1K1A1x0 for some Ax£si. 

Thus six0 is contained in Kx{six0), so part (iii) of Theorem 3 implies six0 is 
not dense. 

R e m a r k s . It is shown in [15] that there is an operator that does not satisfy 
the hypothesis of Lomonosov's invariant subspace theorem. In light of Theorem 4 
above we can ask: if B is an operator on a Hilbert space must B commute with 
some uniformly closed algebra si (containing operators other than scalars) which 
intertwines two nonzero compact operators? 
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In [10] the following question was raised. If si is a uniformly closed algebra 
of operators such that sfK<^KB(£) must si have a nontrivial invariant subspace? 
If si is not required to be closed but is merely required to be an operator range 
then the answer is no, as is seen by letting si=KB(X) for an injective compact 
operator K with dense range. 

Some other variants of Lomonosov's Theorem can be found in [3], [8] and [11]. 
We are grateful to L. Fialkow for providing us with a copy of [1], where it is shown 
that AK=kKA for K compact and X a complex number implies A has a hyper-
invariant subspace. In the case where |A | s l this follows from Corollary 1 above; 
when |1| > 1 it follows from the analogous corollary to Theorem 6. 
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