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Kernel systems of directed graphs 
A N D R Á S F R A N K 

0. In graph theory there is a number of min—max theorems of quite similar 
type such that one is not a direct consequence of the other. For instance, a theorem 
of J. Edmonds states that in a directed graph there exist k edge disjoint spanning 
arborescences rooted at a fixed vertex r (see the exact definitions and formulation 
below) if and only if the indegree of every subset of vertices, not containing r, is 
at least k. A version of Menger's theorem resembles Edmonds' one: in a directed 
graph there exist k edge disjoint paths from r to another fixed vertex s if and only 
if the indegree of every subset of vertices, containing s but not r, is at least k. 

It is a natural question whether there exists a common generalization of these 
theorems of similar type. The purpose of this paper is to present a tool, by means 
of which such a unification can be obtained on the one hand, and new min—max 
theorems can be concluded on the other hand. This tool is the notion of a kernel 
system, which is, roughly, a family of subsets of vertices of a directed graph which 
is closed under intersection. 

Perhaps the most interesting consequences of min—max theorems concerning 
kernel systems are the following: 

a) A conjecture of J. Edmonds and R. Giles concerning directed cuts is solved 
for graphs possessing an arborescence. 

b) A min—max formula is given for the maximum number of edges which 
can be covered by K spanning arborescences rooted at a fixed vertex. 

Some further corollaries of our results will be published in another paper [7] 
where, among others, a min—max formula is given for the maximum number 
of edges of a digraph which can be covered by k branchings. 

At this point we refer to a recent, fundamental article of EDMONDS and GILES [2] 
concerning min—max relations for submodular functions. 

Some of our notions are similar to those of Edmonds and Giles and in the 
proof of Theorem 3 a relevant idea of their work will be used. However our results 
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seem to be independent of the main theorem of [2]. The exact relation will be 
explained in the last section. 

Let G=(V, E) be a finite directed graph with vertex set V and edge set E. 
Multiple edges are allowed, loops are excluded. Let r be a distinguished vertex, 
called the root of G. An arborescence rooted at r (or briefly r-arborescence) is a 
directed spanning tree such that every vertex can be reached by a directed path 
from r (see [1]). An r-s-path is a directed path from r to the vertex s. 

We say that a directed edge e enters a subset X of vertices if the head of e is 
in X but the tail is not. We say that a subset E' of edges enters a subset X of V 
if at least one element of E' enters X. The indegree e(X) and the outdegree d(X) 
of a subset X of V is the number of edges entering X or respectively. It is 
well known that the function g(A') is submodular, i.e. Q(X) + g (7) = i> (ZU 7) + 
+ f ( J f | y ) for every pair X, Y of subsets of vertices. 

For an arbitrary set X, X'cX means that X' is a family of not necessarily 
distinct elements of. X. \X\ denotes the cardinality of X. We shall use the notation 
K \ r instead of F \ { r } . Two subsets Z a n d Y of K \ r are called crossing if ATI 

y \ A V 0 . Otherwise X and Y are non-crossing. A family of subsets of 
V\r is called laminar if its members are pairwise non-crossing. (These notions 
occur slightly more generally in previous papers [2, 9].) A directed cut of G is a 
nonempty set of edges entering a vertex set X provided ¿ ( K \ A ' ) = 0 . 

1. D e f i n i t i o n . A family Jl of distinct subsets of vertices of F \ r is called 
a kernel system with respect to G if 

1) e ( M ) > 0 for every 
2) if M, N£Jl and then MON, MDN^Jl. The members of 

Jl are called kernels. 

Examples . 1. Mx = {M: M Q The second axiom is trivially satisfied, 
the first one holds if G has an /--arborescence. 

2. Let s be another fixed vertex of G and Jl2 = {M: MQ V\r,s£M}. The 
first axiom holds if there exists an r—s-path. 

3. Jl3 = {M: MQ V\r, <5(M)=0}. If G is connected (in the undirected sense) 
then the first axiom is fulfilled. The proof of the second one, as an easy exercise, 
is left to the reader. 

