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Multiplicative periodicity in rings 

R E Y A D H R. K H A Z A L 

A well known result of JACOBSON [4] establishes that a ring R is commutative 
if for every aC R there is an integer « > 1 (depending on a) such that a=a". This 
has been generalized by HERSTEIN [1] . On the other hand, ISKANDER [ 3 ] characterizes 
via polynomial identities varieties of rings in which every element generates a finite 
subring, while KRUSE [5] and L'vov [6 , 7 ] characterize via polynomial identities 
varieties generated by finite rings. 

In the present paper we consider rings in which every element generates a 
finite multiplicative semigroup. It turns out that such rings are precisely the rings 
in which a power of every element generates a finite subring. A semigroup is called 
periodic if every element is of finite order. We call a ring R periodic if for every 
a£R there are a positive integer r and a polynomial h(t) with integral coefficients 
such that ar + ar+1h(a)= 0. The term "periodic" has been used in literature for 
the case R = l , (cf. OSBORN [8]). We will use the term periodic to mean also the 
case /->1. The main result is: 

T h e o r e m 1. The following statements about a ring R are equivalent: 
(i) R is periodic; 

(ii) if af R then a power of a generates a finite subring; 
(iii) the multiplicative semigroup of R is periodic. 

It is clear that (ii) implies (iii) and (iii) implies (i). Before we show that (i) implies 
(ii) we give some preliminaries. 

T h e o r e m 2. (HERSTEIN [2]) If R is a ring with centre C such that for every a(^R 
there exists a polynomial pa(t) such that a2pa(a)—adC, then R is commutative. 

P r o p o s i t i o n 3. If R is a periodic division ring then R is a field. Also R is an 
algebraic extension of Zp (the integers modulo p) for some prime p. 

P r o o f . Let a£R. As R is periodic, there are 0 and a polynomial hit) 
such that ar + ar+1h(a) = 0. Thus ar~1(a + a2h(a)) = 0. But R is a division ring, 
hence a+a2h(a) = 0. Thus, by Herstein's Theorem 2, R is commutative. Since 
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Z, the ring of integers, is not periodic (2+22h(2)=Q is impossible), the prime 
field of R is Z p for some prime p and so R is an algebraic extension of Z p . 

P r o p o s i t i o n 4. Let Rbe a primitive ring. If R is periodic then R is isomorphic 
to a dense ring of algebraic linear transformations of a vector space V over a field 
F that is an algebraic extension of some prime field Z p . 

P r o o f . By Jacobson's Density Theorem R is isomorphic to a dense ring of 
linear transformations of a vector space V over a division ring D. However D is 
a homomorphic image of a subring of R. Hence D is periodic and thus D is a fieldt 
which is also an algebraic extension of Zp . In this case periodicity implies tha, 
the linear transformations involved are algebraic over Z p . 

P r o p o s i t i o n 5. Let Rbe a periodic ring. Then 
(i) J{R) (the Jacobson radical of R) is nil; 

(ii) RjJ(R) is isomorphic to a subdirect sum of dense rings of algebraic linear 
transformations of vector spaces over fields each of which is an algebraic extension 
of Z p for some prime p. 

P r o o f . Statement (ii) follows from Proposition 4 and Jacobson's Structure 
Theorem [2, 4]. Let a£J(R). Then ar + ar+1h(a)= 0 for some positive integer r 
and h(t)£Z[t]. Hence, ar= -ar+1h(a) = ar+1g(a) = ar+2g(d)2=a2rg(a)r, and 
(ag(a))r is an idempotent. Hence cfg(a)r=0, as the only idempotent in J(R) is 0. 
Hence ar=ararg(a)r=0 and J(R) is nil. 

The converse of Proposition 5 is not true. The ring of integers Z is a subdirect 
sum of Z p for all primes p and Z is not periodic. * 

P r o p o s i t i o n 6. The following conditions on a ring R are equivalent: 
(i) R is periodic; 

(ii) every subring of R generated by one element is an extension of a nilpoient 
ring by a finite direct sum of finite fields; 

(iii) every subring of R generated by one element is an extension of a nil ring 
by a finite ring; 

(iv) for every a£R there are integers s, / > 1 such that (a—as)' = 0. 
P r o o f . It is obvious that (ii) implies (iii) and (iv) implies (i). Let A be the 

subring of R generated by a£A. Then every ideal of A is finitely generated as A is 
commutative and is generated by one element. If R is periodic then J (A) is nil 
(by Proposition 5) and hence nilpotent. A/J(A) is isomorphic to a subdirect sum 
of periodic primitive rings generated by one element. Thus A/J(A) is isomorphic 
to a subdirect sum of finite fields F(i). F(i) is generated by one element ar Also 
a' +ar

i
+1h{ai)=0. But a,-_1 = 0 is impossible in F(i), so a|. + a?A(oi) = 0. Hence 

e,.= —Ofhia^) is idempotent and it is the identity element of F(i). Thus 
a=a+J(A) satisfies a + a2h(a) = 0 in AjJ(A) and e = — ah(a) is the identity 
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element of AIJ(A). Thus A/J(A) is isomorphic to a finite direct sum of finite fields. 
This establishes that (i) implies (ii). 

