Multiplicative periodicity in rings

REYADH R. KHAZAL

A well known result of Jacobson [4] establishes that a ring R is commutative if for every $a \in R$ there is an integer $n>1$ (depending on a) such that $a=a^{n}$. This has been generalized by Herstein [1]. On the other hand, ISkander [3] cháracterizes via polynomial identities varieties of rings in which every element generates a finite subring, while Kruse [5] and L'vov [6,7] characterize via polynomial identities varieties generated by finite rings.

In the present paper we consider rings in which every element generates a finite multiplicative semigroup. It turns out that such rings are precisely the rings in which a power of every element generates a finite subring. A semigroup is called periodic if every element is of finite order. We call a ring R periodic if for every $a \in R$ there are a positive integer r and a polynomial $h(t)$ with integral coefficients such that $a^{r}+a^{r+1} h(a)=0$. The term "periodic" has been used in literature for the case $r=1$, (cf. Osborn [8]). We will use the term periodic to mean also the case $r>1$. The main result is:

Theorem 1. The following statements about a ring R are equivalent:
(i) R is periodic;
(ii) if $a \in R$ then a power of a generates a finite subring;
(iii) the multiplicative semigroup of R is periodic.

It is clear that (ii) implies (iii) and (iii) implies (i). Before we show that (i) implies (ii) we give some preliminaries.

Theorem 2. (Herstein [2]) If R is a ring with centre C such that for every $a \in R$ there exists a polynomial $p_{a}(t)$ such that $a^{2} p_{a}(a)-a \in C$, then R is commutative.

Proposition 3. If R is a periodic division ring then R is a field. Also R is an algebraic extension of \mathbf{Z}_{p} (the integers modulo p) for some prime p.

Proof. Let $a \in R$. As R is periodic, there are $r>0$ and a polynomial $h(t)$ such that $a^{r}+a^{r+1} h(a)=0$. Thus $a^{r-1}\left(a+a^{2} h(a)\right)=0$. But R is a division ring, hence $a+a^{2} h(a)=0$. This, by Herstein's Theorem 2, R is commutative. Since
\mathbf{Z}, the ring of integers, is not periodic $\left(2+2^{2} h(2)=0\right.$ is impossible), the prime field of R is \mathbf{Z}_{p} for some prime p and so R is an algebraic extension of \mathbf{Z}_{p}.

Proposition 4. Let R be a primitive ring. If R is periodic then R is isomorphic to a dense ring of algebraic linear transformations of a vector space V over a field F that is an algebraic extension of some prime field \mathbf{Z}_{p}.

Proof. By Jacobson's Density Theorem R is isomorphic to a dense ring of linear transformations of a vector space V over a division ring D. However D is a homomorphic image of a subring of R. Hence D is periodic and thus D is a fieldt which is also an algebraic extension of \mathbf{Z}_{p}. In this case periodicity implies tha, the linear transformations involved are algebraic over \mathbf{Z}_{p}.

Proposition 5. Let R be a periodic ring. Then
(i) $J(R)$ (the Jacobson radical of R) is nil;
(ii) $R / J(R)$ is isomorphic to a subdirect sum of dense rings of algebraic linear transformations of vecto: spaces over fields each of which is an algebraic extension of Z_{p} for some prime p.

Proof. Statement (ii) follows from Proposition 4 and Jacobson's Structure Theorem [2, 4]. Let $a \in J(R)$. Then $a^{r}+a^{r+1} h(a)=0$ for some positive integer r and $\quad h(t) \in \mathbb{Z}[t]$. Hence, $a^{r}=-a^{r+1} h(a)=a^{r+1} g(a)=a^{r+2} g(a)^{2}=a^{2 r} g(a)^{r}$, and $(a g(a))^{r}$ is an idempotent. Hence $a^{r} g(a)^{r}=0$, as the only idempotent in $J(R)$ is 0 . Hence $a^{r}=a^{r} a^{r} g(a)^{r}=0$ and $J(R)$ is nil.

