Quasisimilar operators with different spectra

DOMINGO A. HERRERO

1. Introduction. Let $\mathscr{L}(\mathfrak{X})$ be the Banach algebra of all (bounded linear) operators acting on the complex Banach space $\mathfrak{X} . T \in \mathscr{L}(\mathfrak{X})$ and $A \in \mathscr{L}(\mathfrak{Y})$ are called quasisimilar (q.s.) provided there exist quasi-invertible continuous linear maps $X: \mathfrak{Y} \rightarrow \mathfrak{X}$ and $Y: \mathfrak{X} \rightarrow \mathfrak{Y}$ such that $T X=X A$ and $Y T=A Y(X$ is quasi-invertible if $\operatorname{Ker} X=\{0\}$ and $\operatorname{Ran} X$ is dense in \mathfrak{X}; [48]).

As in [38], the four (weakly closed identity containing) subalgebras naturally associated with $T \in \mathscr{L}(\mathfrak{X})$ will be denoted by $\mathscr{A}(T), \mathscr{A}^{a}(T), \mathscr{A}^{\prime}(T)$ and $\mathscr{A}^{\prime \prime}(T)$ (the algebra generated by the polynomials in T, the algebra generated by the rational functions of T with poles outside the spectrum $\sigma(T)$ of T, the commutant and the double commutant of T, resp.). Then $\mathscr{A}(T) \subset \mathscr{A}^{a}(T) \subset \mathscr{A}^{\prime \prime}(T) \subset \mathscr{A}^{\prime}(T)$ and the corresponding invariant subspace lattices satisfy the reverse inclusions: Lat $T \stackrel{\text { def }}{=} \operatorname{Lat} \mathscr{A}(T) \supset$ Lat $\mathscr{A}^{a}(T) \supset$ Lat $\mathscr{A}^{\prime \prime}(T) \supset$ Lat $\mathscr{A}^{\prime}(T)$. (These are called the lattices of invariant, analytically invariant, bi-invariant and hyperinvariant subspaces, resp. As usual, subspace will denote a closed linear manifold of \mathfrak{X}.)

Quasisimilarity was first studied by B. Sz.-Nagy and C. Foiaş ([48]; see also [17]) in connection with the invariant subspace problem in Hilbert spaces; namely, if A is q.s. to T, and T has a non-trivial hyperinvariant subspace, then so does A ($[17 ; 39 ; 41]$). A and T need not have the same spectrum ([48]); however, $\sigma(A) \cap \sigma(T)$ cannot be empty ([39]). Furthermore, every component of $\sigma(A)(\sigma(T))$ intersects $\sigma(T)(\sigma(A)$, resp.; [32]).

Several results scattered through the literature assert that, under suitable restrictions on T or A or both, $\sigma(A)$ actually contains $\sigma(T)$ or coincides with it $([9 ; 11 ; 39])$ and there also exist examples of q.s. operators with different spectra ($[39 ; 48]$; see also Section 2, below).

This article is primarily concerned with the following questions:
(1) Under what conditions on T does " A is q.s. to T " imply " A is similar to T "?
(2) Under what conditions on T does " A is q.s. to T " imply $\sigma(A)=\sigma(T)$?
(3) When can we assert that $\sigma(A)$ is strictly larger (or strictly smaller) than $\sigma(T)$ for some A q.s. to T ?
It is completely apparent that if T satisfies (1), then it also satisfies (2). On the other hand, two q.s. nilpotent operators with infinite dimensional range acting on a separable Hilbert space need not be similar ([3]; see also [18; 36]), so that a T satisfying (2) need not satisfy (1).

In [2], C. Apostol proved that A is q.s. to a normal operator if and only if Lat A contains a countable basic system of subspaces $\left\{\Omega_{n}\right\}_{1}^{m}(1 \leqq m \leqq \infty)$ such that $A \mid \Omega_{n}\left(A\right.$ restricted to $\left.\Omega_{n}\right)$ is similar to a normal operator for every n. (A countable family $\left\{\mathfrak{X}_{n}\right\}_{1}^{m}$ of subspaces of the Banach space \mathfrak{X} is called basic if the subspaces \mathfrak{X}_{n} and $\mathfrak{X}_{n}^{\prime}=\bigvee_{k \neq n} \mathfrak{X}_{k}$ are complementary for every n and $\bigcap_{1}^{m} \mathfrak{X}_{n}^{\prime}=\{0\}$; [2]). In Section 2 it will be shown that, under suitable (very general) conditions, an operator T having a denumerable basic system of invariant subspaces is q.s. to operators A and B such that either $\sigma(A)$ is strictly smaller than $\sigma(T)$, or $\sigma(B)$ is strictly larger than $\sigma(T)$, or both. To the best of the author's knowledge, this is the only known way to produce q.s. operators with different spectra. Recently, L. A. Fialkow showed that two q.s. non-invertible injective bilateral weighted shifts need not be similar; however, they necessarily have the same spectrum and this spectrum can be a disc of positive radius. Since Fialkow's operators do not admit any non-trivial pair of complementary invariant subspaces (see [22]), they add some extra support to the following

Conjecture 1. Assume that Lat T does not contain any denumerable basic system of subspaces. Then $\sigma(A)=\sigma(T)$ for every A q.s. to T.

The strict multiplicity $\bar{\mu}(\mathscr{A})$ of a subalgebra \mathscr{A} of $\mathscr{L}(\mathfrak{X})$ is defined as the infimum of $\operatorname{card}(\Gamma)$, taken over all the subsets Γ of \mathfrak{X} such that $\mathfrak{X}=$ $=\left\{\sum_{1}^{n} A_{j} x_{j}: A_{j} \in \mathscr{A}, x_{j} \in \Gamma, n=1,2, \ldots\right\}$. If Γ can be taken equal to the singleton $\left\{x_{0}\right\}$, then \mathscr{A} is called a strictly cyclic algebra and x_{0} is called a strictly cyclic vector for \mathscr{A}. According to [28, Theorem 8], if $\bar{\mu}\left[\mathscr{A}^{\prime \prime}(T)\right]<\infty$, then T satisfies (1). The main part of this paper is devoted to exploit this result and the constructions in [6] in order to show the existence and/or the density of operators satisfying certain properties related with quasisimilarity and an approximation problem, acting on a complex separable infinite dimensional Hilbert space Ω (throughout this paper Ω will always denote a space of this type).

Recall that $T \in \mathscr{L}(\Omega)$ is biquasitriangular ($B Q T$) if ind $(\lambda-T)=0$, whenever $\lambda-T$ is a semi-Fredholm operator ([4]). C. Foiaş, C. Pearcy and D. Voiculescu [19] proved that for every $T \in \mathscr{L}(\Omega)$ and $\varepsilon>0$, there exists $T_{\varepsilon} \in \mathscr{L}(\mathfrak{\Omega})$ such that
$\left\|T-T_{\varepsilon}\right\|<\varepsilon, T-T_{\varepsilon} \in \mathscr{K}$ (the ideal of compact operators), $T_{\varepsilon}=$ norm-lim $U_{n} T U_{n}^{*}$ for a suitable sequence $\left\{U_{n}\right\}$ of unitary operators, Lat T_{ε} contains a denumerable family of pairwise orthogonal subspaces and T_{z} is q.s. to a $B Q T$ operator $\left(T_{\varepsilon} \in(B Q T)_{q s}\right.$, in the notation of [19]). This strong result suggested to the authors of that article the following question

$$
I s(B Q T)_{q s}=\mathscr{L}(\Re) ?
$$

The answer is no. Indeed, the following sets are (norm-)dense in $\mathscr{L}(\mathfrak{X})$:
$(\mathrm{A})=\{T: T$ is q.s. to some $A \in(B Q T)$ with $\sigma(A)=\sigma(T)\}[19] ;$
$(\mathrm{B})=\{T: T$ is q.s. to some $A \in(B Q T)$ with $\sigma(A) \supset \sigma(T), \sigma(A) \neq \sigma(T)\}$;
$(\mathrm{C})=\{T: T$ is q.s. to some $A \in(B Q T)$ with $\sigma(A) \subset \sigma(T), \sigma(A) \neq \sigma(T)\}$;
$(\mathrm{D})=\left\{T: T\right.$ is similar to $A \oplus B, \bar{\mu}\left[\mathscr{A}^{\prime \prime}(A)\right]=\bar{\mu}\left[\mathscr{A}^{\prime \prime}\left(B^{*}\right)\right]=1, \sigma(A) \cap \sigma(B)=\emptyset$, $\lambda_{A}-A$ and $\lambda_{B}-B^{*}$ are semi-Fredholm operators of index $-\infty$ for suitably chosen points $\left.\lambda_{A}, \lambda_{B} \in \mathbf{C}\right\}$.
Clearly, for every such T and every L q.s. to T, L is actually similar to T and it has the same spectrum as T. Therefore, (D) $\subset\{T: T$ satisfies $(1)\} \backslash(B Q T)_{q s}$.
$(E)_{m n}=\left\{T: T, A\right.$ and B are as in (D), except that $\bar{\mu}\left[\mathscr{A}^{\prime \prime}(A)\right]=m$ and $\left.\bar{\mu}\left[\mathscr{A}^{\prime \prime}\left(B^{*}\right)\right]=n\right\}$ (for every m, n such that $m, n=1,2, \ldots$ or c, the power of the continuum);
$(\mathrm{F})=\left\{T: \sigma(T)=\sigma(L)\right.$ for every L q.s. to T, but $\left.\mathscr{S}(T) \neq \mathscr{S}_{q s}(T)\right\}$, where $\mathscr{S}(T)$ $\left(\mathscr{S}_{q s}(T)\right.$, resp. $)=\left\{A \in \mathscr{L}(\Omega): A=W T W^{-1}\right.$ for some invertible $W \in \mathscr{L}(\Omega)$ (A is q.s. to T, resp.) \}.

