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Affine algebras in congruence modular varieties 

C H R I S T I A N H E R R M A N N 

Algebras which are polynomially equivalent to a module have been characterized 
by CSÁKÁNY [3], [4] in terms of the associated system of congruence classes. Re-
cently, SMITH [ 1 0 ] and GUMM [7] characterized such algebras within congruence 
permutable classes following the lines of "Remak's Principle", cf. [2, p. 167]. In 
this note their results will be extended to congruence modular classes. 

D e f i n i t i o n . A (general) algebra A is called abelian if in the congruence 
lattice of AX A there exists a common complement of the kernels of the two 
projections. 

T h e o r e m . Every abelian algebra in a congruence modular variety is polynomially 
equivalent to a module over a suitable ring. The abelian algebras form a subvariety. 

Here the polynomial equivalence of two algebras with the same base set 
means that the sets of their algebraic functions coincide. 

C o r o l l a r y A. Let si and 3S be subvarieties of a congruence modular variety, 
si abelian and 39 congruence distributive. Then every algebra in the join of si and 
S8 is a direct product of an algebra in si and an algebra in 38. 

Now, the finite base theorems of BAKER [1] and MCKENZIE [9] join into one. 

C o r o l l a r y B. There exists a finite equational base for every congruence modular 
variety which is generated by finitely many finite algebras each of which is either 
abelian or generates a congruence distributive subvariety. 

The idea of the proof can be ea. ily stated: For an abelian group A the differ-
ence is a homomorphism of A2 onto A which has the diagonal £> = {(*, x)\x£A} 
as its kernel. Thus, the group structure can be recovered from the natural homo-
morphism A2-*A2/D via the identification x>--(x, 0)+£> of A and A2/D. In general, 
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it is still true that an abelian algebra has a congruence x which has D as a class 
— cf. HAGEMANN and HERRMANN [ 8 ] — and we may define the difference by the 
natural homomorphism A2-j-A2jx. Assume for a moment that 0 is an idempotent 
element of A. Then x»-»[(x, 0)]x is an embedding of A into A2/x but not necessarily 
onto. Therefore, a limit construction is used to embed A into an algebra B which 
is closed under the group operations. Using DAY'S [ 5 ] terms for congruence modular-
ity one sees that A is a subgroup, too. 

1. The centring congruence. The proofs rely on results of HAGEMANN and 
HERRMANN [8]. Thus, a general assumption to be made is that the algebras are 
strictly modular which means that every "diagonal" subdirect product B^A" — 
with n finite, (x, . . . , x)£B for all x in A — is congruence modular. We write xy 
for pairs, xyzu for quadruples, [a] a for the congruence class of a modulo a. Let 
tj0, t}x denote the kernels of the two projections of A2 onto A. 

P r o p o s i t i o n 1. A strictly modular algebra A is abelian if and only if there 
is a congruence x on A2 such that 
(C) t i o n x = r ] i n > c = 0 
(RR) xxxuu for all x and u in A. 
If A is abelian then x = ((A) is uniquely determined and it holds 
(RS) xyxuv implies yxxvu 
(RT) xyxuv and yzxvw imply xzxuw 
(SW) xyxuv if and only if xuxyv. 

P r o o f . Everything but (SW) is shown in [8], Thm. 1.4 and Prop. 1.6. Now, 
define X by xykuv if and only if xuxyv. Due to (RR), (RS) and (RT) A is a con-
gruence on A2. Since x is reflexive it satisfies (RR). Finally, assume xyXxv, i.e. 
xxxyv. By (RR) we have yyxxx, hence yyxyv and y=v by (C). This proves 
f? o rU=0 and, by symmetry, ^ 0 1 = 0 . By the uniqueness of x it follows x=X 
which means (SW). 

L e m m a 2. Let A be strictly modular and abelian, x=£(A). Then A2/x is strictly 
modular and abelian, too, and with ?. = ̂ (A2/x) it holds for all a, b, c, e in A 

P r o o f . Consider A4 and let 0O, 01, 02, 03 be the kernels of the projections. 
For each /</ ' there is a "copy" x t j of x on A* given by 

Because of x0 1^©0C\6.1 and both permute and have join 1. There-
fore, the map <p with (p (x0 x2 x2 x3)=([x 0 Xj] x, [x2 x3] x) is a homomorphism of 

(1) 
(2) 

([ae]x, [be]x)X([ab]x, [ee]x) 
([ae]x, [bc\ x)X([ce]x, [ba\ x). 

x0x1x2x3xiJy0y1y2y3 if and only if x^jxy^j 
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A* onto C 2 where C=A2/x. Its kernel is £ = % i l x 2 3 . We claim that the image 
of fi=e+x120 x03 is the congruence ( (C) on C2 . We have to show 

x01(~)n = x2SC\n = s and xxxxfiuuuu for all x and u in A. 

