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Quasisimilar operators with different spectra 

D O M I N G O A. H E R R E R O 

1. Introduction. Let be the Banach algebra of all (bounded linear) 
operators acting on the complex Banach space X. T££f(X) and are called 
quasisimilar (q.s.) provided there exist quasi-invertible continuous linear maps 

and Y: X-9) such that TX=XA and YT=AY (X is quasi-invertible 
if Ker X= {0} and Ran X is dense in X; [48]). 

As in [38], the four (weakly closed identity containing) subalgebras naturally 
associated with T£g(X) will be denoted by si{T), si"(T), si' (T) and si"(T) 
(the algebra generated by the polynomials in T, the algebra generated by the ra-
tional functions of T with poles outside the spectrum a (T) of T, the commutant 
and the double commutant of T, resp.). Then si(T)czsia(T)(z^"(T)csi'(T) 
and the corresponding invariant subspace lattices satisfy the reverse inclusions: 
Lat T = Lat si (71) z) Lat sia (T) D Lat si" (T)z> Lat si' (T). (These are called the 
lattices of invariant, analytically invariant, bi-invariant and hyperinvariant sub-
spaces, resp. As usual, subspace will denote a closed linear manifold of 3t\) 

Quasisimilarity was first studied by B. SZ. -NAGY and C . FOIA§ ( [48 ] ; see also [ 1 7 ] ) 

in connection with the invariant subspace problem in Hilbert spaces; namely, if 
A is q.s. to T, and T has a non-trivial hyperinvariant subspace, then so does A 
( [17 ; 39; 4 1 ] ) . A and 7 need not have the same spectrum ( [ 4 8 ] ) ; however, a{A)C\a(T) 
cannot be empty ([39]). Furthermore, every component of a (A) (a(T)) intersects 
<r(T) ((7(A), resp.; [32]). 

Several results scattered through the literature assert that, under suitable 
restrictions on T or A or both, a (A) actually contains a(T) or coincides with it 
([9; 11; 39]) and there also exist examples of q.s. operators with different spectra 
([39; 48]; see also Section 2, below). 

This article is primarily concerned with the following questions: 
(1) Under what conditions on Tdoes " A is q.s. to T" imply "A is similar to T"? 
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(2) Under what conditions on T does "A is q.s. to T" imply G(A) = O(T)7 
(3) When can we assert that a (A) is strictly larger (or strictly smaller) than 

ff(T) for some A q.s. to T1 
It is completely apparent that if T satisfies (1), then it also satisfies (2). On the 

other hand, two q.s. nilpotent operators with infinite dimensional range acting 
on a separable Hilbert space need not be similar ([3]; see also [18; 36]), so that 
•a T satisfying (2) need not satisfy (1). 

In [2], C. APOSTOL proved that A is q.s. to a normal operator if and only if 
LatA contains a countable basic system of subspaces {ft„}™ such that 
A |ft„ (A restricted to ft„) is similar to a normal operator for every n. (A countable 
family {£„}i of subspaces of the Banach space X is called basic if the subspaces 

m 
Xn and X'n= \J Xk are complementary for every n and p) £¿={0}; [2]). In Section 

kin 1 
2 it will be shown that, under suitable (very general) conditions, an operator T 
having a denumerable basic system of invariant subspaces is q.s. to operators A 
and B such that either o(A) is strictly smaller than a (T), or a(B) is strictly larger 
than er (T), or both. To the best of the author's knowledge, this is the only known 
way to produce q.s. operators with different spectra. Recently, L. A. Fialkow showed 
that two q.s. non-invertible injective bilateral weighted shifts need not be similar; 
however, they necessarily have the same spectrum and this spectrum can be a disc 
of positive radius. Since Fialkow's operators do not admit any non-trivial pair 
of complementary invariant subspaces (see [22]), they add some extra support 
to the following 

C o n j e c t u r e 1. Assume that Lat T does not contain any denumerable basic 
system of subspaces. Then o(A) = o(T) for every A q.s. to T. 

The strict multiplicity Ji(s4) of a subalgebra si of is defined as the in-
fimum of card (T), taken over all the subsets T of X such that X = 

n 
~{2 djXj'. Aj£s4, Xj€r, « = 1, 2, ...}. If T can be taken equal to the singleton 
{x0}, then sf is called a strictly cyclic algebra and x0 is called a strictly cyclic vector 
for si. According to [28, Theorem 8], if fi[si"(T)]<^, then T satisfies (1). The 
main part of this paper is devoted to exploit this result and the constructions in 
[6] in order to show the existence and/or the density of operators satisfying 
certain properties related with quasisimilarity and an approximation problem, 
acting on a complex separable infinite dimensional Hilbert space ft (throughout 
this paper ft will always denote a space of this type). 

Recall that T£ <£(ft) is biquasitriangular (BQT) if ind ( / . -7 , ) = 0, whenever 
?. — T is a semi-Fredholm operator ( [ 4 ] ) . C . FOIA§, C . PEARCY and D . VOICULESCU 

[19] proved that for every T£i?(f t ) and e>0, there exists T r f ^{S \ ) such that 
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| | r - T J | < £ , (the ideal of compact operators), 7"e = norm-lim U„TU* 
for a suitable sequence {{/„} of unitary operators, Lat Te contains a denumerable 
family of pairwise orthogonal subspaces and TF is q.s. to a BQT operator 
(Te£(BQT)qs, in the notation of [19]). This strong result suggested to the authors 
of that article the following question 

IS(BQT)QS = J?(Z)7 

The answer is no. Indeed, the following sets are (norm-)dense in JSf(3E): 
(A)={T: T is q.s. to some A£(BQT) with a(A) = a(T)} [19]; 

. ( B ) = {7": T is q.s. to some A£(BQT) wi th O(A)ZXJ(T), A{A)^A(T)}-, 
(C)= {T: T is q.s. to some A£(BQT) with o(A)acr(T), a{A)^a(T)}-, 
(D)={T: T is similar to A®B, fi[si"(A)] = fi[^"(B*)]=l, a(A)C\o(B) = ®, 

IA—A and Xb—B* are semi-Fredholm operators of index — °° for suitably 
chosen points l A , AB£C}. 