The converse of Proposition 5 is not true. The ring of integers \mathbf{Z} is a subdirect sum of \mathbf{Z}_{p} for all primes p and \mathbf{Z} is not periodic.
-
Proposition 6. The following conditions on a ring R are equivalent:
(i) R is periodic;
(ii) every subring of R generated by one element is an extension of a nilpotent ring by a finite direct sum of finite fields;
(iii) every subring of R generated by one element is an extension of a nil ring by a finite ring;
(iv) for every $a \in R$ there are integers $s, t>1$ such that $\left(a-a^{s}\right)^{t}=0$.
. Proof. It is obvious that (ii) implies (iii) and (iv) implies (i). Let A be the subring of R generated by $a \in A$. Then every ideal of A is finitely generated as A is commutative and is generated by one element. If R is periodic then $J(A)$ is nil (by Proposition 5) and hence nilpotent. $A / J(A)$ is isomorphic to a subdirect sum of periodic primitive rings generated by one element. Thus $A / J(A)$ is isomorphic to a subdirect sum of finite fields $F(i) . F(i)$ is generated by one element a_{i}. Also $a_{i}^{r}+a_{i}^{r+1} h\left(a_{i}\right)=0$. But $a_{i}^{r-1}=0$ is impossible in $F(i)$, so $a_{i}+a_{i}^{2} h\left(a_{i}\right)=0$. Hence $e_{i}=-a_{i} h\left(a_{i}\right)$ is idempotent $\neq 0$ and it is the identity element of $F(i)$. Thus $\bar{a}=a+J(A)$ satisfies $\bar{a}+\bar{a}^{2} h(\bar{a})=0$ in $A / J(A)$ and $e=-\bar{a} h(\bar{a})$ is the identity
element of $A / J(A)$. Thus $A / J(A)$ is isomorphic to a finite direct sum of finite fields. This establishes that (i) implies (ii).

Let N be a nil ideal in A such that $A / N=F$ is finite. Hence F is periodic and is generated by one element. By (ii), $J(F)$ is nilpotent and $F / J(F) \cong F(1) \oplus \ldots \oplus F(k)$, where $F(i)$ is a finite field of characteristic $p_{i}, 1 \leqq i \leqq k$. Thus there is $s>1$ such that $F / J(F)$ satisfies $x-x^{s}=0$. Thus $\bar{a}=a+N$ satisfies $\bar{a}-\bar{a}^{s} \in J(F)$. As $J(F)$ is nilpotent, there is a positive integer r such that $\left(\bar{a}-\bar{a}^{s}\right)^{r}=0$, i.e. $\left(a-a^{s}\right)^{r} \in N$. Thus for some $t>0,\left(a-a^{s}\right)^{r t}=0$. This establishes that (iii) implies (iv) and concludes the proof of Proposition 6.

Now, we conclude the proof of Theorem 1. By Statement (ii) of Proposition 6, if $a \in R$ then $J(A)$ is nilpotent and $A / J(A) \cong F(1) \oplus \ldots \oplus F(k)$ where $F(i)$ is a finite field of characteristic $p_{i}, 1 \leqq i \leqq k$. Thus $m a \in J(A)$, where $m=1 . \mathrm{c} . \mathrm{m} .\left(p_{1}, \ldots, p_{k}\right)$. Hence (ma) ${ }^{r}=0$ for some $r>0$. Thus for every $a \in R$ some power a^{r} is torsion in the additive group of R. By (iv) of Proposition $6,\left(b^{a}-b^{s}\right)^{t}=0, b=a^{r}$. $b^{\text {st }}$ is a polynomial of degree less than $s t$ in b, and $n b=0$ for some $n>0$. In the subring B of R generated by b, every element has an expression in the form $\sum\left\{s_{i} b^{i}: 1 \leqq i \leqq s t\right.$, $\left.0 \leqq s_{i}<n\right\}$. Hence B is finite, it has at most $n^{s t-1}$ elements. Thus Statement (i) of Theorem 1 implies Statement (ii). This concludes the proof of Theorem 1.

If R is a periodic ring and $a \in R$, we define: Index $(a)=\inf \left\{r: r>0, a^{r}+\right.$ $\left.+a^{r+1} h(a)=0, h(t) \in \mathbf{Z}[t]\right\}$, Index $(R)=\sup \{\operatorname{Index}(a): a \in R\}, N(R)=\sup \{n: n>0$, for some $a \in R, a$ is nilpotent, $a^{n}=0$ and $\left.a^{n-1} \neq 0\right\}$. Degree (a) $=\inf \left\{\operatorname{deg} h(a): a^{r}+\right.$ $\left.+a^{r+1} h(a)=0, r>0, h(t) \in \mathbf{Z}[t]\right\}$. Degree $(R)=\sup \{$ Degree $(a): a \in R\}$.

It turns out that
Proposition 7. If R is a periodic ring then $N(R)=\operatorname{Index}(R)$.
Proof. Clearly, $N(R) \leqq \operatorname{Index}(R)$. If $a \in R$ then by Proposition 6 (iv), $\left(a-a^{s}\right)^{r}=0$. One can assume that $r \leqq N(R)$. But Index $(a) \leqq r \leqq N(R)$. Hence Index $(R) \leqq N(R)$.

We conclude this paper by establishing some properties of periodic rings of bounded Index or Degree.

Proposition 8. Let F be a periodic field. Then Degree $(F)=d$ iff $F \cong$ $\cong G F(p, d+1)$ (where $G F(p, t)$ is the Galois field of p^{t} elements).