The second is obvious. By modularity we get x01C) n=e+x0if~)x12r\x03. Now, 
consider Xq XJ XB Xqi n x12 n x^3y{iy-iy2y3. By (RS) we have x2x1xy2y1 and 
x1x0xy1y0, hence x 2 x 0 x y 2 y 0 by (RT). With x0x3xy0y3 and a second application 
of (RT) it follows x2x3xy2y3. This shows x0x1x2x3x23y0y1y2y3, i.e. x 0 1 f l x 1 2 n 
f)X03Qx23 and X01C\H=E. x23C\n=s follows by symmetry. 

By Proposition 1 the image of fi has properties (RT) and (SW), i.e. 

(3) " xyuvfiabcd and uvstficdef imply xystfiabef, and 

(4) xyuvfiabcd if and only if xyabfiuvcd. 

On the other hand, all the arguments about ¡x remain valid if we interchange x0i 
and x23 with x12 and x03. In particular, property (SW) reads then 

(5) xyuvfiabcd if and only if byucfiaxvd. 

Moreover, recall that x is reflexive and satisfies (RR). Thus, since n^xnC)x23 

and / i 2 x 1 2 n % , we have 

(6) xxuvfiaauv, (7) xyuufixycc, (8) xyuxpayua, (9) xyyvpxbbv. 

Now, we are ready to prove (1): aabafibabb holds by (8) and baaapbbba by 
(9) whence aaaafibaba by (3). eeaapaaaa holds by (6) and it follows eeaafibaba 
by the transitivity of ¡1. An application of (5) yields aeabfibeaa. Since beaapbeee by 
(7) one concludes aeabpbeee by the transitivity of ¡i. Thus, aebefxabee by (4). To 
prove (2) substitute in aaaafibaba b by c to get aaaa/icaca. By (6) it holds eeaaiiaaaa 
and by (7) eebbfieeaa whence eebbficaca by the transitivity of /1. Thus, 
aebc\iceba by (5). 

2. Embedding into a "linear" algebra. Call an algebra A linear — with respect 
to an abelian group structure (A, + , —, 0) on A — if 0 is an idempotent element 
of A and if " —" (and " + ") are homomorphisms of A2 into A. Linear algebras 
are just reducts of modules: If A is linear let R be the set of all unary functions 
on A which are induced by terms in the language of A with 0 added as a constant. 
With pointwise addition and with composition R becomes a unitary ring. Its opera-
tion on A makes A a faithful unitary ^-module AR. Given any fundamental opera-
tion / of A one has 

f ( X l ...xn) = / ( x 1 0 . . . 0 ) + . . . + / ( 0 . . . Ox,), 

i.e. f is described by a term in the language of AR — cf. SMITH [10]. For a class 



122 Christian Herrmann 

<6 of algebras let D № ? , Sif, denote the class of all direct unions, homti-
morphic images, subalgebras, and finite subdirect products of algebras in resp. 

L e m m a 3. Let A be a strictly modular abelian algebra having an idempotent 
element 0. Then A can be embedded into an algebra B in DHP//4 which is linear 
with respect to an abelian group (B, + , — ,0). 

P r o o f . In view of Lemma 2 we may define a series of strictly modular abelian 
algebras: 

Aq = A, An+1 = A%/£(A„). 

Let n„ be the canonical homomorphism of A\ onto An+1. Clearly, for every n, 0 n + 1 = 
=[xx]l{An) is an idempotent element of An+1. Thus, with 0„=0 and s„x = 
=[*0]CC>4„) one gets due to (C) for every n an embedding e„: A„-»An+1 such that 
£„0n=0n + 1 . Let Am be the direct union over the system (A„,e„) and identify A„ 
with its image in Am. Applying Lemma 2(1) to A„ we see that for each n 
£

n+i07rn—7r
n+i°(£nX£„)- Therefore, a—b=n„(a, b) if a and b are in A„, defines 

a map of A2
m into A^ . By definition it is compatible with the fundamental operations 

of Am and it holds a—0=a, a—a=0. Moreover, by Lemma 2(2) it follows 
a—(b—c)=c—(b—a). Thus, with a+b=a—(0 — b) one gets an abelian group 
structure on A„ which makes it linear. 

