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A characterisation of binary geometries of types K(3) and K(4) 
L. KASZONYI 

I 
In connection with halfplanar geometries I introduced the property K(r) of 

binary geometries (see [2]). The aim of this paper is to give a new characterisation 
of such geometries for r = 3 and 4. 

First I give some definitions. 

D e f i n i t i o n 1. Let us consider the binary geometry G, which is embedded 
in the binary projective geometry r (i.e. in the geometry over GF(2), r(G)=r(r), 
G^r). A subspace (point, line, hyperplane) m of T is called an outer subspace 
(point, line, hyperplane) of G, if m is not spanned by G-points. 

We note that by the homogeneity of r this definition depends only on G. 

D e f i n i t i o n 2. A binary geometry G of rank n has the property K{r) if every 
subgeometry of G of rank n—r is contained in an outer hyperplane {n=r, 

D e f i n i t i o n 3. A set H={h1,h%, ...,hm} (ms 3) of hyperplanes of the binary 
projective geometry f is a hypercircuit if 

r{nh] = r ( n fcf) = r ( r ) - m + l 
Mj 

holds for every 1,2, ...,m}; m is called the length of H. 
We shall frequently use the following 

T h e o r e m 1. (Two Colour Theorem) bOG^Q holds for all hyperplanes b • 
of a binary projective geometry _r(pG) if and only, if G contains an odd circuit. 

The geometrical dual of Theorem 1 may be.formulated as follows: ,, 

T h e o r e m 2: A set of hyperplanes of a binary projective geometry r covers 
all f-points if and only if contains an odd hypercircuit. 
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Our theorem is the following: 

T h e o r e m 3. A binary geometry G of rank n 1) is of type K(r) (r=3, 4) 
if and only if for an arbitrary subspace a of G of rank n—r—1, the set Ji(a) of 
outer hyperplanes containing a contains an odd hypercircuit. 

First we prove 

L e m m a 1. A binary geometry of rank 4 is of type K(3) if and only if the set 
of its outer hyperplanes contains an odd hypercircuit. 

P r o o f . Sufficiency is clear by Theorem 2. We have to prove that if the set of 
outer planes covers the points of G then it covers the outer points of G as well 
(see Theorem 2). 

Let us assume indirectly that the set Ji% of outer planes of G covers the points 
in G but there is an outer point yx which is not covered by Jt3. Consider the outer 
plane and let / be a line of bx which covers PlG. The existence of such a line 
is trivial. Denote the planes incident in T to / and distinct from ¿>l5 by dx and d2. 
The set of planes {b1,d1,d2} covers all T-points. thus holds for 
an 1,2} by our indirect hypothesis. Let for example y i d d 1 \ f (see Fig. 1). 

We prove that for the set U=d1\f\{y1}, UczG holds. Let us assume in-
directly that U has a point y2 not in G. Consider the line l1=a(y%, y2) *) and set 
gi=ff)li- Choose a point g of d2 not on / and let l2=a(g1,g) (see Fig. 2). It 
is easy to see that the plane 62=(7(/1U/2) is an outer plane containing ft, a 
contradiction. 

*) c(...) denotes the subspace of /'spanned by the set given in the parentheses. 
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We show that U is an oval of dl. Let ux, u2£U be arbitrary, a(u1, u2)H/0 
and fC\U=Q, thus every line of U consits of two points. But | i / | = 3 , therefore 
U spans di. It is easy to see that yx is a nucleus of U (i.e. the common point of 
tangentials to U). 

Let ux£U be arbitrary, consider the outer plane bz containing ux. The line 
/ i=¿3 H d1 cannot be tangential to U, thus fx intersects U in two points, say at ux 

and M2 (see Fig. 3). This means that fx covers all the points of ¿>3, and the points 
of f2=d2C\b3 and not on / are outer points. Therefore the plane ff ( / 2 U {y^) is 
an outer plane containing yx, a contradiction. 

L e m m a 2. A geometry G of rank 5 is of type K{4) i f f the set Jt± of its outer 
hyperplanes contains an odd hypercircuit. 

P r o o f . We have to prove that if the elements of J(i cover G, then they cover 
the outer points as well. Let us assume indirectly that G is covered by the elements 
of Jin but G has an outer point which is not covered by them. Let bm be an 
element of Jl^ for which \bmC\G\ is maximal. 