Recall that $\mathscr{A} \subset \mathscr{L}(\mathfrak{X})$ is a reflexive algebra if $\mathscr{A}=\mathrm{Alg}$ Lat \mathscr{A}, \quad where $\operatorname{Alg} \Sigma=\{A \in \mathscr{L}(\mathfrak{X})$: Lat $A \supset \Sigma\}$ ($\Sigma=$ any family of subspaces of \mathfrak{X}). $T \in \mathscr{L}(\mathfrak{X})$ is called reflexive if $\mathscr{A}(T)$ is. The following results are "in the air": The sets
$(\mathrm{G})=\{T: T$ is reflexive $\} ;$
$(\mathrm{H})=\left\{T: \mathscr{A}^{a}(T)\right.$ is reflexive $\}$;
(I) $=\left\{T: \mathscr{A}^{\prime \prime}(T)\right.$ is reflexive $\}$;
$(\mathrm{J})=\left\{T: \mathscr{A}^{\prime}(T)\right.$ is reflexive $\}$,
as well as their complements in $\mathscr{L}(\Omega)$, are dense in $\mathscr{L}(\Omega)$.
There are at least two different extensions of the notion of similarity related with approximation problems: A and T are asymptotically similar if their similarity orbits have the same closure (i.e., $\mathscr{S}(A)^{-}=\mathscr{S}^{(}(T)^{-} ;[7 ; 33]$). They are approximately similar if $A=$ norm-lim $W_{n} T W_{n}^{-1}$ for a sequence $\left\{W_{n}\right\}$ of invertible operators with $\sup \left\|W_{n}\right\|\left\|W_{n}^{-1}\right\|<\infty$ ([24]). Since asymptotic similarity (and, a fortiori, approximate similarity) preserves the spectrum and every part of it (see [33]), it will not be difficult to conclude from the results and examples of this article and the results of $[7 ; 8 ; 33 ; 34 ; 35]$ that, in general, $\mathscr{S}(T)$ is a proper subset of $\mathscr{S}_{a p}(T) \cap$ $\cap \mathscr{S}_{q s}(T) \quad\left(\mathscr{S}_{a p}(T)=\{A: A\right.$ is approximately similar to $\left.T\} \subset \mathscr{S}(T)^{-}\right)$and the equality $\mathscr{S}(T)=\mathscr{S}(T)^{-}, T \in \mathscr{L}(\Omega)$, implies that T is similar to a normal operator
with a finite spectrum and therefore $\mathscr{S}(T)=\mathscr{S}_{q S}(T)=\mathscr{S}_{a p}(T)=\mathscr{P}(T)^{-}$(this is false for arbitrary Banach spaces; see [7; 35]); however, the equality $\mathscr{S}(T)=$ $=\mathscr{S}_{q s}(T)$ does not imply $\mathscr{S}(T)=\mathscr{S}(T)^{-}$(even for Hilbert spaces; [28; 35]. Since approximate similarity preserves every Schatten p-ideal and asymptotic similarity does not preserve them, it is immediate that these two notions are different; see [33; 46] for details).

In [24], D. W. Hadwin defined the approximate double commutant of $T \in \mathscr{L}(\Omega)$ by appr $(T)^{\prime \prime}=\left\{L \in \mathscr{L}(\Omega):\left\|L A_{n}-A_{n} L\right\| \rightarrow 0(n \rightarrow \infty)\right.$ whenever $\left\{A_{n}\right\}$ is a bounded sequence such that $\left.\left\|T A_{n}-A_{n} T\right\| \rightarrow 0 \quad(n \rightarrow \infty)\right\}$. He proved that appr $(T)^{\prime \prime} \subset$ $\subset \mathscr{A}^{\prime \prime}(T) \cap C^{*}(T)$ (where $C^{*}(T)$ denotes the C^{*}-algebra generated by T) and conjectured ([24, Conjecture 2.5]) that appr $(T)^{\prime \prime}=\mathscr{A}^{\prime \prime}(T)$ if and only if T is algebraic. This conjecture is false. Indeed, $(K)=\left\{T: \operatorname{appr}(T)^{\prime \prime}=\mathscr{A}^{\prime \prime}(T)\right\}$, as well as its complement, is dense in $\mathscr{L}(\boldsymbol{\Omega})$.

The interested reader will have no trouble to prove the density in $\mathscr{L}(\boldsymbol{\Omega})$ of new different classes of operators somehow related with $(A)-(K)$.

The author is deeply indebted to R. G. Douglas, L. A. Fialkow, D. W. Hadwin and C. Pearcy for sending him their unpublished papers (the reader will find very useful information in Fialkow's papers $[14 ; 15 ; 16]$, which have several points in common with the present article). The author also wishes to thank J. Barría, M. Cotlar, A. Etcheberry, B. Margolis and M. B. Pecuch for many helpful suggestions.
2. Operators quasisimilar to orthogonal direct sums. Given a family $\left\{\mathscr{X}_{n}\right\}$ of Banach spaces, let $\mathscr{Y}=\bigoplus_{1}^{\infty} \mathscr{X}_{n}$ denote the hilbertian sum of the \mathscr{X}_{n} 's (i.e., \mathscr{Y} is the closure of the algebraic direct sum with respect to the norm $\left\|\left\{x_{n}\right\}\right\|=$ $\left.=\left(\sum_{1}^{\infty}\left\|x_{n}\right\|_{n}^{2}\right)^{1 / 2}\right)$.

Lemma 1. Let \mathscr{Y} be the hilbertian sum of the family $\left\{\mathscr{X}_{n}\right\}$ of Banach spaces and let $\left\{T_{n}\right\}\left(T_{n} \in \mathscr{L}\left(\mathscr{X}_{n}\right)\right)$ be a uniformly bounded family of operators. Let $T=\oplus_{1}^{\infty} T_{n}$ be the operator defined in the usual fashion on \mathscr{Y} and assume that $\left\|\left(\lambda-T_{n}\right)^{-1}\right\| \leqq$ $\leqq \Phi\left[d_{n}(\lambda)-\varepsilon_{n}\right]$ for $d_{n}(\lambda)>\varepsilon_{n}$, where $\Phi(t)$ is a non-increasing function of $t(0<1<\infty)$ independent of $n,\left\{\varepsilon_{n}\right\}$ is a sequence of non-negative reals converging to 0 and $d_{n}(\lambda)=$ $=\operatorname{dist}\left[\lambda, \sigma\left(T_{n}\right)\right]$. Then $\sigma(T)=\sigma^{-}$, where $\sigma=\bigcup_{1}^{\infty} \sigma\left(T_{n}\right)$.

Proof. Clearly, $\lambda-T$ is invertible in $\mathscr{L}(\mathscr{Y})$ if and only if $\lambda-T_{n}$ is invertible in $\mathscr{L}\left(\mathscr{X}_{n}\right)$ for every n and $\left\|\left(\lambda-T_{n}\right)^{-1}\right\| \leqq C$ for a constant C depending only on λ.

From our hypothesis about the growth of $\left\|\left(\lambda-T_{n}\right)^{-1}\right\|$, we can easily see that, given $\varepsilon>0,\left\|\left(\lambda-T_{n}\right)^{-1}\right\| \leqq \Phi[$ dist $\{\lambda, \sigma\}-\varepsilon]$ for every λ such that dist $[\lambda, \sigma]>\varepsilon$ and for all $n>n_{0}(\varepsilon)$, whence the result follows.

Example 1. Clearly, the function Φ must satisfy $\Phi(t) \geqq 1 / t$, but the condition of Lemma 1 cannot be replaced by $\left\|\left(\lambda-T_{n}\right)^{-1}\right\|=O\left[1 / d_{n}(t)\right]$. Indeed, if $H=\sum_{i}^{\infty}(1 / n) P_{n}$, where $\left\{P_{n}\right\}$ is a sequence of pairwise orthogonal projections of infinite rank in the Hilbert space Ω whose partial sums strongly converge to the identity I, then H is an hermitian operator unitarily equivalent to $H^{(\infty)}$ (the orthogonal direct sum of denumerable many copies of $H), \sigma(H)=\{0\} \bigcup_{1}^{\infty}\{1 / n\}=E(H)$ $\left(E(\cdot)\right.$ denotes the essential spectrum) and $\left\|W(\lambda-H)^{-1} W^{-1}\right\| \leqq\|W\|\left\|W^{-1}\right\| / d(\lambda)$ for every invertible $W \in \mathscr{L}(\Omega)$ and for every $\lambda \notin \sigma(H)$.
$\mathscr{S}(H)^{-}$contains a $B Q T$ operator A such that $\sigma(A)=E(A)=\sigma(H) \cup K$, where K is an arbitrary compact connected set containing the origin ([34]), i.e., there exists a sequence $A_{n}=W_{n} H W_{n}^{-1}$ converging to A in the norm. It readily follows that $B=\underset{1}{\oplus} A_{n}$ is q.s. to H and it can be shown as in [13] that $\sigma(B)=E(B)=\sigma(A)$.

Example 2. If $\lim _{t \rightarrow 0} t^{r} \Phi(t)=\infty$ for every. $r>0$, then there exists a universal quasinilpotent operator Q in $\mathscr{L}(\boldsymbol{\Omega})$ (i.e., $\mathscr{S}(Q)^{-}$contains every nilpotent) such that $\left\|(\lambda-Q)^{-1}\right\| \leqq \max \left\{\Phi(|t|),(1+\varepsilon)|\lambda|^{-1}\right\}$ (for an arbitrary prescribed $\varepsilon>0$), $Q \cong Q^{(\infty)}$, Q is the orthogonal direct sum of denumerable many nilpotent operators acting on finite dimensional Hilbert spaces and is q.s. to a compact quasinilpotent operator (see $[3 ; 8 ; 31]$).

Proceeding as in Example 1 it is not difficult to construct a $B Q T$ operator $B=\oplus_{1}^{\infty} B_{n}$ q.s. to Q such that $\sigma(B)=E(B)$ is an arbitrary connected compact set containing the origin.