4. If JL is an arbitrary kernel system with respect to G then the kernels of 
minimum indegree form another kernel system 

Jl' = {M: MiM, Q(M) = min ^(Z)}. 

The proof of the second axiom is as follows: Let k— min Q{X) and M, N£J('. 
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Then 
k + k = Q(M) + Q(N) s + ^ k + k 

whence Q(MUN) = e(Mr\N)=k, therefore MUN, MilNeJt'. 
5. Let Jl be a kernel system and F be a subset of edges, then 

Jlr = {M: M£ Jt, F does not enter M} 

is again a kernel system. The axioms trivially hold. 

2. Let A: be a positive integer. 

D e f i n i t i o n . A subset E' of edges is called k-entering with respect to the kernel 
system Ji, if in the subgraph formed by E', the indegree of every kernel is at least k. 

T h e o r e m 1. A subset E' of edges is k-entering if and only if E' can be parti-
tioned into k l-entering subsets. 

P r o o f . The necessity is trivial. For the sufficiency it can be assumed that 
E'=E. We are going to prove that E can be partitioned into a l-entering subset 
Ex and a (k — l)-entering subset E2. This assertion proves our theorem. 

The subset Ex will be constructed sequentially and once an edge has been 
inserted into Ex it is never changed. In an intermediate stage of the algorithm a 
kernel M is called dangerous with respect to the current Ex if 

0G-Ei(M) = k—l. 

Starting from the empty set £ \ , in every step we consider a maximal kernel 
M such that Ex does not enter M. Insert an edge e into Ex which enters M but 
does not enter any dangerous kernel, and then we say that e was inserted into Ex 

because of M. The process stops when Ex is l-entering. 
To verify this algorithm we have to justify that the required edge e always 

exists. 

C l a i m 1. If fdEt then the head of f is not in M. 

P r o o f . Suppose the contrary then the tail of / is also in M, by the algorithm. 
Let Ef denote the set of edges which were inserted into Ex before / , and suppose 
that / was inserted into Ex because of Mf. Now MfC\ M V 0 therefore Mff)M 
is a kernel. Ef does not enter MfC\ M and Mf{J My^Mf which contradict the 
maximality of Mf. • 

C l a i m 2. If MD is dangerous with respect to Ex then MD%.M. 

P r o o f . Since MD is dangerous, there exists an edge ex£Ex entering MD. The 
head ..of this edge is in MD biit not in M by Claim 1. • 

5 
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Cla im 3. If M and N are dangerous kernels and MC\N is nonempty, then M ON 
is dangerous as well. 

P r o o f . = + 
^k-l+k-l whence Qc_Ei(MC\N)=k-l. • 

If every dangerous kernel is disjoint from M then an arbitrary edge entering 
M can be inserted into ^ and we are done since the new set E\E1 remains (k — 1)-
entering. Otherwise let MD be a dangerous kernel such that MDC\M^O and 
MD\M is as small as possible. 

By Claim 2, MD\M There exists an edge e with tail in MD\M and head 
in MD fl M since otherwise 

fc-1 = Qg-Ei(Md) S Qg_Ei(MDC\M) s k - 1 

whence MDC\M is a dangerous kernel, contradicting Claim 2. 
We assert that the edge e enters no dangerous set. If e entered a dangerous 

set Me then M' = Me fl MD would also be dangerous by Claim 3. The existence 
of such an M' is in contradiction with the minimum property of MD. • 

C o r o l l a r y 1. (J. EDMONDS [4]) A digraph G has k edge-disjoint r-arborescences 
if and only if the indegree of every subset of V\r is at least k. 

P r o o f . Apply Theorem 1 to the first example. The corollary follows from 
the simple fact that a 1-entering edge set surely contains an r-arborescence. • 

C o r o l l a r y 2. (Directed edge version of Menger's theorem [1]) In a digraph 
there exist k edge disjoint r-s-paths if and only if the indegree of every subset of 
V\r containing s is at least k. 

