A characterisation of binary geometries of types $K(3)$ and $K(4)$

L. KĀSZONYI

In connection with halfplanar geometries I introduced the property $K(r)$ of binary geometries (see [2]). The aim of this paper is to give a new characterisation of such geometries for $r=3$ and 4.

First I give some definitions.
Definition 1. Let us consider the binary geometry G, which is embedded in the binary projective geometry Γ (i.e. in the geometry over $G F(2), r(G)=r(\Gamma)$, $G \subseteq \Gamma$). A subspace (point, line, hyperplane) m of Γ is called an outer subspace (point, line, hyperplane) of G, if m is not spanned by G-points.

We note that by the homogeneity of Γ this definition depends only on G.
Definition 2. A binary geometry G of rank n has the property $K(r)$ if every subgeometry of G of rank $n-r$ is contained in an outer hyperplane ($n \geqq r, r \geqq 2$).

Definition 3. A set $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}(m \geqq 3)$ of hyperplanes of the binary projective geometry Γ is a hypercircuit if

$$
r\left(\bigcap_{\substack{i=1 \\ i \neq j}}^{m} h_{i}\right)=r\left(\bigcap_{i=1}^{m} h_{i}\right)=r(\Gamma)-m+1
$$

holds for every $j \in\{1,2, \ldots, m\} ; m$ is called the length of H.
We shall frequently use the following
Theorem 1. (Two Colour Theorem) $b \cap G \neq \emptyset$ holds for all hyperplanes b of a binary projective geometry $\Gamma(\supset G)$ if and only if G contains an odd circuit.

The geometrical dual of Theorem 1 may be formulated as follows:
Theorem 2: A set \mathscr{L} of hyperplanes of a binary projective geometry Γ covers all Γ-points if and only if \mathscr{L} contains an odd hypercircuit.

Received June 20, 1977, in revised form March 3, 1.978

Our theorem is the following:
Theorem 3. A binary geometry G of rank $n(\geqq r+1)$ is of type $K(r)(r=3,4)$ if and only if for an arbitrary subspace a of G of rank $n-r-1$, the set $\mathscr{M}(a)$ of outer hyperplanes containing a contains an odd hypercircuit.

First we prove
Lemma 1. A binary geometry of rank 4 is of type $K(3)$ if and only if the set of its outer hyperplanes contains an odd hypercircuit.

Proof. Sufficiency is clear by Theorem 2. We have to prove that if the set of outer planes covers the points of G then it covers the outer points of G as well (see Theorem 2).

Let us assume indirectly that the set \mathscr{M}_{3} of outer planes of G covers the points in G but there is an outer point γ_{1} which is not covered by \mathscr{M}_{3}. Consider the outer plane b_{1} and let f be a line of b_{1} which covers $b_{1} \cap G$. The existence of such a line is trivial. Denote the planes incident in Γ to f and distinct from b_{1}, by d_{1} and d_{2}. The set of planes $\left\{b_{1}, d_{1}, d_{2}\right\}$ covers all Γ-points. $\gamma_{1} \notin b_{1}$, thus $\gamma_{1} \in d_{i} \backslash f$ holds for an $i \in\{1,2\}$ by our indirect hypothesis. Let for example $\gamma_{1} \in d_{1} \backslash f$ (see Fig. 1).

Fig. 1

Fig. 2

We prove that for the set $U=d_{1} \backslash\left\{\left\{\gamma_{1}\right\}, U \subset G\right.$ holds. Let us assume indirectly that U has a point γ_{2} not in G. Consider the line $\left.l_{1}=\sigma\left(\gamma_{1}, \gamma_{2}\right)^{*}\right)$ and set $g_{1}=f \cap l_{1}$. Choose a point g of d_{2} not on f and let $l_{2}=\sigma\left(g_{1}, g\right)$ (see Fig. 2). It is easy to see that the plane $b_{2}=\sigma\left(l_{1} \cup l_{2}\right)$ is an outer plane containing γ_{1}, a contradiction.
$\left.{ }^{*}\right) \sigma(\ldots)$ denotes the subspace of Γ spanned by the set given in the parentheses.