Let di be a plane of bm which covers the points of bm fl G. Let us denote by 
cx and c2 the hyperplanes containing dx and distinct from bm. The set {bm, cx, c2} 
covers all the /"-points. Let y^c^ (see Fig. 4). Denote the set (G D c J X ^ by V. 
Let us project V from yx to dx. We prove that the projection V meets all lines of dx. 
Let us assume indirectly that dx has a line I for which / f l K' = 0 holds. Let g2 be 
an arbitrary point of c2 not on dx. It is easy to see that cr({g2}U/U {yx}) is an outer 
hyperplane of G containg yx, a contradiction (see Fig. 5). Therefore V contains 
a full line fx. Let us consider the plane d2=a{fxyj{yx}). Making use of the fact 
that. V contains fx, we can see thai U=VC\d2 is an oval on d2, the nucleous of 
which is 

r, 

Fig. 3 Fig. 4 
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Let u£U be arbitrary, denote the outer hyperplane containg the point u by bu. 
We prove the validity of the following three statements: 

(i) d2C\bu is a line and a secant to U (i.e. |£/H(i/2(~lZ>u)| =2), 
(ii) ¿ » „ n c j n c g ^ , 

(iii) | & u n c | s 3 . ' 
Part (i). yi$bu, thus d2<tba, therefore dzf)bu is a line. The lines of d2 con-

taining u are either secants or tangential to U. The lines which are tangential to 
U contain thus d2C\bu is a secant. 

Part• (ii). Let UC\bu — {u,v}; assume indirectly that buC\Gr\c1 contains a 
point z not in U (see Fig. 6). The plane d3—a(u,v,z) covers Gf)bu, because 

Therefore d3C\d1 covers c2Obu. Using this fact we can see that 
o(c2C\bu\J {vx}) is an outer hyperplane, a contradiction (see Fig. 7). 

Part (iii). \buC\U\=2, thus we have to prove c 2 f ] 6 u n G ^ 0 . Assuming 
Co f]6U fl G = 0 we can see that <x(c2n6uU {vi}) is an outer hyperplane. 

Let U={u1,u2,u3}, and assume that UC\bU2={m15«2} and Uf)bU3= w3}. 
Set a(u1,u2)=s1, a(u1,u3)=s2, c1C\bUi=d4, c1f]bU3=dB, d1f]di=s4, d1C\d5=s5, 
g 4 5 = j 4 f l i 5 (see Fig. 8). 'We prove that the plane ff (s4U {yt}) contains a point g6 

not on (T(M3, 7i). Let us assume indirectly that 

{ff( i4U{y a})nG}\{«i„y i} = 0. 

Using (ii) we can see that a({c2Pl6U2}U {vj ) is an outer hyperplane. It is easy to 
see as well that ge is the point of the line «"(y^ g45) distinct from yx and g45.' Con-
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sider bgij. The line 0 d2 cannot be a secant to U by (ii), and cannot be tangential 
to U by y, $ , therefore bg^C\di=f1. 

We prove that I ^ D G I s l . Let us assume indirectly that | / 1 f l G | s 2 . Let 
g?, g8 €/i 0)G. Then the plane a(g6, g1, gg) covers b^HG. Using this fact we can 
see that the hyperplane <r({c2n6 }U {}>!}) is an outer hyperplane, a contradiction. 
Therefore |{./iUs4U.s5}OG|s=l, ' thus j Z ^ O G H ^ O G I ^ holds, contradicting 
(iii) and the maximality property of bm. 

Our Theorem 3 is now an easy consequence of Lemmas 1 and 2 and of the 
"Scum Theorem" (see [1]). 

The following assertion may be proved by induction on n—r(G) for r = 2, 3, 4: 
if the outer hyperplanes of the binary geometry G cover all of its subspaces with 
rank n — r then they cover all those of T as well. 

To prove it for general r it would suffice to settle the case n — r+1: 

C o n j e c t u r e . If the outer hyperplanes of a binary geometry G cover all G-
points, then they cover all /"-points as well. 

The conjecture is proved for r (G)=4 and /*(G) = 5 in Lemmas 1 and 2. The 
case r(G) = 3 is trivial. For /"(G)>5 the proof (if it exists) seems to be hard. 

9* 
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