3. Using the Day terms. For all of the following suppose that we work within 
a fixed congruence modular variety "V. Then, due to DAY [5] there are a number 
n and 4-variable terms m0, ...,mn in the language of Y such that the following 
identities hold in Y : 

(ml) m0(xyzu) = x and m„(xyzu) = y, 

(m2) m^xxzz) = x for all / = 0, ..., n, 

(m3) mfxyzz) — mi+1(xyzz) for i even, 

(m4) mt(xyxy) = mi+1(xyxy) for i odd. 

We define by induction p0(xzu)=x, 

r mi+1(pi(xzu), Pi(xzu), u, z) for i even, 
P, + i(xzu) { mi+1(pi(xzu), Pi(xzu), z, u) for / odd. 

Obviously, in y it holds pi(xzz)=x for all i. Put p(xzu)=pn_1(xzu). Then 
p(xzz)=x holds in "V. 

Call an algebra A affine if it is polynomially equivalent to a linear algebra 
Av or, in other words, if there is an abelian group structure (A, + , —, 0) on A 
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such:that for every fundamental operation / of A there is an / v linear with respect 
to (A, + , - , 0) such that 

f(x1...xn)=f*(x1...xn)+f(0-0). 

L e m m a 4. In an affine algebra A^y it holds p{xzu) = x—z + u. 

P r o o f . Since A is polynomially equivalent to an J?-module AR for each 
¿=0, . . . , « there are ai,pi,yi,5l in R and c, in A such that 

m-iixyzu) = XiX+Piy + JiZ + diU + Ci 

holds in A. (ml) yields 0 = wf(0000) = c i , x=mi(xx00) = (ai+Pi)x, and 
0 = mi{0Qzz)=iyi+di)z. Since AR is faithful it follows a,.+/?,- = 1 and ^,.+<5,-0. 
In particular, we get 

m,(xxvw) = x—diV + diW for i=0,...,n. 

By induction one concludes-

(io) Pk(xzu) = x - 2 (~iystz+ 2 (-1)'*/«-
i = l i=1 

On the other hand, (ml) yields 0=m0(0y00) = p0y and 0=w0(000w)=d0w, as 
well as 0=mn(000u)=S„u and y=mn(0y00)=fi„y whence p0=50=8n =0 and 
j8„=l. Finally, (w3) and (w4) imply Piy=mi(0y00) = mi+1(0y00) = Pl+1y for i 
odd and (P, + 5i)y = mi(0y0y)=mi+1(0y0y) = (Pi+1 + 8l+l)y for i even. Thus, it 
holds Pi+1=Pi for i odd and Pi+1=Pi+8i—Si+1 for /' even. By induction one 

. ' k 
gets Pk=Pk+1= 21 — f ° r ^ °dd. In particular, with m=n — 1 if n even 

¡=1 m 
and m=n if n odd we have 1 =/?„= ^ ( - l ) ' ^ - . Then with (10) it follows 
p(xzu) = x — z + u. 1-1 

C o r o l l a r y 5. If a is a congruence of A (L'V such that Ala is affine then a permutes 
with every congruence of A. 

P r o o f . Let J? be a congruence of A and suppose xotyfiz. Then p(xyz)fix since 
p(xyy)=x holds in "V and p(xyz)az by Lemma 4. Thus, zap (xyz) Px. 

4. Proof of the Theorem. First, suppose that the abelian algebra A has an 
idempotent element 0. Construct the linear algebra A ^ ^ A according to Lemma 3. 
By Lemma 4 "here is a term p(xyz) in the language of "V such that p (xyy)=x= 
=p(yyx) holds in Ax. In particular, all subalgebras of Am are congruence permut-
able. and each of the embeddings £„ is onto: / j 1 c x = 1 implies that for every xy 
there is uv such that 0 0 ^ u v x x y which means uOxxy. Thus, in fact Am=A and A 
is linear itself. Since x—y+z—p(xyz). is represented by a term in the language 
of A we get every term of AR after joining 0 as a constant. In general, choose an 
arbitrary element 0 of A and consider the mape : A -+A2jx with x=[x0] Ji. A2/x 
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has the idempotent element [xx]x hence it is linear by the above. £ is still one-to-one 
by (C) and in view of Lemma 2 (1) it satisfies 