P r o o f . Apply Theorem 1 for the second example. The corollary follows from 
the simple fact that a 1-entering edge set surely contains an r—s-path. • 

The next consequence settles in the affirmative a conjecture of J. EDMONDS 

and R. GILES [2] in a special case. 

C o n j e c t u r e . An edge set E' is a ^-covering of directed cuts of a directed 
graph if and only if E' can be partitioned into k 1-coverings of directed cuts. (An 
edge set E' is called a k-covering of directed cuts if every directed cut contains at 
least k edges of £"). 

C o r o l l a r y 3. The conjecture of Edmonds—Giles is true for graphs possessing 
an arborescence. 

P r o o f . Applying Theorem 1 to the third example we obtain that a ^-covering 
(that is a ^-entering edge set) of those directed cuts which are directed away from 
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r can be partitioned into k 1-coverings. However when the graph has an r-arbores-
cence then all of the directed cuts are of this type. 

R e m a r k . The proof of Theorem 1 can be considered as a generalization of 
LovÁsz' proof in [8] of the afore mentioned theorem of Edmonds. It is, in fact, 
a polynomial bounded algorithm provided that some simple operations can be 
carried out in polynomial time on the kernels. These operations are as follows: 

a) Find a maximal kernel M such that E' does not enter M for an arbitrary 
edge set E'. 

b) Decide whether E" is ^-entering for arbitrary edge set E". 
The above three corollaries are of this type. In Corollary 1 we obtain LovÁsz' 

algorithm. In Corollary 2 our proof does not mean a new algorithm for Menger's 
theorem since the only way at hand to check b) is to use the classical augmenting 
path method. 

In Corollary 3 operation a) is simple because the required maximal kernel 
M consists of those vertices which cannot be reached by a directed path from r 
in the graph arising from G after contracting the edges of E'. Operation b) can be 
carried out as follows: Let G+ denote the graph which arises from G after in-
serting k — 1 reversed copies of all the edges of E". It can easily be checked that 
E" is ^-entering if and only if there exist k edge disjoint r—s-paths in G+ for every 
vertex s£V\r. This latter problem is polynomially solvable. 

3. Let c be a nonnegative integer function defined on the edge set £ of G. 
c(e) is called the weight of e. 

D e f i n i t i o n . A family Jt' of not necessarily distinct kernels of Jt (i.e. Jt'dJt) 
is called c-edge-independent if each edge e enters at most c(e) members of Jt'. 

T h e o r e m 2. 

(1) max \Jt'\ = min 2 c ( e ) 
eiE' 

where the maximum is taken over all the c-edge-independent subfamilies Jt' of Jt 
while the minimum is taken over all the \-entering edge sets E'. 
(2) The maximum can be realized by a laminar Jt' too. 

P r o o f , maxsmin . A simple enumeration shows that \Jt' | ^ 2! c(e) f ° r 

any c-edge-independent Jt' and for any 1-intering E'. e€£ 

max=min. We are going to construct a c-edge-independent family Jt' and 
a 1-entering edge set E' such that \Jt'\= 2 

e€E' 

The algorithm consists of two parts constructing Jt' and E', respectively. It 
has the interesting feature that both of its parts are of the greedy type, i.e. both 

5« 
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Jt' and E' will be produced sequentially and once a kernel or edge has been in-
serted into Jt' or £", respectively, it is never changed. 

First part: Construction of Jt'. 
First let Jt' be empty. In the general step we decide whether there exists a 

kernel M which can be inserted into the current Jt' without destroying its 
c-edge-independence. If the answer is "no" then the construction of Jt' terminates. 

Otherwise let M be a minimal kernel which can be inserted into Jt' and let 
us insert into Jt' as many copies of M as possible without destroying the c-edge-
independence. 