Clearly, for every such T and every L q.s. to T, L is actually similar to T and 
it has the same spectrum as T. Therefore, ( D ) c {T: T satisfies ( l ) } \ ( f i g r ) 9 S . 

(E)mn = \T: T, A and B are as in (D), except that fi[si"(A)] = m and 
fi[si"(B*)]=n} (for every m, n such that m, n= 1, 2, ... or c, the power 
of the continuum); 

(F)={T: a(T)—a(L) for every L q.s. to T, but ¿f(T)^.9>QS(T)}, where £f(T) 
[Sfqs(T), r esp )={A£Se(S i ) : A = WTW~i for some invertible (A is q.s. 
to T, resp.)}. 

Recall that si a ¿¡C( X. ) is a reflexive algebra if si = Alg Lat si, where 
A\gI={A£Se(X)\ L a t / l 3 £ } (Z=any family of subspaces of £). T£Se(X) is 
called reflexive if si(T) is. The following results are "in the air": The sets 

(G)={T: T is reflexive}; 
(H)={T: si"(T) is reflexive}; 
(I) = {T: si" (T) is reflexive}; 
(J) = { r : ^ ' ( r ) is reflexive}, 

as well as their complements in J?(ft), are dense in 
There are at least two different extensions of the notion of similarity related 

with approximation problems: A and T are asymptotically similar if their similarity 
orbits have the same closure (i.e., ¿f(A)~=Sf(T)~; [7; 33]). They are approximately 
similar if /l = norm-lim W„TW~i for a sequence {W„} of invertible operators 
with sup || W„\\ || W^W < °° ([24]). Since asymptotic similarity (and, a fortiori, 
approximate similarity) preserves the spectrum and every part of it (see [33]), it 
will not be difficult to conclude from the results and examples of this article and 
the results of [7; 8; 33; 34; 35] that, in general, Sf{T) is a proper subset of Sfap(T)V\ 
n ^ s ( 7 ) (¡fap(T)={A\ A is approximately similar to T}<z£f(T)-) and the 
equality £f(T) = £f(T)~, implies that T is similar to a normal operator 
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with a finite spectrum and therefore £f(T) =-9'qs(T) =-9'ap(T) =9'[T)- (this is 
false for arbitrary Banach spaces; see [7; 35]); however, the equality £f(T) = 
=Sfgs(T) does not imply Sf(T) =£f(T)~~ (even for Hilbert spaces; [28; 35]. Since 
approximate similarity preserves every Schatten p-ideal and asymptotic similarity 
does not preserve them, it is immediate that these two notions are different; see 
[33; 46] for details). 

In [24], D . W . HADWIN defined the approximate double commutant of T££?(St) 
by appr (T)"={Z,G.£?(ft): \\LAn—AnL\\ —0 ( « - » ) whenever {An} is a bounded 
sequence such that \\TA„-A„T\\-+Q («-<*>)}. He proved that app r (T ) "c z 
czstf"(T)f)C*(T) (where C*(T) denotes the C*-algebra generated by T) and 
conjectured ([24, Conjecture 2.5]) that appr (T)"=s/"(T) if and only if T is 
algebraic. This conjecture is false. Indeed, (K) = {T: appr (T)"=si"{T)}, as well 
as its complement, is dense in j£?(ft). 

The interested reader will have no trouble to prove the density in of 
new different classes of operators somehow related with (A)—(K). 

The author is deeply indebted to R. G. Douglas, L. A. Fialkow, D. W. Hadwin 
and C. Pearcy for sending him their unpublished papers (the reader will find very 
useful information in Fialkow's papers [14; 15; 16], which have several points in 
common with the present article). The author also wishes to thank J. Barría, 
M. Cotlar, A. Etcheberry, B. Margolis and M. B. Pecuch for many helpful 
suggestions. 

2. Operators quasisimilar to orthogonal direct sums. Given a family {#"„} of 

Banach spaces, let 9En denote the hilbertian sum of the 3T„'s (i.e., is the 

closure of the algebraic direct sum with respect to the norm || {x„}|| = 

= (|wr)-
L e m m a 1. Let ty be the hilbertian sum of the family {STn} of Banach spaces 

00 

and let {r„} (Tn£&(2Cn)) be a uniformly bounded family of operators. Let 7=© T„ 
1 

be the operator defined in the usual fashion on and assume that ||(A — 7"„)_1|! g 
^ <¡>[dn(l)— e„] for d„(X) >£„, where <¡>(t) is a non-increasing function of t (0 < /<«>) 
independent of n, {e„} is a sequence of non-negative reals converging to 0 and dn (A) = 

= dist[ l , <7(r„)]. Then G{T)=O~, where A = \Jo{T¿. 
i 

P r o o f . Clearly, X — T is invertible in if and only if X — Tn is in vertible 
in J2?(ár„) for every n and ||(A — T J - 1 ! ^ C for a constant C depending only on X. 

From our hypothesis about the growth of ||(A — r n ) - 1 | | , we can easily see 
that, given £>0, |](A— TJ^'Ü ^<P [dist {A, a}—e] for every X such that dist [A, 
and for all «>«0(e), whence the result follows. • 
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E x a m p l e 1. Clearly, the function $ must satisfy $(t)^l/t, but the con-
dition of Lemma 1 cannot be replaced by | | ( A — 1 ¡ | = O[l/i/„(0]- Indeed, if 

O/")^«; where {P„} is a sequence of pairwise orthogonal projections of i 
infinite rank in the Hilbert space ft whose partial sums strongly converge to the 
identity I, then H is an hermitian operator unitarily equivalent to H(oo) (the ortho-

CO 

gonal direct sum of denumerable many copies o f / / ) , er(/7)={0} JJ { l / « } = E { H ) 

(E( •) denotes the essential spectrum) and || W(l-H)-1 W^WsW W\\ ¡| W~}\\ld(X) 
for every invertible and for every X^a(H) . 