Theorem 1. Assume that $T \in \mathscr{L}(\mathscr{X})$ admits a denumerable basic system of invariant subspaces $\left\{\mathscr{X}_{n}\right\}$ and let $T_{n}=T \mid \mathscr{X}_{n}$ for $n=1,2, \ldots ;$ let \mathscr{Y} be the hilbertian sum of the \mathscr{X}_{n} 's and let $B \in \mathscr{L}(\mathscr{Y})$ be defined by $B=\underset{1}{\oplus} T_{n}$. Then B is q.s. to $T, \sigma^{-} \subset$ $\subset \sigma(B) \subset \sigma(T)$, every component of $\sigma(B)$ or $\sigma(T)$ intersects $\sigma^{-}, \sigma_{p}(T)=\sigma_{p}(B)=$ $=\bigcup_{1}^{\infty} \sigma_{p}\left(T_{n}\right) \subset \sigma \quad\left(\sigma_{p}(\cdot)\right.$ denotes the point spectrum) and $\sigma_{p}\left(T^{*}\right)=\sigma_{p}\left(B^{*}\right)=$ $=\bigcup_{1}^{\infty} \sigma_{p}\left(T_{n}^{*}\right) \subset \sigma$. Assume, moreover, that \mathscr{X}_{n} is actually (isomorphic with) a Hilbert space for every n; then there exist operators L_{n} similar to $T_{n}, n=1,2, \ldots$, such that $A=\underset{1}{\infty} L_{n}$ is q.s. to T and $\sigma(A)=\sigma^{-}$.

Note. In the case when \mathscr{X} is. a Hilbert space and T^{*} is defined via inner product, $\sigma\left(T^{*}\right)=\sigma(T)^{*}$, where $K^{*}=\{\lambda: \lambda \in K\}$ is the symmetric of the set $K \subset \mathbf{C}$ with respect to the real axis. In this case the corresponding inclusion should be
read $\sigma_{p}\left(T^{*}\right) \subset \sigma^{*}$. It is convenient to remark that \mathscr{X}_{n} can be isomorphic to a Hilbert space for every n even if \mathscr{X} is not; namely, it T is a diagonal operator with respect to a Schauder basis of \mathscr{X} and the \mathscr{X}_{n} 's are the one-dimensional subspaces spanned by the elements of that basis.

Proof. That B and T (and A when \mathscr{X}_{n} is a Hilbert space for every n) are actually q.s. follows by standard arguments (see, e.g., $[2 ; 39]$). It is clear that $\lambda \in \sigma(B)$ if and only if either $\lambda \in \sigma\left(T_{n}\right)$ for some n or the family $\left\{\left(\lambda-T_{n}\right)^{-1}\right\}$ is not uniformly bounded. Now, if $\left\|\left(\lambda-T_{n(k)}\right) x_{n(k)}\right\| \rightarrow 0(k \rightarrow \infty)$ for a suitable subsequence $\{n(k)\}_{1}^{\infty}$ of natural numbers and for suitably chosen unitary vectors $x_{n(k)} \in \mathscr{X}_{n(k)}$, then $\lim _{k \rightarrow \infty}\left\|(\lambda-T) x_{n(k)}\right\|=0$ and therefore $\lambda \in \sigma(T)$. Hence, $\sigma^{-} \subset \sigma(B)$ and $\sigma(B) \backslash \sigma \subset \sigma(T)$.

Now assume that \mathscr{X}_{n} is a Hilbert space for every n. According to [30], for each $n=1,2, \ldots$, there exists an operator $L_{n} \in \mathscr{L}\left(\mathscr{X}_{n}\right)$ similar to T_{n} such that $\left\|\left(\lambda-L_{n}\right)^{-1}\right\| \leqq 1 /\left[d_{n}(\lambda)-1 / n\right]$ for all λ such that $d_{n}(\lambda)>1 / n$. Define $A \in \mathscr{L}(\mathscr{Y})$ q.s. to T and B by $A=\oplus_{1}^{\infty} L_{n}$. By Lemma $1, \sigma(A)=\sigma^{-}$.

The remaining spectral inclusions follow from [13;25;32].
By using [12, Theorem 1.4], we obtain
Corollary 1. Let T be as in Theorem 1. If $\sigma\left(T_{n}\right) \cap \sigma\left(T_{m}\right)=\emptyset$ for a pair of indices n, m then T has a nontrivial hyperinvariant subspace.

Example 3. (The main example) Combining the arguments of the previous examples and the results of $[2 ; 13 ; 29 ; 31 ; 34 ; 35 ; 39]$ it is possible to show that if T is a Hilbert space operator such that Lat T contains a denumerable basic system of subspaces $\left\{\Omega_{n}\right\}$ such that $T_{n}=T \mid \Omega_{n}$ either satisfies $A_{n} \oplus\left(\lambda+Q_{n}\right) \in \mathscr{S}\left(T_{n}\right)^{-}$for some A_{n} and some nilpotent Q_{n} with $Q_{n}^{n} \neq 0$ or a universal quasinilpotent, or $\sigma\left(T_{n}\right)$ contains more than n points, then given an arbitrary compact set $K \subset \mathbf{C}$ such that every $\lambda \in K \backslash \sigma^{-}$belongs to a component of K that intersects $\sigma_{\infty}=\bigcap_{m=1}^{\infty}\left[\bigcup_{n=m}^{\infty} \sigma\left(T_{n}\right)\right]^{-}$, then there exist A and B q.s. to T such that $\sigma(A)=K \cup \sigma^{-}$ and $\sigma(B)=K \cup \sigma(T)$. The details of the construction are left to the reader.

Remarks. a) Let \mathscr{B} be a Banach algebra with identity. It is well known that the mapping $a \rightarrow \sigma(a)$ from \mathscr{B} into the family of nonempty compact subsets of C is upper semi-continuous with respect to the Hausdorff metric, but it is not continuous, in general ($[5 ; 25 ; 29 ; 40 ; 42 ; 44]$). In certain special cases (e.g., $a=\lim a_{n}$ for a commutative sequence $\left\{a_{n}\right\}$, or $\sigma(a)=a$ totally disconnected set, etc.) it is possible to prove that $a \rightarrow \sigma(a)$ is actually a continuous mapping. By a minor modification of the proof of Lemma 1, we can obtain the following sufficient condition: "If $a=\lim a_{n}$ for a sequence $\left\{a_{n}\right\}$ satisfying the conditions of Lemma 1 ,
then $\sigma(a)=\lim \sigma\left(a_{n}\right)$ (in the Hausdorff metric)". Examples 1 and 2 show that this condition cannot be too relaxed.
b) In Lemma 1 and Theorem 1: The results remain true if the hilbertian sum is replaced by $\left\|\left\{x_{n}\right\}\right\|=\left(\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}\right)^{1 / p}$ for some $p, 1 \leqq p<\infty$, etc.
c) If T is decomposable, then $\sigma(T) \subset \sigma(A)$ for every A q.s. to $T([10])$. Furthermore, if $\mathfrak{M} \in$ Lat T and A is q.s. to T, then $\sigma(T \mid \mathfrak{M}) \cap \sigma(A) \neq \emptyset$ ([14]); thus, if for every $\lambda \in \sigma(T)$ and every $\varepsilon>0$ there exists an $\mathfrak{M}_{\lambda, \varepsilon} \in$ Lat T such that $\sigma\left(T \mid \mathfrak{M}_{\lambda, \varepsilon}\right) \subset$ $\subset \Delta(\lambda, \varepsilon)=\{z:|\lambda-z|<\varepsilon\}$, then it readily follows that $\sigma(T) \subset \sigma(A)$ for every A q.s. to T. The hyponormal operators have the same property ([9]). The spectral inclusion could be strict, e.g., for the operators of Examples $1,2,3$. However, by combining the results of [23] and the examples of [28] it is possible to show that for every infinite dimensional separable Banach space \mathscr{X}, there exist operators $A, Q \in \mathscr{L}(\mathscr{X})$ such that A and Q are nuclear operators, Q is quasinilpotent, $\sigma(A)$ is the union of $\{0\}$ and a sequence of points converging "very fast" to $0, \mathscr{A}(A)$ and $\mathscr{A}(Q)$ are strictly cyclic algebras, $\mathscr{A}(A)(\mathscr{A}(Q)$, resp.) is semisimple (a radical algebra, resp.; see definitions in [42]), every L q.s. to A (to Q, resp.) is actually similar to it and it has the same spectrum as A (as Q, resp.). Moreover, for every finite m, Lat A contains a basic system $\left\{\mathscr{X}_{n}\right\}_{1}^{m}$ of invariant subspaces, which are maximal spectral subspaces for the decomposable operator A ([10]); however, Lat A does not contain any denumerable basic system of subspaces (see [28]).
d) Every subspace in a basic system of invariant subspaces of $T \in \mathscr{L}(\mathscr{X})$ is actually bi-invariant. Many examples regarding operators T such that $\sigma(A) \neq \sigma(T)$ for some A q.s. to T deal with operators having a denumerable basic system of hyperinvariant subspaces. This is not always the case: indeed, a straightforward computation shows that for the q.s. operators A and T involved in the example of Hoover [39], every pair of non-trivial hyperinvariant subspaces of T (or A) has a non-trivial intersection.
e) There is little hope to improve [12, Theorem 1.4] or Corollary 1. Indeed,
 measure) and $u\left(e^{i \theta}\right)=\operatorname{sign} \theta(-\pi<\theta<+\pi)$, then H^{2} and $u H^{2}$ are invariant (but not bi-invariant!) subspaces of U such that $H^{2} \cap u H^{2}=\{0\}, L^{2}=H^{2} \vee u H^{2}$, but (by Apostol's result; [2]) U cannot be q.s. to $\left(U \mid H^{2}\right) \oplus\left(U \mid u H^{2}\right)$.
f) [15, Theorem 2.1] admits the following mild generalization, which follows from Theorem 1 and the same proof as in [15]: If $T \in \mathscr{L}(\Omega)$ and Lat T contains a basic system of subspaces $\left\{\Omega_{n}\right\}$ such that $T_{n}=T \mid \Re_{n}$ is a spectral operator for every n, then T is q.s. to a spectral operator.
3. The subsets (A), (B) and (C) are dense in $\mathscr{L}(\Omega)$. From this point on, we shall only consider Hilbert space operators. The density of (A) follows from [19].