The family Jt' produced by the first part is obviously c-edge-independent. 
In order to describe the second part we need some notations. Let the different 

kernels of Jt' be Mly M2, ..., Mk (i.e. the first part terminated at the (fc + l)-th step), 
and suppose that these kernels have been inserted into Jt' in this order. We call 
an edge e saturated mth respect to Jt' (or briefly saturated) if it enters exactly c(e) 
members of Jt'. Let Ei (¿=1,2, ...,&) denote the set of those saturated edges 
which have been saturated in the /th step of the first part. It is easy to see that 
(3a) E^Q for i = l , 2 , ..., k\ 
(3b) Ei fl = 0 for l^i^jsk; 
(3c) If e d Ei then e enters Af,-; 
(3d) If edEt, i<j then e does not enter M j . 

Taking into consideration the construction of Jt', the following claim can be 
checked easily. 

C l a i m 1. If MjZJt', Mc.Mn and M£ Jt then there exists a saturated edge 
e which enters M but not Mt, and then e is in Eh where h «= i. n 

In order to verify (2) we show that Jt' is laminar. For, otherwise, let Mi and 
M j be two crossing members of Jt' (i<j). Applying Claim 1 with the choice M' 
and M = Mi Pi Mj we obtain that there exists an edge e in Eh (for some h-= i ) 
which enters M but not M,. Then e enters Mj, a contradiction to (3d). 

Second part: Construction of E'. 
First let E' be empty. In the general step we decide whether E' is 1-entering. 

If the answer is "yes" then the second part terminates. 
Otherwise, let M be a maximal kernel such that the current E' does not enter 

M. Let i be the minimum index for which Ei enters M. Let us insert an edge e of 
£, which enters M into E'. (We say that e has been inserted because of M.) 

The set E' produced by the second part is obviously 1-entering. 
To verify (1) and the algorithm we have to show that there exists a unique 

edge of E' entering M ; for each member Mt of Jt'. This implies \Jt'\ = 21 c(e)> 
e££' 

taking into consideration the fact that the edges of E' are saturated. 
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Cla im 2. If an edge e has been inserted into E' because of N, and e enters a 
member Mi of Jl\ then N^Mr 

Proof . Since e enters Af;, using (3d) we obtain that e is in E j for some j ^ i . 
If N^Mj then with the choice M{ and M=NC\Mi Claim 1 implies that there 
exists an edge e' in Eh (for some /J<I) which enters MjDN but not Mt. Then 
e' enters N which is in contradiction with the minimality of j, since h «=:j. • 

Now suppose, indirectly, that two edges , e2 of E' enter a kernel Mt of Jt'. 
Suppose that ex and e2 have been inserted into E' because of and N2, respectively, 
and e2 was inserted later than e±. By Claim 2, , JV2 3 Mi and ex does not enter 
N2. Hence TVj U jV2 ̂ N x which contradicts the maximality of Nx. • 

R e m a r k . The proof of Theorem 2 can be considered as a generalization of 
that of F u l k e r s o n [ 5 ] given for maximum packing of rooted /--cuts. Our algorithm 
is polynomial bounded provided that the following simple operations can be carried 
out in polynomial time. 

a) Find a minimal kernel M such that E' does not enter M for an arbitrarily 
given edge set E'. 

b) Decide whether E" is 1-entering for a given edge set £" , and if it does 
then find a maximal kernel M such that E" does not enter M. 
All the following corollaries and problems are of such type. 

Apply Theorem 2 to the first example: 

C o r o l l a r y 4 . ( E d m o n d s [3], F u l k e r s o n [5]) In an edge-weighted digraph 
the minimum weight of an r-arborescence is equal to the maximum number of c-edge-
independent vertex sets of V\r. • 

(A family of c-edge-independent vertex sets corresponds to a packing of r-
directed cuts in [5]). 

Apply Theorem 2 for the second example: 

C o r o l l a r y 5. ( F o r d — F u l k e r s o n [6]) In an edge-weighted digraph the minimum 
weight of an r-s-path is equal to the maximum number of c-edge-independent vertex 
sets containing s but not r. • 

The following corollaries seem to be new. 