¥(H)~ contains a BQT operator A such that o(A)=-E(A) = o(HyjK, where 
K is an arbitrary compact connected set containing the origin ([34]), i.e., there exists 
a sequence A„= WnHW~1 converging to A in the norm. It readily follows that 

B= © A„ is q.s. to H and it can be shown as in [13] that a(B) = E(B) = a(A). 
i 

E x a m p l e 2. If lim f<P(t)= °° for every. f > 0 , then there exists a universal 
quasinilpotent operator Q in ¿C(S\) (i.e., if{Q)~ contains every nilpotent) such that 
l l ( ^ - 0 _ 1 l l = m a x {* ( | i | ) , ( l+e ) |A | - i } (for an arbitrary prescribed e>0) , Q = Q(°°\ 
Q is the orthogonal direct sum of denumerable many nilpotent operators acting 
on finite dimensional Hilbert spaces and is q.s. to a compact quasinilpotent operator 
(see [3; 8; 31]). 

Proceeding as in Example 1 it is not difficult to construct a BQT operator 

B= © Bn q.s. to Q such that o(B)=E(B) is an arbitrary connected compact set 
i 

containing the origin. 

T h e o r e m 1. Assume that TZ,Sf(^) admits a denumerable basic system of in-
variant subspaces {$"„} and let Tn==T\Sfn for n= 1,2, ...; let <& be the hilbertian 

sum of the %n's and let be defined by B-© Tn. Then B is q.s. to T, o~ a 
i 

c<r(5)c(7(r), every component of o(B) or a{T) intersects op(T) — ap(B) = 

= (J ap{Tn)c.a (op(-) denotes the point spectrum) and ap(T*) = ap(B*) = 
i 

= IJ ap(T*)(Z(7. Assume, moreover, that SCn is actually (isomorphic with) a Hilbert 
i 

space for every n; then there exist operators Ln similar to Tn, « = 1 , 2 , . . . , such 

that A=(BL„ is q.s. to T and a(A)=o~. 
i 

N o t e . In the case when 9C is a Hilbert space and T* is defined via inner pro-
duct, <J(T*) = <J(T)*, where K* = {X: ?,£K} is the symmetric of the set KciC 
with respect to the real axis. In this case the corresponding inclusion should be 
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read ap{T*)(Za*. It is convenient to remark that 3Cn can be isomorphic to a 
Hilbert space for every n even if 9C is not; namely, it T is a diagonal operator 
with respect to a Schauder basis of 9C and the 5T„'s are the one-dimensional sub-
spaces spanned by the elements of that basis. 

P r o o f . That B and T (and A when Sf„ is a Hilbert space for every n) are actu-
ally q.s. follows by standard arguments (see, e.g., [2; 39]). It is clear that 
/.£o(B) if and only if either ?.£a(Tn) for some n or the family {(A — T J - 1 } is 
not uniformly bounded. Now, if ||(A — T'n№))xn№)|| — 0 (A: — «>) for a suitable sub-
sequence {«(&)}" of natural numbers and for suitably chosen unitary vectors 
xn(k-y-%n(k)i then Jim ¡ | ( / - r )x n ( t ) | | = 0 and therefore X£o(T). Hence, <j~<zo(B) 
and o(B)\oczo(T). 

Now assume that S£n is a Hilbert space for every n. According to [30], for 
each « = 1 ,2 , . . . , there exists an operator Ln£££{9Cn) similar to T„ such that 

— i.«)-1!) ^ l/[t/„(A) — 1/«] for all X such that dn{).)>\jn. Define A ££?($/) q.s. 

to T and B by A = @Ln. By Lemma 1, a(A) = a~. 
i 

The remaining spectral inclusions follow from [13; 25; 32]. • 
By using [12, Theorem 1.4], we obtain 

C o r o l l a r y 1. Let T be as in Theorem 1. If o(Tn)f]o(TJ = ® for a pair of in-
dices n, m then T has a nontrivial hyperinvariant subspace. 

E x a m p l e 3. (The main example) Combining the arguments of the previous 
examples and the results of [2; 13; 29; 31; 34; 35; 39] it is possible to show that 
if T is a Hilbert space operator such that Lat T contains a denumerable basic system 
of subspaces {«„} such that Tn = T\SKn either satisfies An@(). + QB)£Sf(Tn)- for 
some An and some nilpotent Qn with Q^O or a universal quasinilpotent, or 
a(Tn) contains more than n points, then given an arbitrary compact set KczC 
such that every / £ K\cr ~ belongs to a component of K that intersects 

<;„= H [ U a ( T n ) Y i then there exist A and B q.s. to T such that a(A) = K{jG~ 
m = l n—m 

and a(B) = K(Ja(T). The details of the construction are left to the reader. 