Lemma 2. Given $T \in \mathscr{L}(\Omega)$ and $\varepsilon>0$, there exists $T_{\varepsilon} \in \mathscr{L}(\Omega)$ such that $\left\|T-T_{\varepsilon}\right\|<\varepsilon$ and T_{ε} is similar to $(\lambda+Q) \oplus C$, where $\sigma(\lambda+Q)$ lies in the unbounded component of $C \backslash \sigma(C), E(T)=E(C)$ and Q is an arbitrary operator such that $\sigma(Q) \subset \Delta(0, \varepsilon / 5)$.

Proof. Proceeding as in [45], we can find an $L \in \mathscr{L}(\mathfrak{\Re})$ such that $\|T-L\|<3 \varepsilon / 4$ and

$$
L=\left(\begin{array}{cc}
\lambda I & B \\
0 & C
\end{array}\right)
$$

with respect to an orthogonal direct sum decomposition $\Omega=\Omega_{\lambda} \oplus \Omega_{\lambda}^{\perp}$ of Ω into two infinite dimensional subspaces, where $\operatorname{dist}[\lambda, \sigma(T)]=\operatorname{dist}[\lambda, \sigma(C)]=\varepsilon / 2$ and λ lies in the unbounded component of $C \backslash \sigma(C)$.

By the corollary of Rota [43] (see also [30]), we can find a Q^{\prime} similar to Q such that $\left\|Q^{\prime}\right\|<\varepsilon / 4$. Then

$$
T_{\varepsilon}=\left(\begin{array}{cc}
\lambda+Q^{\prime} & B \\
0 & C
\end{array}\right)
$$

is similar to $(\lambda+Q) \oplus C$, by Rosenblum's corollary ([41, Corollary 0.15]) and $\left\|T-T_{\varepsilon}\right\| \leqq\|T-L\|+\left\|Q^{\prime}\right\|<\varepsilon$.

As in Hoover [39], we can find two q.s. operators Q_{1} and Q_{2} such that Q_{1} is quasinilpotent and $\sigma\left(Q_{2}\right)=\Delta(0, \varepsilon / 6)^{-}$, and $\left\|Q_{j}\right\|<\varepsilon / 4, j=1,2$. By using the results of [19], C can be replaced by an operator $C_{\varepsilon} \in(B Q T)_{q s}$ with the same spectrum as C such that $\left\|C-C_{\varepsilon}\right\|<\varepsilon$. Then the operator $T_{\varepsilon j}$ given by

$$
T_{\varepsilon j}=\left(\begin{array}{cc}
\lambda+Q_{j} & B \\
0 & C_{\varepsilon}
\end{array}\right)
$$

satisfies $\left\|T-T_{\varepsilon j}\right\|<\varepsilon, j=1,2$, and it is immediate from our construction that $T_{\varepsilon 1}$ and $T_{\varepsilon 2}$ are q.s. operators of the class $(B Q T)_{q s}$.

Since $\sigma\left(T_{\varepsilon 1}\right)$ is a proper subset of $\sigma\left(T_{\varepsilon 2}\right)$, it follows at once that (B) and (C) are dense in $\mathscr{L}(\Omega)$.

Given $T \in \mathscr{L}(\mathcal{I})$, let T_{ε} be constructed as in Lemma 2 with $Q=V=$ the Volterra operator, and let W be an invertible operator such that $T_{\varepsilon}=W[(\lambda+V) \oplus$ $\oplus C] W^{-1}$. Then $\mathscr{A}\left(T_{\varepsilon}\right)=W[\mathscr{A}(V) \oplus \mathscr{A}(C)] W^{-1}$, Alg Lat $\mathscr{A}\left(T_{\varepsilon}\right)=W[A \lg$ Lat $\mathscr{A}(V) \oplus$ $\oplus \operatorname{Alg}$ Lat $\mathscr{A}(C)] W^{-1}$ and similarly for the other three algebras naturally associated with T_{ε} (all these facts can be easily checked by using the results of [41]); moreover, appr $\left(T_{\varepsilon}\right)^{\prime \prime}=W\left[\operatorname{appr}(V)^{\prime \prime} \oplus \operatorname{appr}(C)^{\prime \prime}\right] W^{-1} \quad$ ([24]).

Since $\quad \mathscr{A}(V)=\mathscr{A}^{a}(V)=\mathscr{A}^{\prime \prime}(V)=\mathscr{A}^{\prime}(V) \neq$ Alg Lat $V \quad([41]) \quad$ and $\quad \mathscr{A}^{\prime \prime}(V) \neq$ $\neq \operatorname{appr}(V)^{\prime \prime}$ (see [41] or [20, Proposition 6]), it follows that none of the four al--gebras associated with T_{ε} is reflexive and $\operatorname{appr}\left(T_{\varepsilon}\right)^{\prime \prime} \neq \mathscr{A}^{\prime \prime}\left(T_{\varepsilon}\right)$. Thus, we have

Corollary 2. The complements of the sets $(G),(H),(I),(J)$ and (K) are dense in $\mathscr{L}(\Omega)$.
4. (D) is dense in $\mathscr{L}(\Omega)$. The main ingredient is the construction of a large family of operators with a strictly cyclic double commutant.

Let Ω be a nonempty bounded connected open subset of the plane such that $\partial \Omega$ (the boundary of Ω) consists of finitely many pairwise disjoint regular analytic Jordan curves (We shall say that " Ω is an open set with analytic boundary" or " $\partial \Omega$ is analytic" as a shorthand notation) and let $A=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right\}$ be a finite subset of $\mathbf{C} \backslash \Omega^{-}$having exactly one point in every component of this last set. Let $\varepsilon>0$ be small enough so that $\Lambda \cap\left(\Omega^{-}+\varepsilon t\right)=\emptyset$ (where $K+\lambda=\{z+\lambda: z \in K\}, K \subset \mathbf{C}$) for every $t \in[0,1]$ and define $\Gamma=\{(z, t) \in \mathbf{C} \times(0,1): z-\varepsilon t \in \partial \Omega\}$. It is apparent that there exists an analytic diffeomorphism $\varphi:\{(z, t) \in \mathbf{C} \times(-1,2): z-\varepsilon t \in \partial \Omega\} \rightarrow \Omega_{1}$, where Ω_{1} is the union of m open annulus with pairwise disjoint closures in the plane; then $\varphi \mid \Gamma: \Gamma \rightarrow \Omega_{0} \xlongequal{\text { def }} \varphi(\Gamma)$ is an analytic diffeomorphism such that if $d m_{0}$ denotes the planar Lebesgue measure on Ω_{0} and $d m_{\Gamma}$ is the area measure on Γ induced by Lebesgue measure in \mathbf{R}^{3}, then there exists $\delta, 0<\delta<1$, such that $\delta m_{0}[\varphi(B)] \leqq m_{r}(B) \leqq(1 / \delta) m_{0}[\varphi(B)]$ for every Borel set $B \subset \Gamma$; moreover, φ can be chosen to be a conformal mapping.

The Sobolev space $\mathbf{W}^{\mathbf{2}, 2}\left(\Omega_{0}\right)$ of all distributions u on Ω_{0} whose distributional partial derivatives of order $m, 0 \leqq m \leqq 2$, belong to $L^{2}\left(\Omega_{0}, d m_{0}\right)$ can be identified with a Banach algebra (under an equivalent norm) of continuous functions on Ω_{0}^{-}(see [1, Chapter V]) and it is clear that φ induces an isomorphism between this space and $\mathbf{W}_{\infty}=\mathbf{W}^{2,2}(\Gamma)$ (defined in the obvious way on the analytic differentiable manifold Γ). Furthermore, by using this isomorphism, it is easily seen that there exists a constant C such that, given $f, g \in \mathbf{W}_{\infty}$, the pointwise product $(f g)(z, t)=f(z, t) \cdot g(z, t)$ defines an element of \mathbf{W}_{∞} and $\|f g\| \leqq C\|f\|\|g\|$ (where $\|\cdot\|$ denotes the norm in \mathbf{W}_{∞}); hence, \mathbf{W}_{∞} is a semisimple Banach algebra with identity $e(z, t) \equiv 1$, under an equivalent norm. The Gelfand spectrum $\mathscr{M}\left(\mathbf{W}_{\infty}\right)$ can be naturally identified (via point evaluations; see $[1 ; 21]$) with Γ^{-}.

Let $\mathbf{A}_{\infty}=\mathbf{A}^{2,2}(\Gamma)$ be the closure in \mathbf{W}_{∞} of the functions of the form

$$
f(z, t)=\sum_{k=0}^{n} t^{k} f_{k}(z), \quad n=1,2, \ldots
$$

where the f_{k} 's are rational functions with poles in a subset of Λ (these are the "analytic elements" of \mathbf{W}_{∞}). By using the maximum modulus principle and Runge's theorem (see, e.g., [21]), it is easily seen that every $f \in \mathbf{A}_{\infty}$ can be continuously extended to a unique function defined on $\Xi=\left\{(z, t) \in \mathbf{C} \times[0,1]: z-\varepsilon t \in \Omega^{-}\right\}$, analytic wiṭh respect to $z \in \Omega+\varepsilon t$ for every $t \in[0,1]$ and, on the other hand, every function $f(z, t)$ satisfying these conditions such that $f \mid \Gamma \in \mathbf{W}_{\infty}$, is an element of \mathbf{A}_{∞}.
\mathbf{A}_{∞} is a subspace of \mathbf{W}_{∞} invariant under $T=M_{2} \in \mathscr{L}\left(\mathbf{W}_{\infty}\right)$ defined by $T f(z, t)=z f(z, t)$ (here and in what follows, M_{g} denotes the operator "multiplica-
tion by g "). Moreover, \mathbf{A}_{∞} is a Banach algebra with identity e, and $\mathscr{M}\left(\mathbf{A}_{\infty}\right)$ can be naturally identified with Ξ.