P r o b l e m 1. Suppose that the maximum number of edge disjoint r-arbore;-
cences of a (weakly) connected digraph G=(V, E) is k (k^O). We want to 
increase this maximum by using new edges. Let the set Ex of possible new edges 
be such that G+=(V, EUE-^ has k + l arborescences. Assign to each edge c of 
El a nonnegative integer weight c(e). What is the minimum sum of weights cf the 
required new edges? 
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S o l u t i o n . Let us define a kernel system Jl with respect to G1=(V,£1) as 
follows: 

Jl = {M: gG(M) = k, M Q K \ r } . 

(Observe that the kernel system Jl with respect to Gx is defined by means of G.) 
Due to the above theorem of Edmonds (Corollary 1) we have to assure that the 
indegree of all the subsets of V\r is at least k +1, that is, we have to find a mini-
mum weight 1-entering subset of kernel system Jt. Applying Theorem 2 for this 
Jl we get: 

C o r o l l a r y 6. The minimum value of the weight sum of those edges of Ex whose 
insertion into G increases the maximum number of edge disjoint r-arborescences by 
one, is equal to the maximum number of not necessarily distinct subsets of V\r such 
that (i) the indegree of the set in G is minimum (=k) and (ii) an arbitrary edge e of 
Ex enters at most c(e) subsets of them. • 

R e m a r k . A possible generalization arises naturally. Let G=(V, E) be strongly 
Ar-edge-connected and Ex be a set of new edges. Find a minimum subset E2 of Et 

such that G + = ( F , E(JE2) is strongly (/c+l)-edge-connected. However it is easy 
to check that the Hamilton circuit problem is contained in this one in the case 
k=0. Therefore this problem is NP-hard and this direction is hopeless. 

Now a simple application of Corollary 6 will be presented. 

P r o b l e m 2. Let us suppose that G=(V, E) has an r-arborescence. Let 
F=(E, A) be the hypergraph of all r-arborescence of G. Here the vertex set E of 
F is the edge set of G and the edge set of F is the family of r-arborescences of G. 
Determine the rank-function r of F. We recall the definition of the rank-function 
r of an arbitrary hypergraph: 

(4) r(£") = max | a f | E'\ (£' Q E) 
a€ A 

(i.e. r(E') shows at most how many edges of E' can occur in an r-arborescence). 
Since every arborescence consists of \V\ — 1 edges, our problem is equivalent to 
the following: 

Let us complete E' by a minimum number edges of E\E' so that the 
completed E' contains an r-arborescence. Applying Corollary 6 for the case when 
the original graph is G'={V, £"), E!=E\E', c = 1 and k=0, we obtain 

C o r o l l a r y 7. r(£')— min (\V\ — \—t) where the minimum is taken over 
V1,Va,...,Vt \ 

all those laminar families of subsets Vx, Vt, ..., Vt of V\r for which E' does not 
enter any Vt and an arbitrary edge of E\E' enters at most one Vr 
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Hence one can easily obtain 

C o r o l l a r y 8. A subset E' of edges of G is a subset of an r-arborescence if and 
only if \V\ — \^\E'\+t for an arbitrary l-edge-independent laminar family of subsets 
Vlt V2, ..., Vt of V\r such that E' enters no Vt. 

R e m a r k s 1. One can immediately prove a slightly sharper version of this 
corollary when in the necessary and sufficient condition the cardinalities of all 
but one Vf are one. 

2. Some further special cases of the above corollaries are interesting for their 
own sake. Let us apply Corollary 6 in the case if k=0 and Ex consists of the 
reversed copies of all edges of E. We obtain a theorem of Lucchesi—Younger type 
(but not the Lucchesi—Younger theorem itself), which simply follows from the 
theorem of EDMONDS—GILES [2] , too (although our proof provides a polynomial 
algorithm as well). The reader may find it interesting to specialize for the case 
fcs 1, E1=E and c = 1. In this way a min—max theorem can be obtained for the 
minimum number of edges of G whose duplication increases the maximum number 
of edge disjoint r-arborescences. 