We show that U is an oval of d_{1}. Let $u_{1}, u_{2} \in U$ be arbitrary. $\sigma\left(u_{1}, u_{2}\right) \cap f \neq \emptyset$ and $f \cap U=\emptyset$, thus every line of U consits of two points. But $|U|=3$, therefore U spans d_{1}. It is easy to see that γ_{1} is a nucleus of U (i.e. the common point of tangentials to U).

Let $u_{1} \in U$ be arbitrary, consider the outer plane b_{3} containing u_{1}. The line $f_{1}=b_{3} \cap d_{1}$ cannot be tangential to U, thus f_{1} intersects U in two points, say at u_{1} and u_{2} (see Fig. 3). This means that f_{1} covers all the points of b_{3}, and the points of $f_{2}=d_{2} \cap b_{3}$ and not on f are outer points. Therefore the plane $\sigma\left(f_{2} \cup\left\{\gamma_{1}\right\}\right)$ is an outer plane containing γ_{1}, a contradiction.

Fig. 3

Fig. 4

Lemma 2. A geometry G of rank 5 is of type $K(4)$ iff the set \mathscr{M}_{4} of its outer hyperplanes contains an odd hypercircuit.

Proof. We have to prove that if the elements of \mathscr{M}_{4} cover G, then they cover the outer points as well. Let us assume indirectly that G is covered by the elements of \mathscr{M}_{4} but G has an outer point γ_{1} which is not covered by them. Let b_{m} be an element of \mathscr{M}_{4} for which $\left|b_{m} \cap G\right|$ is maximal.

Let d_{1} be a plane of b_{m} which covers the points of $b_{m} \cap G$. Let us denote by c_{1} and c_{2} the hyperplanes containing d_{1} and distinct from b_{m}. The set $\left\{b_{m}, c_{1}, c_{2}\right\}$ covers all the Γ-points. Let $\gamma_{1} \in c_{1}$ (see Fig. 4). Denote the set $\left(G \cap c_{1}\right) \backslash d_{1}$ by V. Let us project V from γ_{1} to d_{1}. We prove that the projection V^{\prime} meets all lines of d_{1}. Let us assume indirectly that d_{1} has a line l for which $l \cap V^{\prime}=\emptyset$ holds. Let g_{2} be an arbitrary point of c_{2} not on d_{1}. It is easy to see that $\sigma\left(\left\{g_{2}\right\} \cup l \cup\left\{\gamma_{1}\right\}\right)$ is an outer hyperplane of G containg γ_{1}, a contradiction (see Fig. 5). Therefore V^{\prime} contains a full line f_{1}. Let us consider the plane $d_{2}=\sigma\left(f_{1} \cup\left\{\gamma_{1}\right\}\right)$. Making use of the fact that. V^{\prime} contains f_{1}, we can see that $U=V \cap d_{2}$ is an oval on d_{2}, the nucleous of which is γ_{1}.

Let $u \in U$ be arbitrary, denote the outer hyperplane containg the point u by b_{u}. We prove the validity of the following three statements:
(i) $d_{2} \cap b_{u}$ is a line and a secant to U (i.e. $\left.\left|U \cap\left(d_{2} \cap b_{u}\right)\right|=2\right)$,
(ii) $b_{u} \cap c_{1} \cap G \subseteq d_{2}$,
(iii) $\left|b_{u} \cap G\right| \geqq 3$.

Part (i). $\gamma_{1} \notin b_{u}$, thus $d_{2} \nsubseteq b_{u}$, therefore $d_{2} \cap b_{u}$ is a line. The lines of d_{2} containing u are either secants or tangentials to U. The lines which are tangential to U contain γ_{1}, thus $d_{2} \cap b_{u}$ is a secant.

Fig. 5

Fig. 6

Part. (ii). Let $U \cap b_{u}=\{u, v\}$; assume indirectly that $b_{u} \cap G \cap c_{1}$ contains a point z not in U (see Fig. 6). The plane $d_{3}=\sigma(u, v, z)$ covers $G \cap b_{u}$, because $b_{u} \in \mathscr{M}_{4}$. Therefore $d_{3} \cap d_{1}$ covers $c_{2} \cap b_{u}$. Using this fact we can see that $\sigma\left(c_{2} \cap b_{u} \cup\left\{\gamma_{1}\right\}\right)$ is an outer hyperplane, a contradiction (see Fig. 7).