Let $L=T \mid \mathbf{A}_{\infty}$ and let $\operatorname{Pr}: \mathbf{C} \times \mathbf{R} \rightarrow \mathbf{C}$ be the projection onto $\mathbf{C}(\operatorname{Pr}(z, t)=z)$; then
Lemma 3. With the above notation:
(i) $\sigma(T)=E_{l}(T)=E_{\mathrm{r}}(T)=E_{l}(L)=\operatorname{Pr}\left(\Gamma^{-}\right)$, where $E_{l}(\cdot)\left(E_{\mathrm{r}}(\cdot)\right.$, resp.) denotes the left (right, resp.) essential spectrum.
(ii) $\sigma(L)=E_{r}(L)=\operatorname{Pr}(\Xi)$.
(iii) $\operatorname{Ker}(\lambda-L)=\{0\}$ and $\operatorname{dim} \operatorname{Ker}(\lambda-L)^{*}=\infty \quad$ (so that $\operatorname{ind}(\lambda-L)=-\infty$) for every $\lambda \in \sigma(L) \backslash E_{l}(L)$.
(iv) $\mathscr{A}^{\prime \prime}(L)=\mathscr{A}^{\prime}(L)=\left\{M_{g}: g \in \mathbf{A}_{\infty}\right\}$, i.e., the double commutant of L is the maximal abelian subalgebra of $\mathscr{L}\left(\mathbf{A}_{\infty}\right)$ consisting of all multiplications by elements of \mathbf{A}_{∞} and this is a strictly cyclic algebra with strictly cyclic vector e.

Proof. (i), (ii) and (iii) follow from the previous observations. The proof is left to the reader.
(iv) By using several well known results about strictly cyclic algebras ($[26 ; 27 ; 37]$), it suffices to show that, if $A \in \mathscr{A}^{\prime}(L)$, then $A=M_{g}$, where $g=A e$. The remaining of the proof is an "ad hoc" modification of an argument used in [28].

Given $\eta, \tau \in[0,1], \eta \neq \tau$, choose $\delta, 0<\delta<|\eta-\tau| / 8$, and let $h_{\eta}(z, t) \in \mathbf{A}_{\infty}$ be the restriction to Γ^{-}of the function defined by

$$
h_{\eta}(z, t)=\left\{\begin{array}{lrl}
0 & \text { outside } & (\eta-3 \delta, \eta+3 \delta), \\
(t-\eta+3 \delta)^{2} / 2 \delta^{2} & \text { in } & {[\eta-3 \delta, \eta-2 \delta],} \\
1-(t-\eta+\delta)^{2} / 2 \delta^{2} & \text { in } & {[\eta-2 \delta, \eta-\delta],} \\
1 & \text { in } & {[\eta-\delta, \eta+\delta]} \\
1-(t-\eta-\delta)^{2} / 2 \delta^{2} & \text { in } & {[\eta+\delta, \eta+2 \delta],} \\
(t-\eta-3 \delta)^{2} / 2 \delta^{2} & \text { in } & {[\eta+2 \delta, \eta+3 \delta] .}
\end{array}\right.
$$

Define $h_{\tau}(z, t)=h_{\eta}(z, t-\eta+\tau)$ and let $\psi:[0,1] \rightarrow[\tau-4 \delta, \tau+4 \delta] \cap[0,1]$ be an arbitrary C^{∞} bijection such that $\psi(t)=t$ in $[\tau-3 \delta, \tau+3 \delta] \cap[0,1]$ and $\min \left\{\psi^{\prime}(t): t \in[0,1]\right\}>0$.

Define $\mathbf{W}_{\tau, \delta}=\mathbf{W}^{2,2}(\{(z, t) \in \Gamma:|t-\tau|<4 \delta\})$ exactly in the same way as \mathbf{W}_{∞} and let $T_{\tau, \delta}$ be the "multiplication by z " in this new space. Let $\mathbf{A}_{\tau, \delta}$ be the subalgebra of the "analytic elements" of $\mathbf{W}_{\tau, \delta}$ (defined in the obvious way) and $L_{\tau, \delta}=T_{\tau, \delta} \mid \mathbf{A}_{\tau, \delta}$.

The properties of ψ make it clear that $S: \mathbf{A}_{\tau, \delta} \rightarrow \mathbf{A}_{\infty}$ defined by $S f(z ; t)=$ $=f(z+\varepsilon[\psi(t)-t], \psi(t))$ is a (not necessarily isometric) isomorphism \because of Hilbert spaces.

Our choice of δ makes it possible to find a disc $\Delta=\Delta(\lambda(\eta, \tau), \varepsilon \delta / 2)$ contained in $\Omega+\varepsilon \eta$ such that $\Delta^{-} \cap \sigma\left(L_{\tau, \delta}\right)=\emptyset$.

Finally, let $R: \mathbf{A}_{\infty} \rightarrow H^{2}(\Delta)$ be the "restriction in the η-fiber" mapping defined by $R f(z)=\left.f(z, \eta)\right|_{z \in \Delta}$ and let L_{Δ} be the "multiplication by z " in $H^{2}(\Delta)$.

Clearly, if M_{η} and M_{τ} are the multiplications by h_{η} and h_{τ}, respectively, then $M_{\eta} A M_{\tau} \in \mathscr{A}^{\prime}(L)$, so that $L\left(M_{\eta} A M_{\tau}\right)-\left(M_{\eta} A M_{\tau}\right) L=0 \quad$ whence we obtain $0=R L M_{\eta} A M_{\tau} S-R M_{\eta} A M_{\tau} L S=L_{\Delta}\left(R M_{\eta} A M_{\tau} S\right)-\left(R M_{\eta} A M_{\tau} S\right) L_{\tau, \delta}$ (Beware! $L S \neq$ $\neq S L_{\mathrm{r}, \delta}$; however, it is not difficult to check that $\psi(t)=t$ in $[\tau-3 \delta, \tau+3 \delta] \cap[0,1]$ yields $\left.M_{\tau} L S=M_{\tau} S L_{\tau, \delta}\right)$.

Since $\sigma\left(L_{\Delta}\right)=\Delta^{-}$is disjoint from $\sigma\left(L_{\tau, \delta}\right)$ by construction, it follows from Rosenblum's corollary ([41, Corollary 0.13]) that $R M_{\eta} A M_{\tau} S=0$; moreover, since S is an isomorphism, $R M_{\eta} A M_{\tau}=0$. Since Ω is connected, the vanishing of $f(z, \eta)$ on Δ implies that $f(z, \eta) \equiv 0$, whence we conclude that the value of $A f(z, \tau)$ only depends on the values of $f(z, t)$ for t in a neighborhood of τ.

We shall need a little more: A straightforward computation shows that $\left\|(t-\tau)^{k} h_{\tau}(z, t)\right\| \rightarrow 0$ as $\delta \rightarrow 0$, uniformly with respect to $k(k=1,2, \ldots)$. Let f be any function of the form (\#) and let $F(z, t)=f(z, \tau)$; then

$$
f(z, t)=F(z, t)+\sum_{k=1}^{n}(t-\tau)^{k} f_{k}(z),
$$

where the f_{k} 's are rational functions of z with poles in a subset of Λ. Since A commutes with M_{z}, it is clear that $A M_{F}=M_{F} A$ and $A M_{f_{k}}=M_{f_{k}} A$ for $k=1,2, \ldots, n$, and therefore $A F(z, t)=A M_{F} e(z, t)=\left[M_{F}(A e)\right](z, t)=F(z, t) g(z, t)=g(z, t) f(z, \tau)$, which is equal to $g(z, \tau) f(z, \tau)$ for $t=\tau$. Hence,

$$
\begin{gathered}
A f(z, \tau)=A F(z, \tau)+\sum_{k=1}^{n} f_{k}(z) \lim _{\delta \rightarrow 0} A\left[(t-\tau)^{k} h_{\tau}\right](z, \tau)= \\
=g(z, \tau) f(z, \tau), \text { for every } \tau \in[0,1]
\end{gathered}
$$

Therefore, $A f(z, t)=g(z, t) f(z, t)$ on Γ^{-}for every f of the form (\#). By continuity, we conclude that $A=M_{g}$.

By a formal repetition of the proof of [28, Theorem 8] and the above result, we can easily obtain

Lemma 4. Let Ω, ε and Λ be as in Lemma 3 and let n be a positive integer. Define $\quad \mathbf{W}_{n}=\oplus_{k=1}^{n} \mathbf{W}^{2,1}\left(\partial \Omega+k \varepsilon / n, d m_{k}\right)$, where $d m_{k}$ is the "arc length measure" on $\partial \Omega+k \varepsilon / n$ and $\mathbf{W}^{2,1}\left(\partial \Omega+k \varepsilon / n, d m_{k}\right)$ is the Sobolev space of all distributions u on $\partial \Omega+k \varepsilon / n$ with distributional derivative (with respect to "arc length") in $L^{2}\left(\partial \Omega+k \varepsilon / n, d m_{k}\right)$, with the norm

$$
\|f\|=\left\{\int_{\partial \Omega+k \varepsilon / n}\left[|f(z)|^{2}+\left|d f / d m_{k}(z)\right|^{2}\right] d m_{k}\right\}^{1 / 2}
$$

and let \mathbf{A}_{n} be the subspace of "analytic elements" of \mathbf{W}_{n} (i.e., $\mathbf{A}_{n}=\mathbf{W}_{n}$-closure $\left\{\left(f_{1}, f_{2}, \ldots, f_{n}\right): f_{k}\right.$ is rational with poles in a subset of $\left.\left.\Lambda\right\}\right)$.

Then \mathbf{W}_{n} and \mathbf{A}_{n} are semisimple Banach algebras of continuous functions with identity (under an equivalent norm), $\mathscr{M}\left(\mathbf{W}_{n}\right)\left(\mathscr{M}\left(\mathbf{A}_{n}\right)\right.$, resp.) can be naturally identified with $\bigcup_{k=1}^{n}(\partial \Omega+k \varepsilon / n) \times\{k / n\}\left(\bigcup_{k=1}^{n}\left(\Omega^{-}+k \varepsilon / n\right) \times\{k / n\}\right.$, resp. $) \subset \mathbf{C} \times[0,1]$.