4. In this section a generalization of Theorem 2 will be given. Unlike the proof 
of Theorem 2, this does not provide a polynomial algorithm. This is the reason 
why Theorem 2 was discussed in the previous paragraph. 

Let Jt be a kernel system with respect to G=(K, E) and let f be a nonnegative 
integer function defined on the kernels. 

D e f i n i t i o n . The function f is called weakly supermodular on Jt if M, NdJt, 
f ( M ) > 0 , f(YV)>0, M P i N ^ Q imply that 

If already M,N£Jt and M f l i W Q imply this inequality then f is called super-
modular. 

D e f i n i t i o n . A family E' of not-necessarily distinct edges of E (i.e. E'CE) 
is called f-entering, if in the subgraph G'=(V, E') the indegree of every kernel 
M is at least f (M). 

Let c be a nonnegative integer function defined on the edges of G. 

T h e o r e m 3. Let I be a weakly supermodular function on Jt. Then 

(5) f ( M ) + i ( N ) f ( M U N)+f(M f l N). 

(6) 

where Jt' is c-edge-independent, E' is {-entering. 
(7) The maximum can be realized by a laminar Jt'. 
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P r o o f . First we will prove (7) which will be used in the proof of (6), too. We 
note that this technique is due to N. Robertson for f = 1 and to Edmonds and 
Giles for an arbitrary supermodular function f. It can be assumed that the optimum 
Ji' consists of kernels with positive weights only. If M, N are crossing members 
of Jt' then replace them by MUN and MP\N i.e. Jt"=Jt'\{M, N} U 
U{A/UAT,MfW}. It is easy to check that Ji" is c-edge-independent again and, 
since f is weakly supermodular, 

2 f(M) s 2 KM). 
MZM' MiM' 

Hence Jt" is another optimum c-edge-independent family. Apply this method as 
long as there exist crossing members in the optimum family. The process terminates 
since 2 increases at each step. 

MiM' 
We need two simple claims. 

C l a i m 1. Let e be an edge of G and let f be a weakly supermodular function 
on Jt. Let 

f(M), if e does not enter M 
ie(M) = 0, if f (M) = 0 

. f(M) — 1, otherwise, 
then fe is weakly supermodular. 

The proof of the claim is trivial. 
We note that the analogous property for supermodular functions is not 

necessarily true. 

C l a i m 2. Let c1(e)=k -c{e) for a natural number k. If J/"c.Ji is a laminar 
c^-edge-independent family, then it can be partitioned into k c-edge-independent 
families. 

P r o o f . The members of Jt" will be colored one by one with colors 0, 1, ... k — 1. 
In the general step let M be a maximal non-colored member of Jt". If there exist 
no previously colored member M' of Ji" containing M then let M be colored by 0. 
Otherwise let M ' be a previously colored kernel with which received its 
color last. If the color of M' is i then we color M by z + 1 mod k. 

It is an easy exercise to verify that each subfamily of kernels with the same 
color is c-edge-independent. • 

For the proof of (6) a simple enumeration shows that max=min. Let vf 

denote the left-hand side in (6). We use induction on v{. If v ,=0 then the state-
ment is trivial. 

Let M be an arbitrary kernel such that f ( M ) > 0 and not all the edges entering 
M are of zero weight. There are two cases. 
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(a) There is an edge e with positive weight, entering M such that all the op-
timum (of weight vf) c-edge-independent families saturate e (i.e. e enters just c(e) 
kernels of the family with positive weight). 
In this case v, =vf—c(e). By the induction hypothesis there exists an E'ec.E for 
which v, = 2 c ( e ' ) and E'e is fc-entering. Let E'=E'e\J{e). Since v,= 2 c ( e ' ) 

" e'iE'. e'iE' 
and E' is f-entering we are finished with the proof. 