R e m a r k s , a) Let be a Banach algebra with identity. It is well known that 
the mapping a— o(a) from J1 into the family of nonempty compact subsets of 
C is upper semi-continuous with respect to the Hausdorff metric, but it is not 
continuous, in general ([5; 25; 29; 40; 42; 44]). In certain special cases(e.g.,a=lima„ 
for a commutative sequence {a„}, or a(a)=a totally disconnected set, etc.) it is 
possible to prove that a—a(a) is actually a continuous mapping. By a minor 
modification of the proof of Lemma 1, we can obtain the following sufficient con-
dition: "If a= l ima„ for a sequence {cz„} satisfying the conditions of Lemma 1, 
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then <x(a)=lim a(a„) (in the Hausdorff metric)". Examples 1 and 2 show that 
this condition cannot be too relaxed. 

b) In Lemma 1 and Theorem 1: The results remain true if the hilbertian sum 

is replaced by ll{x„}||=(j^ l |xj p) 1 / p for some p, etc. 
n=i 

c) If T is decomposable, then a(T)c.a(A) for every A q.s. to T([10]). Further-
more, if 9Ji£Lat T and A is q.s. to T, then a{T\W)f\a{A)^ ([14]); thus, if for 
every ).£a(T) and every e > 0 there exists an £6 Lat T such that a{T\yRk £ ) c 
cA(A, e) = {z: |A—z|<e}, then it readily follows that a(T)<^a(A) for every A 
q.s. to T. The hyponormal operators have the same property ([9]). The spectral 
inclusion could be strict, e.g., for the operators of Examples 1,2,3. However, by 
combining the results of [23] and the examples of [28] it is possible to show that 
for every infinite dimensional separable Banach space 3C, there exist operators 
A, O £ ¿£(9C) such that A and Q are nuclear operators, Q is quasinilpotent, a (A) 
is the union of {0} and a sequence of points converging "very fast" to 0, si(A) 
and si(Q) are strictly cyclic algebras, sd(A) (-si(Q), resp.) is se.misimple ( a radical 
algebra, resp.; see definitions in [42]), every L q.s. to A (to Q, resp.) is actually 
similar to it and it has the same spectrum as A (as Q, resp.). Moreover, for every 
finite m, Lat A contains a basic system of invariant subspaces, which are 
maximal spectral subspaces for the decomposable operator A ([10]); however, 
Lat A does not contain any denumerable basic system of subspaces (see [28]). 

d) Every subspace in a basic system of invariant subspaces of ££(3C) is 
actually bi-invariant. Many examples regarding operators T such that a(A)?*a(T) 
for some A q.s. to T deal with operators having a denumerable basic system of 
hyperinvariant subspaces. This is not always the case: indeed, a straightforward 
computation shows that for the q.s. operators A and T involved in the example 
of HOOVER [39], every pair of non-trivial hyperinvariant subspaces of T (or A) has 
a non-trivial intersection. 

e) There is little hope to improve [12, Theorem 1.4] or Corollary 1. Indeed, 
if U denotes the bilateral shift "multiplication by eie" in L2 (Unit circle, Lebesgue 
measure) and w(ei(,)=sign 9 ( - 7 t < 0 < + ? r ) , then H2 and uH2 are invariant (but 
not bi-invariant!) subspaces of U such that H2f]uH2= {0}, L2 = H2\/uH2, but 
(by Apostol's result; [2]) U cannot be q.s. to (U\H2)®(U\uH2). 

f ) [15, Theorem 2.1] admits the following mild generalization, which follows 
from Theorem 1 and the same proof as in [15]: If i f (ft) and Lat T contains 
a basic system of subspaces {&„} such that T„ = T i s a spectral operator for 
every n, then T is q.s. to a spectral operator. 

3. The subsets (A), (B) and (C) are dense in From this point on, we 
shall only consider Hilbert space operators. The density of (A) follows from [19]. 
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L e m m a 2. Given T£jS?(ft) and £>0, there exists Tt££e{&) such that 
|| T— r e | | <£ and Tt is similar to (A + Q)®C, where a (A + Q) lies in the unbounded 
component of C\o(C), E(T)=E{C) and Q is an arbitrary operator such that 
«x(ß)cd(0,e/5). 

P r o o f . Proceeding as in [45], we can find an L€JSP(ft) such that 
| | r - L H 3 e / 4 and 

MÖ3 
with respect to an orthogonal direct sum decomposition of ft into 
two infinite dimensional subspaces, where dist [A, ff(r)] = dist [A, c7(C)] = s/2 and 
A lies in the unbounded component of C \ f f ( C ) . 

By the corollary of ROTA [ 4 3 ] (see also [ 3 0 ] ) , we can find a Q' similar to Q 
such that Hß'll <E/4. Then 

is similar to (A + 2 ) © C, by Rosenblum's corollary ([41, Corollary 0.15]) and 
| | r - 7 J S | | r - Z . | | + | | e ' H e . • 

As in HOOVER [39], we can find two q.s. operators g i and Q2 such that 
is quasinilpotent and o(Q2) = A(0, £/6)~, and ¡IQjll <s/4, j= 1,2. By using the 
results of [19], C can be replaced by an operator Ce£{BQT)qs with the same 
spectrum as C such that ||C —Ce||<e. Then the operator T • given by 

t ° J ~ { o c j 

satisfies \\T—Tej\\<£, j—1,2, and it is immediate from our construction that 
TEl and Tc2 are q.s. operators of the class (BQT) q s . 

Since a (T e l ) is a proper subset of o(Ti2), it follows at once that (B) and (C) 
are dense in i f (ft). 

Given T£ £?(&), let TE be constructed as in Lemma 2 with Q = V=the Volterra 
operator, and let W be an invertible operator such that TS=W[(X + V)(B 
©C] Then s/(TE) =W[s4{V) ©si(C)] W~\ Alg Lat s/(Te) = W[k\g Lat V)© 
©AlgLat and similarly for the other three algebras naturally asso-
ciated with T£ (all these facts can be easily checked by using the results of [41]); 
moreover, appr (TE)"= W[appr (K)"®appr (C)"] W'1 ([24]). 

Since AlgLat V ([41]) and 
T£appr(K)" (see [41] or [20, Proposition 6]), it follows that none of the four al-

•gebras associated with Tz is reflexive and appr (Te)" ^¿rf" {Tt). Thus, we have 

C o r o l l a r y 2. The complements of the sets (G), (H) , (/), (J) and (K) are dense 
in J5?(ft). 
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4. (D) is dense in áf(St). The main ingredient is the construction of a large 
family of operators with a strictly cyclic double commutant. 