Furthermore, if $T_{n}=M_{z}$ in \mathbf{W}_{n}, then \mathbf{A}_{n} is invariant under T_{n}, and T_{n} and its restriction $L_{n}=T_{n} \mid \mathbf{A}_{n}$ satisfy
(i) $\sigma\left(T_{n}\right)=E_{l}\left(T_{n}\right)=E_{r}\left(T_{n}\right)=E_{l}\left(L_{n}\right)=E_{r}\left(L_{n}\right)=\operatorname{Pr}\left[\mathscr{M}\left(W_{n}\right)\right]$.
(ii) $\sigma\left(L_{n}\right)=\operatorname{Pr}\left[\mathscr{M}\left(\mathbf{A}_{n}\right)\right]$.
(iii) $\operatorname{Ker}\left(\lambda-L_{n}\right)=\{0\}$ and $\operatorname{dim} \operatorname{Ker}\left(\lambda-L_{n}\right)^{*}=n\left(\right.$ so that $\left.\operatorname{ind}\left(\lambda-L_{n}\right)=-n\right)$ for every $\lambda \in \bigcap_{k=1}^{n}(\Omega+k \varepsilon / n) \subset \sigma\left(L_{n}\right) \backslash E\left(L_{n}\right)$.
(iv) $\mathscr{A}^{\prime}\left(L_{n}\right)=\mathscr{A}^{\prime \prime}\left(L_{n}\right)=\left\{M_{g}: g \in \mathbf{A}_{n}\right\}$ is a maximal abelian strictly cyclic subalgebra of $\mathscr{L}\left(\mathbf{A}_{n}\right)$.

The proof is left to the reader.
Given Ω with analytic boundary, $\varepsilon>0$ and Λ as indicated, and an index $n,-\infty \leqq n<0$, we shall denote by $T(\Omega, \varepsilon, n)$ and $L(\Omega, \varepsilon, n)$ the operators defined by Lemma 3 (for $n=-\infty$) or by Lemma 4 (for $-\infty<n<0$). If $0<n \leqq+\infty$, we shall use the adjoint operators $T\left(\Omega^{*}, \varepsilon,-n\right)^{*}$ and $L\left(\Omega^{*}, \varepsilon,-n\right)^{*}$.

Now we are in a position to prove the main result of this paper.
Theorem 3. The subset (D) of those operators T similar to $A \oplus B$, where
(i) $\sigma(A) \cap \sigma(B)=\emptyset$;
(ii) $\mathscr{A}^{\prime \prime}(A)$ and $\mathscr{A}^{\prime \prime}\left(B^{*}\right)$ are strictly cyclic algebras;
(iii) $\lambda_{A}-A$ and $\lambda_{B}-B^{*}$ are semi-Fredholm operators of index $-\infty$, for suitably chosen λ_{A} and λ_{B};
(iv) $\mathscr{P}(A \oplus B)=\mathscr{S}_{q s}(A \oplus B)$ and this set does not intersect $(B Q T)_{q s}$; is dense in $\mathscr{L}(\mathcal{K})$.

Proof. The result follows by modifying the proofs in [6].
By [6, Proposition 1.4] (Indeed, by a minor modification of it), given $T \in \mathscr{L}(\Omega)$ and $\varepsilon>0$, there exists an operator T_{1} such that $\left\|T-T_{1}\right\|<\varepsilon$ and

$$
T_{1}=\left(\begin{array}{ccccc}
N_{1} & 0 & * & * & * \\
0 & N_{2} & * & * & * \\
0 & 0 & S_{1} & * & * \\
0 & 0 & 0 & N_{3} & 0 \\
0 & 0 & 0 & 0 & N_{4}
\end{array}\right)
$$

(with respect to a suitable orthogonal direct sum decomposition of Ω into five subspaces), where
a) N_{j} is normal and $\sigma\left(N_{j}\right)=E\left(N_{j}\right)$ for $j=1,2,3,4$;
b) $\sigma\left(N_{2}\right) \cup \sigma\left(N_{3}\right)$ is the closure of a nonempty open subset Ω_{0} with analytic boundary;
c) $\sigma\left(N_{1}\right) \cap \sigma\left(N_{4}\right)=\emptyset, \sigma\left(N_{1}\right)$ and $\sigma\left(N_{4}\right)$ are disjoint unions of pairwise disjoint regular analytic Jordan curves, $\sigma\left(N_{1}\right) \subset \partial \sigma\left(N_{2}\right) \cap \partial \Omega_{0}$ and $\sigma\left(N_{4}\right) \subset \partial \sigma\left(N_{3}\right) \cap \partial \Omega_{0}$; $\sigma\left(N_{1}\right)\left(\sigma\left(N_{4}\right)\right.$, resp. $)$ is contained in the open set $\{\lambda:(\lambda-T)$ is semi-Fredholm of negative (positive, resp.) index $\}$;
d) S_{1} is similar to a direct sum $F \oplus S_{2}$, where F is a normal operator with simple eigenvalues (i.e., cyclic) acting on a finite dimensional subspace, such that $\sigma(F) \cap\left[\sigma\left(N_{2}\right) \cup \sigma\left(N_{3}\right) \cup \sigma\left(S_{2}\right)\right]=\emptyset$, and $\partial \sigma\left(S_{2}\right) \subset \Omega_{0}^{-}$;
e) The Weyl spectrum $w(T)$ of T satisfies the inclusions $w(T) \stackrel{\text { def }}{=}$ $=\sigma(T) \backslash\{\lambda:(\lambda-T)$ is a Fredholm operator of index 0$\} \subset \sigma\left(N_{2}\right) \cup \sigma\left(N_{3}\right) \cup \sigma\left(S_{2}\right) \subset$ $\subset w(T)_{\varepsilon}$, where $K_{\varepsilon}=\{\lambda: \operatorname{dist}(\lambda, K) \leqq \varepsilon\}(K \subset \mathbf{C})$;
f) min. ind $\left(\lambda-S_{2}\right) \stackrel{\text { def }}{=} \min \left\{\operatorname{dim} \operatorname{Ker}\left(\lambda--S_{2}\right)\right.$, $\left.\operatorname{dim} \operatorname{Ker}\left(\lambda-S_{2}\right)^{*}\right\}=0$ for every λ such that $\left(\lambda-S_{2}\right)$ is semi-Fredholm.

Clearly, $\sigma\left(T_{1}\right)$ is the disjoint union of its clopen subsets $\sigma(F)$ and $\sigma\left(T_{1}\right) \backslash \sigma(F)$ so that, by Rosenblum [41, Corollary 0.15), T_{1} is similar to $F \oplus T_{2}$, where

$$
T_{2}=\left(\begin{array}{lllll}
N_{1} & * & * & * & * \\
0 & N_{2} & * & * & * \\
0 & 0 & S_{2} & * & * \\
0 & 0 & 0 & N_{3} & * \\
0 & 0 & 0 & 0 & N_{4}
\end{array}\right)
$$

According to c), $N_{1}=\bigoplus_{k=1}^{m} N_{1 k}\left(N_{4}=\bigoplus_{j=1}^{p} N_{4 j}\right)$, where $\sigma\left(N_{1 k}\right)=E\left(N_{1 k}\right)\left(\sigma\left(N_{4 j}\right)=\right.$ $=E\left(N_{4 j}\right)$, resp. $)$ is the boundary of a unique component $\Omega_{k}\left(\Omega_{j}\right.$, resp.) of the semiFredholm domain of T_{2}, where ind $\left(\lambda-T_{2}\right)=n_{k}<0\left(=n_{j}>0\right.$, resp.) for all $\lambda \in \Omega_{k}$, $k=1,2, \ldots, m\left(\lambda \in \Omega_{j}, j=1,2, \ldots, p\right.$, resp.).

Let $\Lambda M=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q}, \mu_{1}, \mu_{2}, \ldots, \mu_{q}\right\}$ be a finite set having exactly two points, λ_{h} and μ_{h}, in each of the q components of Ω_{0}. Replacing, if necessary, ε by an $\varepsilon^{\prime}, 0<\varepsilon^{\prime}<\varepsilon$, we can assume that the three sets $\sigma(F),(\Lambda M)_{\varepsilon}$ and $\left(\Omega_{0}\right)_{\varepsilon}$ are pairwise disjoint.

Let $T\left(\Omega_{k}, \varepsilon, n_{k}\right)(k=1,2, \ldots, m)$ and $T\left(\Omega_{j}^{*}, \varepsilon,-n_{j}\right)^{*}(j=1,2, \ldots, p)$ be the operators constructed as above indicated. Since $d_{H}\left\{\sigma\left(N_{1 k}\right), \sigma\left[T\left(\Omega_{k}, \varepsilon, n_{k}\right)\right]\right\} \leqq \varepsilon$ (d_{H} denotes the Hausdorff distance), it follows from [35] that there exists T_{k}^{\prime} similar to $T\left(\Omega_{k}, \varepsilon, n_{k}\right)$ such that $\left\|T_{k}^{\prime}-N_{1 k}\right\|<2 \varepsilon, k=1,2, \ldots, m$. Analogously, there exists $T_{j}^{\prime \prime}$ similar to $T\left(\Omega_{j}^{*}, \varepsilon,-n_{j}\right)^{*}$ such that $\left\|T_{j}^{\prime \prime}-N_{4 j}\right\|<2 \varepsilon, j=1,2, \ldots, p$; thus, if
$M_{1}=\bigoplus_{k=1}^{m} T_{k}^{\prime}$ and $M_{4}=\bigoplus_{j=1}^{p} T_{j}^{\prime \prime}$, and T_{3} is the operator obtained from T_{2} by replacing N_{1} by M_{1} and N_{4} by M_{4}, then $\left\|T_{2}-T_{3}\right\|<2 \varepsilon$.

It is clear that M_{1} has an invariant subspace \mathfrak{M}_{1} such that $L_{1}=M_{1} \mid \mathfrak{M}_{1}$ is similar to ${\underset{1}{\oplus}}_{\oplus} L\left(\Omega_{k}, \varepsilon, n_{k}\right)$ and that M_{4} has an invariant subspace \mathfrak{M}_{4} such that the compression L_{4} of M_{4} to \mathfrak{M}_{4}^{\perp} is similar to $\underset{1}{\oplus} L\left(\Omega_{j}^{*}, \varepsilon,-n_{j}\right)^{*}$. Since the spectra of the components of these direct sums are pairwise disjoint, it follows as in the proof of Corollary 2 that $\mathscr{A}^{\prime \prime}\left(L_{1}\right)$ and $\mathscr{A}^{\prime \prime}\left(L_{4}^{*}\right)$ are strictly cyclic operator algebras.