(b) For each edge et with positive weight and entering M there exists an 
optimum c-edge-independent family Jt{ which does not saturate er Let Jt"— 
=Jt1\JJt2\J...{JJtk\J{M}. Then Jt" is cx-edge-independent where C j • c and 

2 f(N) = k-vt + f(M). 
NZM" 

By the proof of (7) there exists a laminar family Jt'" such that 

2 t(N)m 2 HN). NZM" NiJl" 

Now by Claim 2, Jt'" can be partitioned into k c-edge-independent subfamilies. 
However, the weight of one of these subfamilies is greater than v, which is im-
possible. Hence case (b) cannot occur. • 

Theorem 3 reduces to Theorem 2 in the case f = 1, therefore the corollaries 
of Theorem 2 can be generalized. However, we emphasize only one consequence 
of Theorem 3. 

P r o b l e m 3. Let G = (V,E) be a digraph in which the maximum number 
of edge-disjoint r-arborescences is k (k>0). We want to increase this maximum 
to K (K>k) by multiplying edges. What is the minimum number of the required 
new edges? 

S o l u t i o n . Due to the theorem of Edmonds (Corollary 1) we have to assure 
just that in the extended graph the indegree of every subset of V\r is at least K. 

Let Jt be the kernel system defined in the first example. Let the function f 
be defined as follows: 
(8) f (M) = max {K- g (M), 0} 

that shows the number of edges still required to reach K as the indegree of M. In 
this way our question is translated into the problem of a minimum f-entering 
edge set. 

Cla im. The above defined f is weakly supermodular. 
i 

Proof . Trivial. • 

We note that f is not supermodular in general. 
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Applying Theorem 3 for this f in the case c = 1 we obtain a min—max formula 
for the minimum number of new edges. Instead of the exact formulation of this 
theorem we mention another problem which is equivalent to this one but is more 
illustrative. 

P r o b l e m 4. What is the maximum number of edges which can be covered 
by K r-arborescences? 

S o l u t i o n . If there exist K edge disjoint r-arborescences then this number is 
obviously K-(\V\ — 1). Otherwise let a1,a2, ...,aK be r-arborescences whose union 
is as large as possible. Suppose that this union consists of m edges. Let us multiply 
every edge of G by the number of r-arborescences from at,a2, ...,aK containing it. 
Of course this graph has already K r-arborescences. This means that 
s=K-(\V\ — 1)— m new copies of original edges assure the existence of K edge 
disjoint r-arborescences. Conversely, if the insertion of s new copies of edges yields 
the existence of K edge disjoint r-arborescences, then m = K-(\V\ — 1)— s edges 
can be covered by K r-arborescences in G. In this way Problem 4 is equivalent to 
Problem 3. Hence, as a consequence of Theorem 3, we obtain 

C o r o l l a r y 9. The maximum- number of edges which can be covered by K 
r-arborescences is equal to the minimum value of 

1 = 1 

where the minimum is taken over all the \-edge-independent laminar families of 
subsets Vx, V2, ..., Vt of V\r where t is arbitrary and function f is defined in (8). 

There is an interesting special case of this corollary. 

C o r o l l a r y 10. The edges of G can be covered by K r-arborescences if and 
only if for an arbitrary laminar \-edge-independent family of subsets Vlt V2, ...V, 
of V\r, the number e, of edges entering no Vt satisfies 

(9) e,^K(\V\-\-t). 

R e m a r k . K . VIDYASANKAR [ 1 1 ] has proved a similar but simpler necessary 
and sufficient condition for the problem in Corollary 10. He requires (9) only in 
the case if the cardinality of all but one of the F/s is one, with the two side-con-
ditions that the indegree of each vertex is at most K and every edge is in an 
r-arborescence. The necessity of these two latter conditions is trivial (and obviously 
our conditions imply them). 

Now we formulate Corollary 9 in another way. Suppose again that G has an 
r-arborescence. Let E' be a subset of edges of G and let r (£") denote the maximum 
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number of edges E' can have in common with an r-arborescence, i.e. r is the rank-
function of the hypergraph of /--arborescences. We recall that function r was determin-
ed by a min—max formula in Corollary 7. 