Part (iii). $\left|b_{u} \cap U\right|=2$, thus we have to prove $c_{2} \cap b_{u} \cap G \neq \emptyset$. Assuming $c_{2} \cap b_{u} \cap G=\emptyset$ we can see that $\sigma\left(c_{2} \cap b_{u} \cup\left\{\gamma_{1}\right\}\right)$ is an outer hyperplane.

Let $U=\left\{u_{1}, u_{2}, u_{3}\right\}$, and assume that $U \cap b_{u_{2}}=\left\{u_{1}, u_{2}\right\}$ and $U \cap b_{u_{3}}=\left\{u_{1}, u_{3}\right\}$. Set $\sigma\left(u_{1}, u_{2}\right)=s_{1}, \sigma\left(u_{1}, u_{3}\right)=s_{2}, c_{1} \cap b_{u_{2}}=d_{4}, c_{1} \cap b_{u_{3}}=d_{5}, d_{1} \cap d_{4}=s_{4}, d_{1} \cap d_{5}=s_{5}$, $g_{45}=s_{4} \cap s_{5}$ (see Fig. 8). We prove that the plane $\sigma\left(s_{4} \cup\left\{\gamma_{1}\right\}\right)$ contains a point g_{6} not on $\sigma\left(u_{3}, \gamma_{1}\right)$. Let us assume indirectly that

$$
\left\{\sigma\left(s_{4} \cup\left\{\gamma_{1}\right\}\right) \cap G\right\} \backslash\left\{u_{3}, \gamma_{1}\right\}=\emptyset
$$

Using (ii) we can see that $\sigma\left(\left\{c_{2} \cap b_{u_{2}}\right\} \cup\left\{\gamma_{1}\right\}\right)$ is an outer hyperplane. It is easy to see as well that g_{6} is the point of the line $\sigma\left(\gamma_{1}, g_{45}\right)$ distinct from γ_{1} and g_{45}. Con-
sider $b_{g_{6}}$. The line $b_{g_{6}} \cap d_{2}$ cannot be a secant to U by (ii), and cannot be tangential to U by $\gamma_{1} \notin b_{g_{6}}$, therefore $b_{g_{6}} \cap d_{2}=f_{1}$.

We prove that $\left|f_{1} \cap G\right| \leqq 1$. Let us assume indirectly that $\left|f_{1} \cap G\right| \geqq 2$. Let $g_{7}, g_{8} \in f_{1} \cap G$. Then the plane $\sigma\left(g_{6}, g_{7}, g_{8}\right)$ covers $b_{g_{6}} \cap G$. Using this fact we can see that the hyperplane $\sigma\left(\left\{c_{2} \cap b_{g_{6}}\right\} \cup\left\{\gamma_{1}\right\}\right)$ is an outer hyperplane, a contradiction. Therefore $\left|\left\{f_{1} \cup s_{4} \cup s_{5}\right\} \cap G\right| \leqq 1$, thus $\left|b_{m} \cap G\right|=\left|d_{1} \cap G\right| \leqq 2$ holds, contradicting (iii) and the maximality property of b_{m}.

Fig. 7

Our Theorem 3 is now an easy consequence of Lemmas 1 and 2 and of the "Scum Theorem" (see [1]).

The following assertion may be proved by induction on $n=r(G)$ for $r=2,3,4$: if the outer hyperplanes of the binary geometry G cover all of its subspaces with rank $n-r$ then they cover all those of Γ as well.

To prove it for general r it would suffice to settle the case $n=r+1$:
Conjecture. If the outer hyperplanes of a binary geometry G cover all G points, then they cover all Γ-points as well.

The conjecture is proved for $r(G)=4$ and $r(G)=5$ in Lemmas 1 and 2. The case $r(G)=3$ is trivial. For $r(G)>5$ the proof (if it exists) seems to be hard.

References

[1] H. Crapo-G. C. Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries, M.I.T. Press (Cambridge, Mass., 1970).
[2] L. KÁszonyı, On the structure of binary geometries having the K (3)-property, Ann. Univ. Sci. Budapest, Sect. Math., to appear.

DEPARTMENT OF PROBABILITY THEORY
EÖTVƠS LORÁND UNIVERSITY
MÚZEUM KƠRÚT 6-8.
1088 BUDAPEST, HUNGARY