Proceeding exactly as in the proof of [6, Proposition 2.1], we find out that

$$
T_{3}=\left(\begin{array}{ccc}
L_{1} & * & * \\
0 & S_{3} & * \\
0 & 0 & L_{4}
\end{array}\right)
$$

(with respect to a suitable orthogonal direct sum decomposition), where $S_{3} \in B Q T$ and $\sigma\left(S_{3}\right)=E\left(S_{3}\right)=\Omega_{0}^{-}$.

Let $\quad C_{1}=\underset{h=1}{\oplus}\left(\lambda_{h}+L\left[\Delta\left(\lambda_{h}, \varepsilon / 2\right), \varepsilon / 2,-\infty\right]\right) \quad$ and $\quad C_{4}=\oplus_{h=1}^{q}\left(\mu_{h}+L\left[\Delta\left(\mu_{h}, \varepsilon / 2\right)\right.\right.$, $\varepsilon / 2,-\infty]^{*}$). By using the results of $[34 ; 35]$ and Rosenblum [41, Corollary 0.15], we can find an operator

$$
S_{4}=\left(\begin{array}{lr}
C_{1}^{\prime} & * \\
0 & C_{4}^{\prime}
\end{array}\right)
$$

with C_{i}^{\prime} similar to $C_{i}, i=1,4$, such that $\left\|S_{3}-S_{4}\right\|<\varepsilon$, so that if T_{4} is the operator obtained from T_{3} by ıeplacing S_{3} by S_{4}, then a formal repetition of previous arguments shows that $\left\|T_{3}-T_{4}\right\|<\varepsilon$ and T_{4} is similar to $L_{1} \oplus C_{1}^{\prime} \oplus C_{4}^{\prime} \oplus L_{4}$ which, in turn, is similar to $A_{0} \oplus B$, where $A_{0}=\left\{\underset{1}{\oplus} L\left(\Omega_{k}, \varepsilon, n_{k}\right)\right\} \oplus C_{1}$ and

$$
B=C_{4} \oplus\left\{\underset{1}{\oplus} L\left(\dot{\Omega}_{j}^{*}, \varepsilon,-n_{j}\right)^{*}\right\}
$$

Thus, if $A=F \oplus A_{0}$, it readily follows that there exists an operator T_{5} similar to $A \oplus B$ such that $\left\|T-T_{5}\right\|<4 \varepsilon$.

Since A and ' B clearly satisfy (i)-(iv), we are done.
Corollary 3. $(E)_{m n},(F),(G),(H),(I)$ and (J) are dense in $\mathscr{L}(\Omega)$.
Proof. The proof will be just sketched. Repeat exactly the same proof as above replacing ΛM.by $\Lambda M N \Pi=\left\{\lambda_{1}, \ldots ; \lambda_{q}, \mu_{1}, \ldots, \mu_{q}, v_{1} \ldots, v_{q} ; \pi_{1}, \ldots, \pi_{4}\right\}$ with the same characteristics as ΛM and four points, $\lambda_{h}, \mu_{h}, v_{h}, \pi_{h}$, in each component of Ω_{0}.
 $I_{m}\left(I_{n}\right)$ is the identity on a Hilbert space of algebraic dimension m (n, resp.), and use the results of [27].
(F) Replace A by $A \oplus\left\{\underset{h=1}{\oplus}\left(v_{h}+Q\right)\right\}$, where Q is any nilpotent of infinite rank. The result follows as in Theorem 3 by using the results of [3].
(I) and (J) : These two cases follow at once from Theorem 3, the fact that \mathbf{A}_{∞} and \mathbf{A}_{n} are semisimple Banach algebras and [47]; it is easily seen that $\mathscr{A}^{\prime \prime}(A)=\mathscr{A}^{\prime}(A)$ and $\mathscr{A}^{\prime \prime}(B)=\mathscr{A}^{\prime}(B)$ are reflexive.
(G) and (H) : These two cases follow at once from the above observations abou $\mathscr{A}^{\prime \prime}(A)$. and $\mathscr{A}^{\prime \prime}(B)$ and the results of $[37 ; 38]$.

Remark. An alternative proof for the cases $(G)-(J)$ can be obtained by using the Apostol-Morrel dense class $C_{0}(\Omega)$ (see definition and properties in [6]) and the results of [41].
5. (K) is dense in $\mathscr{L}(\Omega)$. The proof is a "trivialization" of that of the case (D).

Lemma 5. Let Ω be an open set with analytic boundary, let $\Gamma_{0}=\partial \Omega \times(0,1)$ and $\Xi_{0}=\Omega^{-} \times[0,1] . \mathbf{W}_{0 \infty}=\mathbf{W}^{2,2}\left(\Gamma_{0}\right)$ (defined as in Section 4) has the same properties as \mathbf{W}_{∞} and the subalgebra $\mathbf{A}_{0 \infty}$ of "analytic elements" of $\mathbf{W}_{0 \infty}$ $\left(\mathbf{A}_{0_{\infty}}=\left\{f \in \mathbf{W}_{0 \infty} ; f(z, t)\right.\right.$ is analytic with respect to $z \in \Omega$ for every $\left.\left.t \in[0,1]\right\}\right)$ has the same properties as \mathbf{A}_{∞}.

If $T_{0}=M_{z}$ in $\mathbf{W}_{0 \infty}$ and $L_{0}=T_{0} \mid \mathbf{A}_{0_{\infty}}$, then:
(i) $\sigma\left(T_{0}\right)=E_{l}\left(T_{0}\right)=E_{r}\left(T_{0}\right)=E_{l}\left(L_{0}\right)=\partial \Omega$.
(ii) $\sigma\left(L_{0}\right)=E_{r}\left(L_{0}\right)=\Omega^{-}$.
(iii) $\operatorname{Ker}\left(\lambda-L_{0}\right)=\{0\}$ and $\operatorname{dim} \operatorname{Ker}\left(\lambda-L_{0}\right)^{*}=\infty$ (so that ind $\left(\lambda-L_{0}\right)=-\infty$) for every $\lambda \in \Omega$.
(iv) $\mathscr{A}^{\prime}\left(L_{0}\right) \supset\left\{M_{g}: g \in \mathbf{A}_{0 \infty}\right\}$, so that $\bar{\mu}\left[\mathscr{A}^{\prime}\left(L_{0}\right)\right]=1$.
(v) $\mathscr{A}^{a}\left(L_{0}\right)=\mathscr{A}^{\prime \prime}\left(L_{0}\right)=\left\{M_{g}: g \in \mathbf{A}_{0 \infty}, g(z, t)\right.$ is constant with respect to t for every (fixed) $\left.z \in \Omega^{-}\right\}=$norm-closure of the rational functions of L_{0} with poles outside Ω^{-}.
(vi) appr $\left(L_{0}\right)^{\prime \prime}=\mathscr{A}^{\prime \prime}\left(L_{0}\right)$.

Proof. The statements relative to $\mathbf{W}_{0 \infty}$ and $\mathbf{A}_{0 \infty}$ (in particular, $\mathscr{M}\left(\mathbf{W}_{0 \infty}\right) \approx \Gamma_{0}^{-}$; and $\left.\mathscr{M}\left(\mathbf{A}_{0 \infty}\right) \approx \Xi_{0}\right)$ can be proved exactly as in the previous section. Now (i), (ii): and (iii) are clear and (iv) is obvious.
(v) Let $A \in \mathscr{A}^{\prime \prime}\left(L_{0}\right)$. Since A commutes with the maximal abelian algebra of all multiplications by the elements of $\mathbf{A}_{0 \infty}, A$ must be a multiplication too: $A=M_{g}$, where $g=A e \in \mathbf{A}_{0 \infty}$.

For every $\tau \in[0,1]$, define C_{τ} by $C_{\tau} f(z, t)=f[z, 1 / 2+(t-\tau) / 2]$. By using, e.g., [1], it is not difficult to see that C_{τ} is bounded and commutes with A; the e-
fore, $g(z, \tau)=A e(z, \tau)=A C_{\tau} e(z, \tau)=C_{\tau} A e(z, \tau)=C_{\tau} g(z, \tau)=g(z, 1 / 2)$, i.e., g depends only on z.

By the definition and properties of $\mathbf{A}_{0 \infty}$, it follows that $g(z, t)$ is the normlimit of a sequence of rational functions with poles outside Ω^{-}. Since $\mathscr{A}^{\prime}\left(L_{0}\right)$ is strictly cyclic, this implies that $A=M_{\theta}$ is a norm-limit of rational functions of L_{0} with poles outside Ω^{-}(see [37]). This proves (v).
(vi) It is obvious that for every $C \in \mathscr{L}(\Omega)$, appr $(C)^{\prime \prime}$ is inverse-closed, so that appr ($C)^{\prime \prime}$ always contains the norm-closure of the rational functions of C with poles outside $\sigma(C)$. Now (vi) follows from (v).

Lemma 6. Let Ω be an open set with analytic boundary, let n be a natural number, let $\mathbf{W}_{0 n}$ be the direct sum of n copies of $\mathbf{W}^{2,1}(\partial \Omega, d m)$ and let $\mathbf{A}_{0 n}$ be the subspace of "analytic elements" of $\mathbf{W}_{0 n}$. Then $\mathbf{W}_{0 n}$ and $\mathbf{A}_{0 n}$ are Banach algebras with identity (under an equivalent norm), $\mathscr{M}\left(\mathbf{W}_{0 n}\right) \approx \partial \Omega \times\{1 / n, 2 / n, \ldots, 1\}$ and $\mathscr{M}\left(\mathbf{A}_{0 n}\right) \approx$ $\approx \Omega^{-} \times\{1 / n, 2 / n, \ldots, 1\}$.