Let N be a nil ideal in A such that A/N=F is finite. Hence F is periodic and 
is generated by one element. By (ii), 7(F) is nilpotent and FjJ(F) 1) ©... © F(k), 
where F(i) is a finite field of characteristic pn 1 ^i^k. Thus there is such 
that F/J(F) satisfies x - r ^ O . Thus a=a+N satisfies a-as£J(F). As J(F) 
is nilpotent, there is a positive integer r such that (a — a s ) r =0, i.e. (a—as)r£N. 
Thus for some (a—as) r t=0. This establishes that (iii) implies (iv) and con-
cludes the proof of Proposition 6. 

Now, we conclude the proof of Theorem 1. By Statement (ii) of Proposition 6, 
if a£R then J(A) is nilpotent and A/J(A)^F(1)Q ...®F{k) where F(i) is a finite 
field of characteristic pt, l^i^k. Thus mat J (A), where m = l.c.m. (px, ...,pk). 
Hence (ma)r=0 for some r>-0. Thus for every a£R some power a!" is torsion 
in the additive group of R. By (iv) of Proposition 6, (b—bs)' = 0, b = <f. bst is a poly-
nomial of degree less than st in b, and nb = 0 for some n >0. In the subring 
B of R generated by b, every element has an expression in the form 1 = i=st, 
O^s,•</?}. Hence B is finite, it has at most « s i _ 1 elements. Thus Statement (i) of 
Theorem 1 implies Statement (ii). This concludes the proof of Theorem 1. 

If J? is a periodic ring and a£R, we define: Index (a)=inf {/•: /->0, cf+ 
+ ar+1h{a) = 0, /z(i)€Z[<]}, Index (R) = sup {Index (a): N(R) = sup{n: w>0, 
for some a£R, a is nilpotent, an—0 and Degree (a) = inf {deg/z(a): ar + 
+ar+1h(a)=0, r=>0, h(t)eZ[t]}. Degree (i?)=sup {Degree (a): a£R}. 

It turns out that 

P r o p o s i t i o n 7. If R is a periodic ring then N(R) = Index (R). 

P r o o f . Clearly, iV(i?)^Index (R). If a£R then by Proposition 6 (iv), 
(a-tfy = 0. One can assume that r^N(R). But Index (a)^r^N(R). Hence 
Index (R)^N(R). 

We conclude this paper by establishing some properties of periodic rings of 
bounded Index or Degree. 

P r o p o s i t i o n 8. Let F be a periodic field. Then Degree (F) = d i f f F = 
= GF(p, d+\) (where GF(p, t) is the Galois field of p' elements). 

P r o o f . If F is periodic and Degree ( F ) = d , then F is an algebraic extension 
of Z p for some prime p; furthermore, for any a£F, there is h(t)iZ[t] such that 
a+a2h(a)=0 and d e g h ( t ) ^ d , on the other hand, there is b£F such that 
Degree (b)=d. 

Now [Zp(b): Zp]=d+1 = the degree of the minimal polynomial of b over Zp. 
In fact F—Zp(b). It is obvious that F contains Zp(b). Let a£F. If Zp(b) then 
(Zp(b))(a)^Zp(b). Now a being algebraic over Zp, H-(Zp(b))(a) is a finite sub-
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field of F and | H : Zp]=n>d+\. The field H is generated by one element c whose 
minimal polynomial over Z p is of degree n. Thus Degree (c)=n — \>d, which is 
impossible. Therefore F=Zp(b). Conversely, since F is a finite field of pd+1 ele-
ments, F is periodic. Now any 0?±a£F is algebraic over Z p and [Z p ( a ) :Z p ] = 
=k^d+l. Thus the minimal polynomial of a is of degree at most d+1 and so 
Degree (a) ^ d. Also F is generated by an element b such that Degree (b)=d. 

Thus from Propositions 5 and 8 it follows that a periodic ring R whose Degree 
is d is such that J(R) is nil and R/J(R) is isomorphic to a subdirect sum of dense 
rings of algebraic linear transformations of vector spaces over GF(p, k) with 
k^d+1 for some primes p. 

P r o p o s i t i o n 9. R is a periodic primitive ring and Index (R)=n i f f R is iso-
morphic to F„ (the ring of nXn matrices over F) for some algebraic extension F 
of Z p for some prime p. 

P r o o f . Let F be an algebraic extension of Z p . If A^F„ then the matrix A 
has n2 entries and involves only a finite number of elements of F. Thus A£G„ where 
G is a finite subfield of F, i.e. A belongs to a finite subring of F„. By Theorem 1, 
F„ is periodic. It is well known that F„ is primitive. Since the minimal polynomial 
of A£Fn is of degree at most n, N(F„)^n. Also A=[au], a(j = \ if / < / and 
aiJ=0 if z'sy, satisfies A"=0 and A"'1^0. Thus N(F„)=n, and by Proposi-
tion 7, Index (Fn)—N(F„)=n. Conversely, let R be a periodic primitive ring and 
Index Then R = Fm or Fs is a homomorphic image of a subring of R, 
for every positive integer s, where F is an algebraic extension of Z p for some p. 
Now, Index (R) does not increase by taking subrings or homomorphic images 
and so J=Index (Fs)^ Index (R)=n. Thus R = Fn. 
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