C o r o l l a r y 9a. The maximum number of edges which can be covered by K 
r-arborescences is equal to the 

mm(K-r(E") + \E\E"\). 

P r o o f , max ^ min is true for any hypergraph-. For the equality we show that 

(10) min (K.r(E")+ \E\E"\) sS tf(|F|-l)- i f ( F ; ) 

where V1, F2, . . . , VR form a 1-edge-independent family. It can be assumed that 
f(F,.)>0 whence f(VJ)=K— Q(V,). Let E" be the set of edges which do not enter 

t 
any F,. We have 2 Q(Vi) = \E\E"\. Obviously, an arbitrary r-arborescence 

¡=i 
contains at least t edges entering one of the F/s. Thus r ( £ " ' ) ^ | F | — 1 — H e n c e 
(10) follows, as required. • 

A similar version of Corollary 10 easily follows. 

C o r o l l a r y 10a. The edges of G can be covered by K r-arborescences if and only 
if K-r(E')s=\E'\ for every E'QE. 

The reader can easily observe the similarity between Corollary 10a and a 
Theorem of C. ST. J. A . NASH-WILLIAMS [10] on the covering of a matroid by 
K bases. 

5. In this last section we discuss the relationship between our results and those 
of J. Edmonds and R. Giles. Roughly speaking the main difference is that we 
consider entering edges only while they deal with entering and outcoming edges 
together. 

..•••. Edmonds and Giles have defined the notion of crossing family. Our theorems 
concern a special type of crossing family (when the members of the family do not 



76 András Frank: Kernel systems of directed graphs 

contain a fixed vertex), but they cannot, however, be generalized for arbitrary 
crossing family. The remark after Corollary 6 justifies this statement for The-
orem 2. The example in the Figure shows that Theorem 1 also fails for general 
crossing families. 

Let M= IM: Q(M)=2}= {(1, 2, 3, 4, 6), (2, 3, 6), (2), (1, 2, 4, 5, 6), (4)}. The edges 
cannot be colored with two colors so that both of the color classes enter every 
kernel. 

References 

[1] C. BERGE, Graphs and Hypergraphs, North-Holland (Amsterdam, 1973). 
[2] J. EDMONDS—R. GILES, A min-max relation for submodular functions on graphs, in Annals of 

Discrete Math., 1 (1977), 185—204. 
[3] J. EDMONDS, Optimum branchings, J. Res. Nat. Bur. Standards Sect. B„ 71 (1967), 233—240. 
[4] J. EDMONDS, Edge disjoint branchings, in Combinatorial Algorithms, Academic Press (New York, 

1973), 91—96. 
[5] D . R . FULKERSON, Packing rooted directed cuts in a weighted directed graph, Math. Programming, 

6 (1974), 168—194. 
[6] L. R . FORD—D. R. FULKERSON, Flows in Networks, University Press (Princeton, 1962). 
[7] A. FRANK, Covering branchings, Acta Sci. Math., 41 (1979), 77—81. 
[8] L. LOVÁSZ, On two minimax theorems in graph, J. Combinatorial Theory Ser. B., 2 <1976), 

96—103. 
[9] C. LUCCHESI—D. H. YOUNGER, A minimax theorem for directed graphs, to appear. 

[10] C. ST. J. A. NASH-WILLIAMS, A n application of matroids to graph theory, in Theory of Graphs, 
Journées Internationales d'Études, R o m e (Dunod, Paris, 1966), 263—265. 

[11] K. VIDYASANKAR, Covering the edge set of a directed graph with trees, Discrete Math., to appear. 

BOLYAI INSTITUTE 
ARADI VÉRTANUK TERE I. 

6720 SZEGED, HUNGARY 

and 

RESEARCH INSTITUTE FOR TELECOMMUNICATION GÁBOR Á. U. 65. 
1026 BUDAPEST, HUNGARY 