If $T_{0 n}=M_{z}$ in $\mathbf{W}_{0 n}$, then $\mathbf{A}_{0 n}$ is invariant under $T_{0 n}$ and its restriction $L_{0 n}=T_{0 n} \mid \mathbf{A}_{0 n}$ satisfy
(i) $\sigma\left(T_{0 n}\right)=E_{l}\left(T_{0 n}\right)=E_{r}\left(T_{0 n}\right)=E_{l}\left(L_{0 n}\right)=E_{r}\left(L_{0 n}\right)=\partial \Omega$.
(ii) $\sigma\left(L_{0 n}\right)=\Omega^{-}$.
(iii) $\operatorname{Ker}\left(\lambda-L_{0 n}\right)=\{0\}$ and $\operatorname{dim} \operatorname{Ker}\left(\lambda-L_{0 n}\right)^{*}=n$ (so that ind $\left.\left(\lambda-L_{0 n}\right)=-n\right)$ for every $\lambda \in \Omega$.
(iv) $\mathscr{A}^{\prime}\left(L_{0 n}\right) \cong \mathbf{A}_{0 n}^{(n \times n)}$ is the algebra of all $n \times n$ operator matrices with entries in $\left\{M_{g}: g \in \mathbf{A}_{0 n}\right\}$, so that $\bar{\mu}\left[\mathscr{A}^{\prime}\left(L_{0 n}\right)\right]=1$.
(v) $\mathscr{A}^{a}\left(L_{0 n}\right)=\mathscr{A}^{\prime \prime}\left(L_{0 n}\right) \cong\left\{M_{g}: g \in \mathrm{~A}_{0 n}\right\}=$ norm-closure of the rational functions of $L_{0 n}$ with poles outside Ω^{-}.
(vi) appr $\left(L_{0 n}\right)^{\prime \prime}=\mathscr{A}^{\prime \prime}\left(L_{0 n}\right)$.

The proof (that can be easily "modelled" on that of Lemma 5) is left to the reader.

Now it is clear that if $T=F \oplus\left\{\underset{1}{\oplus} L\left(\Omega_{k}, n_{k}\right)\right\} \oplus\left\{\underset{j=1}{p} L\left(\Omega_{j}^{*},-n_{j}\right)^{*}\right\}$, where F is an operator acting on a finite dimensional space, $L(\Omega, n)$ is the operator defined by Lemma 5 (for $n=-\infty$) and by Lemma 6 (for $-\infty<n<0$) and $\left\{\sigma(F),\left\{\Omega_{k}^{-}\right\}_{k=1}^{m},\left\{\Omega_{j}^{-}\right\}_{j=1}^{p}\right\}(0 \leqq m, p<\infty)$ is a family of pairwise disjoint compact sets, then $\operatorname{appr}(T)^{\prime \prime}=\mathscr{A}^{\prime \prime}(T)=$ norm-closure of the rational functions of T with poles outside $\sigma(T)$.

A formal repetition of the proof of Theorem 3 shows that the operators in $\mathscr{L}(\boldsymbol{\Omega})$ that are similar to some T as above form a dense subset, whence we obtain

Corollary 4. (K) is dense in $\mathscr{L}(\Omega)$.

References

[1] R. A. Adams, Sobolev spaces, Academic Press (New York-San Francisco-London, 1975).
[2] C. Apostol, Operators quasi-similar to a normal operator, Proc. Amer. Math. Soc., 53 (1975), 104-106.
[3] C. Apostol, R. G. Douglas and C. Foiaş, Quasi-similar models for nilpotent operators, Trans. Amer. Math. Soc., 224 (1976), 407-415.
[4] C. Apostol, C. Foiaş and D. Voiculescu, Some results on non-quasitriangular operators. IV, Rev. Roum. Math. Pures Appl., 18 (1973), 487-514.
[5] C. Apostol, C. Foiaş and D. Voiculescu, On the norm-closure of nilpotents. II, Rev. Roum. Math. Pures Appl., 19 (1974), 549-577.
[6] C. Apostol and B. Morrel, On approximation of operators by simple models, Indiana Univ. Math. J., 26 (1976), 427-442.
[7] J. Barría and D. A. Herrero, Closure of similarity orbits of nilpotent operators. I: Finite rank operators, J. Operator Theory, 1 (1979), to appear.
[8] J. Barría and D. A. Herrero, Closure of similarity orbits of nilpotent operators. II (to appear).
[9] S. Clary, Equality of spectra of quasi-similar hyponormal operators, Proc. Amer. Math. Soc. 53 (1975), 88-90.
[10] I. Colojoară and C. Foias, Theory of generalized spectral operators, Gordon and Breach (New York, 1968).
[11] R. G. Douglas, On the operator equation $S^{*} X S=X$ and related topics, Acta Sci. Math. 30 (1969), 19-32.
[12] R. G. Douglas and C. Pearcy, Hyperinvariant subspaces and transitive algebras, Mich. Math. J., 19 (1972), 1-12.
[13] L. A. Fialkow, A note on direct sums of quasinilpotent operators, Proc. Amer. Soc., 48 (1975), 125-131.
[14] L. A. Fialkow, A note on quasisimilarity of operators, Acta Sci. Math., 39 (1977), $67-85$.
[15] L. A. Fialkow, A note on quasisimilarity. II, Pacific J. Math., 70 (1977), 151-162.
[16] L. A. Fialkow, A note on the operator $X \rightarrow A X-X B$, Transactions Amer. Math. Soc., 243 (1978), 147-168.
[17] P. A. Fillmore, Notes in operator theory, D. Van Nostrand, Reinhold Mathematical Studies No. 30 (New York, 1970).
[18] C. Foias and C. Pearcy, A model for quasinilpotent operators, Mich. Math. J., 21 (1974), 399-404.
[19] C. Foias, C. Pearcy and D. Voiculescu, Biquasitriangular operators and quasisimilarity, Linear spaces and approximation (Proc. Conf. Oberwolfach, 1977), Birkhäuser (Basel, 1978), 47-52.
[20] C. Foiaş, C. Pearcy and J. P. Williams, Some remarks on the Volterra operator, Proc. Amer. Math. Soc., 31 (1972), 177-184.
[21] T. W. Gamelin, Uniform algebras, Prentice Hall Inc., (Englewood Cliffs, New Jersey, 1969).
[22] R. Gellar, Two sublattices of weighted shifts invariant subsraces, Indiana Univ. Math. J., 23 (1973), 1-10.
[23] S. Grabiner, Derivations and automorphisms of Banach algebras of power series, Memoirs Amer. Math. Soc. 146 (Providence, Rhode Island, 1974).
[24] D. W. Hadwin, An asymptotic double commutant theorem for C^{*}-algebras, Transactions Amer. Math. Soc., 244 (1978), 273-297.
[25] P. R. Halmos, A Hilbert space problem book, D. Van Nostrand (Princeton, New Jersey, 1967).
[26] D. A. Herrero, Álgebras de operadores transitivas que contienen una subálgebra de multiplicidad estricta finita, Rev. Un. Mat. Argentina, 26 (1972), $77-84$.
[27] D. A. Herrero, Operator algebras of finite strict multiplicity, Indiana Univ. Math. J., 22 (1972), 13-24.
[28] D. A. Herrero, Operator •algebras of finite strict multiplicity. II, Indiana Univ. Math. J., 27 (1978), 9-18.
[29] D. A. Herrero, Normal limits of nilpotent operators, Indiana Univ. Math. J., 23 (1974), 10971108.
[30] D. A. Herrero, A Rota universal model for operators with multiply connected spectrum, Rev. Roum. Math. Pures Appl., 21 (1976), 15-23.
[31] D. A. Herrero, Universal quasinilpotent operators, Acta Sci. Math., 38 (1976), 291-300.
[32] D. A. Herrero, On the spectra of the restrictions of an operator, Trants. Amer. Math. Soc., 233 (1977), 45-58.
[33] D. A. Herrero, Clausura de las órbitas de similaridad de operadores en espacios de Hilbert, Rev. Un. Mat. Argentina, 27 (1976), 244-260.
[34] D. A. Herrero, Closure of similarity orbits of Hilbert space operators. II: Normal operators, J. London Math. Soc., (2) 13 (1976), 299-316.
[35] D. A. Herrero, Closure of similarity orbits of Hilbert space operators. III, Math. Ann. 232 (1978), 195-204.
[36] D. A. Herrero, Quasisimilarity does not preserve the hyperlattice, Proc. Amer. Math. Soc., 65 (1977), 80-84.
[37] D. A. Herrero and A. Lambert, On strictly cyclic algebras, \mathscr{P}-algebras and reflexive operators, Trans. Amer. Math. Soc., 185 (1975), 229-235.
[38] D. A. Herrero and N. Salinas, Analytically invariant and bi-invariant subspaces, Trans. Amer., Math. Soc., 173 (1972), 117-136.
[39] T. B. Hoover, Quasi-similarity of operators, Illinois J. Math., 16 (1972), 678-686.
[40] T. Kato, Perturbation theory for linear operators, Springer-Verlag (New York, 1966).
[41] H. Radjavi and P. Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, B. 77, Springer-Verlag (New York-Heidelberg-Berlin, 1973).
[42] C. Rickart, General theory of Banach algebras, D. Van Nostrand, (Princeton, New Jersey; 1960).
[43] G.-C. Rota, On models for linear operators, Comm. Pure Appl. Math., 13 (1960), 469-472.
[44] N. Salinas, Operators with essentially disc̣onnected spectrum, Acta Sci. Math., 33 (1972), 193-206.
[45] N. Salinas, A characterization of the Browder spectrum, Proc. Amer. Math. Soc., 38 (1973), 369-373.
[46] R. Schatten, Norm ideals of completely continuous operators, 2nd. ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, B. 27, Springer-Verlag (Berlin-Heidelberg-New York, 1970).
[47] V. S. Sulman, Operator algebras with strictly cyclic vectors, Mat. Zametki, 16 (2) (1974), 253257. (Russian)
[48] B. Sz.-Nagy and C. Foiaş, Analyse harmonique de opérateurs de l'espace de Hilbert, Masson et Cie.—Akadémiai Kiadó (Paris-Budapest, 1967).
[49] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roum. Math. Pures et Appl., 21 (1976), 97-113.