Let Q be a nonempty bounded connected open subset of the plane such that 
dQ (the boundary of Q) consists of finitely many pairwise disjoint regular analytic 
Jordan curves (We shall say that "Q is an open set with analytic boundary" or 
"dQ is analytic" as a shorthand notation) and let A — {A1, ..., l m } be a finite 
subset of C \ i 2 ~ having exactly one point in every component of this last set. Let 
e > 0 be small enough so that AC\(Q~+et)=® (where K+A = {z+X\ z£K}, K<zC) 
for every r£[0,1] and define r = {(z, i )€CX(0, 1): z-etfJ)Q). It is apparent that 
there exists an analytic diífeomorphism <p: {(z, / )€CX(—1, 2): z — etidQ}^ 
where is the union of m open annulus with pairwise disjoint closures in the 
plane; then <p | f : T — Í2„ = <¡¡>(T) is an analytic diífeomorphism such that if dm0 

denotes the planar Lebesgue measure on Q0 and dmr is the area measure on f 
induced by Lebesgue measure in R3, then there exists ó, 0<<5< 1, such that 
dm0{<p(fi)]Smr(B)(1 /5)m0[(p(B)] for every Borel set fici; moreover, q> can be 
chosen to be a conformal mapping. 

The Sobolev space W2,2 (Q0) of all distributions u on Q0 whose distributional 
partial derivatives of order belong to L2(Q0,dm0) can be identified 
with a Banach algebra (under an equivalent norm) of continuous functions on 
£2g (see [1, Chapter V]) and it is clear that <p induces an isomorphism between 
this space and W„=W 2 ' 2 (T) (defined in the obvious way on the analytic differenti-
able manifold T). Furthermore, by using this isomorphism, it is easily seen that 
there exists a constant C such that, given f,g£ W „ , the pointwise product 
(.fg)(z,t)=f(z,t)-g(z,t) defines an element of and | | / g | | s C | | / | | ||g|| (where 
|| • || denotes the norm in W„) ; hence, W „ is a semisimple Banach algebra with 
identity e(z,t) = l, under an equivalent norm. The Gelfand spectrum Ji(W„) 
can be naturally identified (via point evaluations; see [1;21]) with r ~ . 

Let A c o =A 2 , 2 ( r ) be the closure in of the functions of the form 

f(z,t) = Z t k f k ( z ) , » = 1 ,2 , . . . , ( # ) 
k=0 

where the fk's are rational functions with poles in a subset of A (these are the 
"analytic elements" of By using the maximum modulus principle and Runge's 
theorem (see, e.g., [21]), it is easily seen that every / € A „ can be continuously 
extended to a unique function defined on 3 = {(z, i )€CX[0, 1]: z—£í£í2 -}, an-
alytic with respect to z£Q+et for every /6[0, 1] and, on the other hand, every 
function / (z , t) satisfying these conditions such that / | T € W „ , is an element of A„,. 

, A^ is a subspace of W „ invariant under r = M 2 C i f ( W M ) defined by 
Tf(z, t)=zf(z, t) (here and in what follows, Mg denotes the operator "multiplica-
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tion by g"). Moreover, A„, is a Banach algebra with identity e, and Jt (A^) can 
be naturally identified with S. 

Let L=T\A„ and let Pr: C X R - C be the projection onto C {Pr(z, r ) = z ) ; t h e n 

L e m m a 3. With the above notation: 
(i) o(T)=E,(T)=Er(T)=El(L)=Pr(r-), where £,(•) (Er(-), resp.) denotes 

the left (right, resp.,) essential spectrum. 
(ii) a (L) =Er (L)=Pr (£). 

(iii) K e r ( A - L ) = {0} and dim Ker (A-L)* = °° (so that ind ( A - L ) = 
for every X£o(L)\E,(L). 

(iv) si"(L)=jtf'(L) = {Mg : g£ A„) , i.e., the double commutant of L is the 
maximal abelian subalgebra of consisting of all multiplications by elements 
of A„ and this is a strictly cyclic algebra with strictly cyclic vector e. 

P r o o f , (i), (ii) and (iii) follow from the previous observations. The proof 
is left to the reader. 

(iv) By using several well known results about strictly cyclic algebras 
([26; 27; 37]), it suffices to show that, if then A=Mg, where g=Ae. 
The remaining of the proof is an "ad hoc" modification of an argument 
used in [28]. 

Given t], T£[0, 1], ri^T, choose <5, 0<<5< \r]—x\/S, and let hn(z,t)£ A„ be 
the restriction to f " of the function defined by 

(0 outside (>} — 3 S, t/ + 3<5), 
(r->7 + 3<5)2/2<52 in fo-35, »1-25], 
1 -(/-!/+<5)2/2<52 in [>/ - 26, r\ - 5], 
1 in [ q - 5 , t]+5], 
l-(t-ri-d?/2S* in [ti+6,ti+2S\, 

,(f->;-3<5)2/2<52 in [ti+2S,t] + 38]. 

K(z,t)=< 

Define hx(z, t)=hn(z, t-rj+x) and let [ 0 , 1 ] - [ T - 4 S , T + 4 5 ] N [ 0 , 1 ] be an 
arbitrary C°° bijection such that ij/(t)=t in [ T — 3 ( 5 , T + 3 5 ] D [ 0 , L] and 
min {<A'(O:i€[0, 1]}>0. 

Define W T 4 = W 2 , 2 ( { ( Z , I ) € T : | R - T | < 4 < 5 } ) exactly in the same way as W „ 

and let Tt S be the "multiplication by z" in this new space. Let A t 4 be the sub-
algebra of the "analytic elements" of W t s (defined in the obvious way) and 

The properties of ij/ make it clear that S: ATtS-*Am defined by Sf(z, t}~ 
= / ( Z + E [ ^ ( / ) — I ] , I/R(I)) is a (not necessarily isometric) isomorphism .of 
Hilbert spaces. 