Proof. If F is periodic and Degree $(F)=d$, then F is an algebraic extension of \mathbf{Z}_{p} for some prime p; furthermore, for any $a \in F$, there is $h(t) \in \mathbf{Z}[t]$ such that $a+a^{2} h(a)=0$ and $\operatorname{deg} h(t) \leqq d$, on the other hand, there is $b \in F$ such that Degree $(b)=d$.

Now $\left[\mathbf{Z}_{\mathbf{p}}(b): \mathbf{Z}_{p}\right]=d+1=$ the degree of the minimal polynomial of b over \mathbf{Z}_{p}. In fact $F=\mathbf{Z}_{p}(b)$. It is obvious that F contains $\mathbf{Z}_{p}(b)$. Let $a \in F$. If $a \notin \mathbf{Z}_{p}(b)$ then $\left(\mathbf{Z}_{p}(b)\right)(a) \neq \mathbf{Z}_{p}(b)$. Now a being algebraic over $\mathbf{Z}_{p}, H=\left(\mathbf{Z}_{p}(b)\right)(a)$ is a finite sub-
field of F and $\left[H: \mathbf{Z}_{p}\right]=n>d+1$. The field H is generated by one element c whose minimal polynomial over \mathbf{Z}_{p} is of degree n. Thus Degree $(c)=n-1>d$, which is impossible. Therefore $F=\mathbf{Z}_{p}(b)$. Conversely, since F is a finite field of p^{d+1} elements, F is periodic. Now any $0 \neq a \in F$ is algebraic over \mathbf{Z}_{p} and $\left[\mathbf{Z}_{p}(a): \mathbf{Z}_{p}\right]=$ $=k \leqq d+1$. Thus the minimal polynomial of a is of degree at most $d+1$ and so Degree $(a) \leqq d$. Also F is generated by an element b such that Degree $(b)=d$.

Thus from Propositions 5 and 8 it follows that a periodic ring R whose Degree is d is such that $J(R)$ is nil and $R / J(R)$ is isomorphic to a subdirect sum of dense rings of algebraic linear transformations of vector spaces over $G F(p, k)$ with $k \leqq d+1$ for some primes p.

Proposition 9. R is a periodic primitive ring and $\operatorname{Index}(R)=n$ iff R is isomorphic to F_{n} (the ring of $n \times n$ matrices over F) for some algebraic extension F of \mathbf{Z}_{p} for some prime p.

Proof. Let F be an algebraic extension of \mathbf{Z}_{p}. If $A \in F_{n}$ then the matrix A has n^{2} entries and involves only a finite number of elements of F. Thus $A \in G_{n}$ where G is a finite subfield of F, i.e. A belongs to a finite subring of F_{n}. By Theorem 1, F_{n} is periodic. It is well known that F_{n} is primitive. Since the minimal polynomial of $A \in F_{n}$ is of degree at most $n, N\left(F_{n}\right) \leqq n$. Also $A=\left[a_{i j}\right], a_{i j}=1$ if $i<j$ and $a_{i j}=0$ if $i \geqq j$, satisfies $A^{n}=0$ and $A^{n-1} \neq 0$. Thus $N\left(F_{n}\right)=n$, and by Proposition 7, Index $\left(F_{n}\right)=N\left(F_{n}\right)=n$. Conversely, let R be a periodic primitive ring and Index $(R)=n$. Then $R \cong F_{m}$ or F_{s} is a homomorphic image of a subring of R, for every positive integer s, where F is an algebraic extension of \mathbf{Z}_{p} for some p. Now, Index (R) does not increase by taking subrings or homomorphic images and so $s=\operatorname{Index}\left(F_{s}\right) \leqq \operatorname{Index}(R)=n$. Thus $R \cong F_{n}$.

References

[1] I. N. Herstein, The structure of a certain class of rings, Amer. J. Math., 75 (1953), 864-871.
[2] I. N. Herstein, Non-Commutative Rings, Carus Monograph Series, Math. Association of America (Menasha, Wis., 1968).
[3] A. A. Iskander, Locally finite ring varieties, Proc. Amer. Math. Soc., 50 (1975), 28-32.
[4] N. Jacobson, Structure of Rings, Amer. Math. Soc. (Providence, 1964).
[5] R. L. Kruse, Identities satisfied by a finite ring, J. Algebra, 26 (1973), 298-318.
[6] I. V. L'vov, Varieties of associative rings. I, Algebra i Logika, 12 (1973), 269-297; English translation: pp. 150-167.
[7] I. V. L'vov, Varieties of associative rings. II, Algebra i Logika, 12 (1973), 667-688; English translation: pp. 381-393.
[8] J. M. Osborn, Varieties of algebras, Advances in Math., 8 (1972), 163-369.