(11) / ( * i , •..,*„) = e/(*i , . . . , *„ ) -e / (0 , . . . ,0) . 

for every fundamental operation / of A. Hence, it holds 

(12) p(ex, ey, ez) = ep(x, y, z)—ep(0, 0, 0) = sp(x, y, z)-e0 = ep(x, y, z), 

since p is a term and e0=[00]x is the neutral element of the linear algebra A2/x. 
Therefore, s(A) is closed under the operation p(xyz)—x—y+z and an abelian 
group with zero 0=e0, x+z—p(x0z), and x—y=p(xy0). If we transfer the 
group operations via £ _ 1 to A then (11) states that A is affine. Moreover, by (12) 
we have p(xyz)=x—y+z on A. Indeed, A and A2 are congruence permutable 
and E is an onto map, too. Moreover, the full module structure of AR can be re-
covered from A after adding the constant 0. 

That the abelian algebras in a congruence modular variety form a subvariety 
is obvious by Proposition 1. As a defining set of identities one can use p(xyy) = 
=p{yyx)=x and the identities expressing the compatibility of p and the funda-
mental operations of "V; cf. GUMM [7]. 

5. Proof of Corollary A. First, observe that si and have only the trivial 
algebra in common. Every algebra in the join of si and $1 is a homomorphic image 
C/6> of a subdirect product CQAXB with A£si and Let a and /} denote 
the kernels of the projections of C onto A and B, respectively. Since C/oc+fi is in 
both si and 3$ it must hold «+ /?=1 . Then, by Corollary 5, C is the direct pro-
duct of A and B. 

Since B generates a congruence distributive variety, p is a neutral element of the 
congruence lattice of C (see [8, Thm. 4.1]) which implies 0 = <9 + a n / ? = ( 0 + a ) n 
Hf© +/?). Thus, CI© is itself a subdirect product of an algebra in si and one in 
3& and, by the above argument, even a direct product. 

6. Proof of Corollary B. Let # be congruence modular and generated by finite 
algebras Ax, ...{A„,B1,...,Bm where each At is abelian and each Bt generates 
a congruence distributive subvariety. Let si and be the subvarieties generated 
by the Ax, ...,A„ and the Bt, ...,Bm, respectively. Then ^ = D H P / S { B l t ..., Bm) 
is congruence distributive due to [8, Cor. 4.3] and has a finite equational base due 
to BAKER [1]. The variety si is polynomially equivalent (via finitely many constants) 
to the variety of all modules over a fixed ring R: take the free algebra on countably 
many generators in si and apply the Theorem. Since si is locally finite, R has to 
be finite. Thus, si has a finite equational base, too. 

By Corollary A si and are independent in the sense of GRATZER, LAKSER , and 
PLONK A [ 6 , Thm. 2 ] . In particular, one can define predicates for the congruences 
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which yield the direct product decomposition. Therefore, ($=si\l!% is finitely 
axiomatizable, i.e. it has a finite equational base. 

The author wishes to express his warmest thanks to the J. Bolyai Society 
and to B. Csákány and A. P. Huhn for inviting him to Szeged, the most 
appropriate place where to write this paper. 

Added in March 78. Since several reformulations of our Theorem have been 
discovered meanwhile it seems necessary to add the following 

Scho l ion . For a strictly modular algebra A the following are equivalent: 
(1) A is abelian. 
(2) For the commutator introduced in [8] it holds [lA, 1^1 = 0^ . 
(3) The diagonal D is a congruence class of A XA. 

Implications (l)=>-(2), (2)=>(1), and (2)-t>(3) are instances of Thm. 1.4, Observa-
tion 1.2, and Cor. 2.4 in [8] respectively. Moreover, using Cor. 1.2 it is easily seen 
that for, projective quotients a/jS and y/5 [y, implies [a,a.]Q/}. Thus, by 
Thm. 1.4 A is abelian if there is B and a£con(2?) such that B/ft = A and 1 B /B 
is projective to a quotient of a sublattice of con (B) which is isomorphic to the 
5-element lattice Ma. 
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