Our choice of 5 makes it possible to find a disc A = A (A (rj, x), e8j2) contained 
in 8+&i such that A~C\o(Lxt)—$. 
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Finally, let R: -*H2{A) be the "restriction in the »/-fiber" mapping defined 
by Rf(z)=f(z, f])\ziA and let LA be the "multiplication by z" in H2(A). 

Clearly, if Mn and Mt are the multiplications by hn and hz, respectively, then 
(L), so that L(MnAMt)-(MnAMx)L=Q whence we obtain 

0 = R L M n A M z S - R M n A M x L S = L d ( R M n A M r S ) - ( R M ! i A M l S ) L z < i (Beware! LS^ 
7±SLz S\ however, it is not difficult to check that >p(t) = t in [T-3<5, T + 35] D [0, 1J 
yields MzLS=MtSLTii). 

Since A(LA)=A~ is disjoint f rom O(LR S) by construction, it follows f rom 
Rosenblum's corollary ([41, Corollary 0.13]) that RMnAMtS=0; moreover, since 
5 is an isomorphism, RMnAMT=0. Since Q is connected, the vanishing of f(z,rj) 
on A implies that / ( z , r\) = 0, whence we conclude that the value of Af(z, x) only 
depends on the values of / ( z , t) for t in a neighborhood of x. 

We shall need a little more: A straightforward computation shows that 
\\(t-x)khT(z, O I I - 0 as <5^0, uniformly with respect to k (fc = l , 2, ...). Let / 
be any function of the form ( # ) and let F(z, t ) = f ( z , x); then 

/ ( z , t) = F(z, t)+ % (t - x)kfk(z), 
k=l 

where the fk's are rational functions of z with poles in a subset of A. Since A com-
mutes with Mz, it is clear that AMF=MFA and AMfk—MfkA for £: = 1,2, 
and therefore AF(z, t) = AMFe(z, t) = [MF(Ae)\(z, t) = F(z, t)g(z, t)=g(z, t)f{z, t)y 

which is equal to g(z, x)f(z, x) for t = x. Hence, 

Af{z, x) = AF(z, T ) + 2 fk(2) LIM A[(F-xf HT](z, T) -
k=1 

= g(z, X)/(z, T), for every x£ [0, 1]. 

Therefore, Af(z,t)=g(z,t)f(z,t) on F~ for every / of the form ( # ) . By 
continuity, we conclude that A=Mg. • 

By a formal repetition of the proof of [28, Theorem 8] and the above result» 
we can easily obtain 

L e m m a 4. Let Q, s and A be- as in Lemma 3 and let n be a positive integer. 

Define W „ = © W 2 , 1 (dQ+ke /n , dmk), where dmk is the "arc length measure" oh 
k = 1 

dQ+ke/n and VJ2,1(dQ+ke/n, dmk) is the Sobolev space of all distributions u on 
dQ+ke/n with distributional derivative (with respect to "arc length") in 
L2(dQ+ks/n, dmk), with the norm 

11/11 ={ / [\f(z)\2+\dfldmk(z)\2]dmk}U\ 
BH+ke/n 
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and let A„ be the subspace of "analytic elements" of W„ (i.e., A„ = W„-closure 
{(/1? /2, ...,/„): fk is rational with poles in a subset of A}). 

Then W„ and A„ are semisimple Banach algebras of continuous functions with 
identity (under an equivalent norm), Ji(W„) (Ji(A„), resp.) can be naturally iden-
tified with U (dQ+ke/n)X{k/n) ( U +ke/n)x{k/n}, resp.)cCX[0, 1]. 

k=l 1 
Furthermore, if Tn = Mz in W„, then A„ is invariant under T„, and T„ and its 

restriction L„ — Tn |A„ satisfy 

(i) c(T„) = Et(T,) = Er(T„) = E,(L„) = Er(Ln) = Pr[Ji(Wn)}. 

(ii) a(L„) = Pr[Jt(An)\. 
(iii) Ker (A — Ln) = {0} and dim Ker (A - L„)* = n (so that ind(A-L„) = -n) 

for every A£ (\ (Q + ke/n)<Z(r(Ln)\E(Ln). 
k = 1 

(iv) si' (L„) = si" (Ln) = {Mg: g€A„} is a maximal abelian strictly cyclic sub-
algebra of JS?(AB). 

The proof is left to the reader. 
Given Q with analytic boundary, £ > 0 and A as indicated, and an index 

n, - " » S / i < 0 , we shall denote by T(Q,s,ri) and L(Q, e, n) the operators defined 
by Lemma 3 (for n=—°°) or by Lemma 4 (for - = < n < 0 ) . If + 
we shall use the adjoint operators T(Q*, £, — n)* and L(Q*, e, —rif. 

Now we are in a position to prove the main result of this paper. 

T h e o r e m 3. The subset (£>) of those operators T similar to A®B, where 
(i) a (A)r \a{B)=9\ 

(ii) si"(A) and si"(B*) are strictly cyclic algebras; 
(iii) Aa—A and XB—B* are semi-Fredholm operators of index — for suitably 

chosen ).A and kB\ 
(iv) Sf(A ffi B) © B) and this set does not intersect (BQT)?J; is dense 

in ¿'(ft). 

P r o o f . The result follows by modifying the proofs in [6]. 
By [6, Proposition 1.4] (Indeed, by a minor modification of it), given T£ JSf(ft) 

and £>0, there exists an operator 7i such that. || — 7\]| < e and 

N-l 0 * * * 
0 N2 * * * 
0 0 S1! * * 

0 0 0 AT3 0 
10 0 0 0 N j 
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(with respect to a suitable orthogonal direct sum decomposition of ft into five 
subspaces), where 

a) Nj is normal and a(Nj) = E(Nj) for j= 1 , 2 , 3 , 4 ; 
b) a(N2)\J<j(N9) is the closure of a nonempty open subset Q0 with analy-

tic boundary; t 

c) <T(N1)n<r(N4)=0, (t(Nj) and a(N4) are disjoint unions of pairwise disjoint 
regular analytic Jordan curves, a(N1)cda(N2)r\ dd0 and a(AQczda(N3) f)dQai 
oiNj) («7(^4), resp.) is contained in the open set {2: (A — T) is semi-Fredholm of 
negative (positive, resp.) index}; 

d) is similar to a direct sum F® S2, where F is a normal operator with 
simple eigenvalues (i.e., cyclic) acting on a finite dimensional subspace, such that 
a(F)f] [a (N2) U ff (AQ U ff (S2)]=0, and da(S2)c:Q-; 

e) The Weyl spectrum w(T) of T satisfies the inclusions w(T) = 
=<r(77\{A: ( A - T ) is a Fredholm operator of index 0}cff(Ar2)U<T(AyUff(S2)c 
c w ( T ) e , where K={X\dist (A, (K<zC); 

def 
f ) min. ind (A—52) = min {dim Ker {X — S2), dim Ker (A—S2)*}=0 for every A 

such that (A — S2) is semi-Fredholm. 
Clearly, a(7\) is the disjoint union of its clopen subsets cr(F) and <t(7I)\<t(F) 

so that, by ROSENBLUM [41 , Corollary 0 . 1 5 ) , Tx is similar to F® T2, where 

T9 = 

* * * * 

0 N2 * * * 
0 0 S^ * * 

0 0 0 N3 * 
0 0 0 0 N, 

m p 
According to c), i V 1 = © Nlk ( W 4 = 0 TV4y), where a(Nlk)=E(Nlk) (<r(iV4.) = 

k=l j=l 
=E(Nlj), resp.) is the boundary of a unique component Qk ( Q j , resp.) of the semi-
Fredholm domain of T2, where ind (1 — T2)=nk<0 0, resp.) for all A£i2 t , 
¿ = 1 , 2 , ...,m (X£Qj, 7=1,2, ...,p, resp.). 

Let AM={11, A2, . . . , Xq, fa, n2, . . . , nq} be a finite set having exactly two 
points, Aa and nh, in each of the q components of Q0. Replacing, if necessary, e 
by an s ' , 0 < e ' < e , we can assume that the three sets ct(F), (AM)E and (£20)c are 
pairwise disjoint. 

Let T(Qk,s,nk) (fc=l, '2, . . . , m) and T{Q*,e, - n , ) * (7 = 1,2, ...,p) be the 
operators constructed as above indicated. Since dH{a(Nik), a[T(Qk, e, n t ) ]}^e 
(dH denotes the Hausdorff distance), it follows from [35] that there exists Tk similar 
to T(Qk,e,nk) such that 117^—iVu||<2e, k=1,2, ...,m. Analogously, there exists 
T] similar to T(Q*,s,-itj)* such that \\TJ-N^W^le, j=l, 2, ...,p; thus, if 
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m p 
Mj = © Tk and M4 = © Tj, and Ta is the operator obtained from T2 by replacing 

* = 1 7 = 1 
Nt by Mi and N4 by M4 , then \\T2-T3||-=2e. 

It is clear that Mx has an invariant subspace such that £1=Af1 |9K1 is similar 
m 

to © L(Qk, e, nk) and that M4 has an invariant subspace 9J?4 such that the 
i P 

compression Li of M4 to is similar to © L(Q* e, — n,)*. Since the spectra of 
i 

the components of these direct sums are pairwise disjoint, it follows as in'the proof 
of Corollary 2 that si" (L^ and si" (L4) are strictly cyclic operator algebras. 

Proceeding exactly as in the proof of [6, Proposition 2.1], we find out that 

T3 = 
Lx * 
0 Sa 

0 0 La -'i 

(with respect to a suitable orthogonal direct sum decomposition), where SZ£BQT 
and (j(S3)=E(S3) = Qg. 

Let Ci = 0 (¿h+L[A(A,, e/2), e/2, - « ] ) and C 4 = © (M h+L[A<jih , e/2), 
Ji =1 »=1 

e/2, — «>]*). By using the results of [ 3 4 ; 3 5 ] and ROSENBLUM [ 4 1 , Corollary 0 . 1 5 ] , 

we can find an operator 
(C{ *ï 
l o Ci)' 

with C'i similar to C, . , /=1,4 , such that | | 5 3 — 5 4 | | < E , SO that if Ti is the operator 
obtained from T3 by replacing S3 by S4, then a formal repetition of previous argu-
ments shows that HTg —T4||<£ and T4 is similar to L1®C[®.C'i®Li which, in 

m 
turn, is similar to A0(BB, where A0={^ L(Qk, s, nk)j®Cx and 

B - C 4 ( B { © l ( m , e, -«;)*}• ' 
. j 

Thus, if A = F@A0, it readily follows that there exists an operator Th similar 
to A®B such that \\T-Tb\\<4e. 

Since A and B clearly satisfy (i)—(iv), we are done. • 

C o r o l l a r y 3. {E)mn, (F), (G), (H), ( / ) and (J) are dense in JS?(it). 

P r o o f . The proof will be just sketched. Repeat exactly the same proof as 
above replacing AM.by AMNTI^{Xi, ...; ..., nq, v% ..., vqi nx, ..., TT4} with 
the same.characteristics as AM and four points, Xh, ph, vh, nb, in each component 
of O0. • • • 
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4 4 
(£)„,„: Replace A and B by / i © { © v j \ and ' 5 © { © nh/\, resp., where 

7m (/„) is the identity on a Hilbert space of algebraic dimension m («, resp.), and use 
the.results of [27]. 

q 
(F) Replace A by A © { ® (vh + Q)\, where Q is any nilpotent of infinite rank. 

/1=1 
The result follows as in Theorem 3 by using the results of [3]. 

(/) and ( / ) : These two cases follow at once from Theorem 3, the fact that A „ 
and A„ are semisimple Banach algebras and [47]; it is easily seen that si"(A)=si' {A) 
and si"(B)=si'(B) are reflexive. 

(G) and (H): These two cases follow at once from the above observations abou 
si" (A). and si" (B) and the results of [37; 38]. • 

R e m a r k . An alternative proof for the cases (G)—(J) can be obtained by using 
the Apostol—Morrel dense class C0 (S\) (see definition and properties in [6]) 
and the results of [41]. 

5. (K) is dense in JSf(ft). The proof is a "trivialization" of that of the case (D). 

L e m m a 5. Let Q be an open set with analytic boundary, let rf)=dQx(0, 1) 
and S o = i 2 " X [ 0 , 1]. W 0 o o =W 2 , 2 ( r 0 ) (defined as in Section 4) has the same pro-
perties as and the subalgebra A0oo of "analytic elements" of W0oo 

(A0oo= {/£W0 o o; f ( z , t) is analytic with respect to z£Q for every /£[0, 1]}) has 
the same properties as ATC. 

If T0 = MZ in W0oo and L0 = r 0 | A 0 „ , then: 
(i) <j(T0) = El(T0) = Er(T0) = El(L0) = dQ. 

(ii) a(L0) = E,(L0) = Q-. 
(iii) K e r ( A - £ 0 ) = { 0 } and dim Ker (A —L0)* = °° (so that ind (A—L0)= — 

for every X£Q. 
(iv) si'(L0)z> {Mg: g£A0oo}, so that jl[.si'(L0)]=\. 
(v) si"(L0)=si"(L0) = {Mg: g€ A0oo, g(z, t) is constant with respect to t for 

every (fixed) z£Q~}=norm-closure of the rational functions of L0 with poles 
outside Q~. ' 

(vi) a p p r ( / , 0 ) ' W ( / - , , ) . 
P r o o f : The statements relative to W0co and A0co (in particular, J4(W0oJR;F~; 

and J t ( A 0 a J ^ 3 0 ) can be proved exactly as in the previous section. Now (i), (ii): 

and (iii) are clear and (iv) is obvious. 
(v) L&t A£si"(L0). Since A commutes with the maximal abelia'n algebra of 

all multiplications by the elements of A0oo, A must be a multiplication too: A=Mg, 
where g Ae(Aa„.. . -. 

For every T£[0, 1], define Cz by CJ{z, t)=f[z, 1/2 + (i—r)/2]. By using, 
e.g., [1], it is not difficult to see that Cz is bounded and commutes with A; the/e-

8* 
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fore, g{z, T) = Ae(z, r)=ACte(z, r) = C,Ae(z, r) = CTg(z, r)=g(z, 1/2), i.e., g de-
pends only on z. 

By the definition and properties of A0oo, it follows that g(z,t) is the norm-
limit of a sequence of rational functions with poles outside Q~. Since si' (L0) 
is strictly cyclic, this implies that A=Mg is a norm-limit of rational functions of 
L0 with poles outside Q~ (see [37]). This proves (v). 

(vi) It is obvious that for every appr (C)" is inverse-closed, so that 
appr (C)" always contains the norm-closure of the rational functions of C with 
poles outside o(C). Now (vi) follows from (v). • 

L e m m a 6. Let Q be an open set with analytic boundary, let n be a natural 
number, let W0„ be the direct sum of n copies of W2 ,1 (dQ, dm) and let A0n be the 
subspace of "analytic elements" of W0n. Then W0n and A0„ are Banach algebras with 
identity (under an equivalent norm), Ji(W0n)^dQX{l/n, 2/n, . . . , 1} and Ji(A0)1)% 
^ Q~X{l/n, 2/n, ..., 1}. 

If T<Sn = Mz in W0n, then A0n is invariant under T0n and its restriction 
Lon = Ton\Kn satisfy 

(i) G (T0n) = E, (T0n) = Er {T0n) = Et (L0n) = Er (L0n) = dQ. 
(ii) G(L0„) — Q~. 

(iii) Ker ( ; . -£ 0 „ )={0} and dim Ker (A — L0n)*=n (so that ind (). — L0n)=—n) 
for every X£Q. 

(iv) si'(L0n) ~ A(
0"xn) is the algebra of all nXn operator matrices with entries 

in {Ms:g£A„n}, so that ¡i[si'(L9„)} = 1. 
(v) si"(L0n)=si"(_L0n) = {Mg: g£A0„}= norm-closure of the rational functions of 

L0n with poles outside Q~. 

(vi) appr (L0n)"=si"(L0n). 
The proof (that can be easily "modelled" on that of Lemma 5) is left to 

the reader. 

Now it is clear that if r = F © { ® L(Qk, «*)}©{© L(Q* -« , )*}, where F 
i j=i 

is an operator acting on a finite dimensional space, L(Q,ri) is the operator 
defined by Lemma 5 (for n= — °°) and by Lemma 6 (for - « < « < 0 ) and 
{or(f), {i2~}™=1, {£2j~}y=1} (Osm, /»<«=) is a family of pairwise disjoint compact 
sets, then appr (T)"=si"(T) = norm-closure of the rational functions of T with 
poles outside a{T). 

A formal repetition of the proof of Theorem 3 shows that the operators in 
JSf(St) that are similar to some T as above form a dense subset, whence we obtain 

C o r o l l a r y 4. (K) is dense in i f ( f t ) . 
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