Sublattices of a distributive lattice

VÁCLAV KOUBEK

At the Mini-Conference on Lattice Theory in Szeged, 1974, M. SEKANINA has formulated the following problem: Is it true that if a lattice *B* contains an arbitrarily large finite number of pairwise disjoint sublattices, isomorphic to a lattice *A*, then *B* also contains an infinite number of such sublattices? The aim of the present paper is to construct two countable distributive lattices *A* and *B* which are counterexamples, i.e. such that for any m=1, 2, 3, ..., B contains *m* disjoint copies of *A*, but it does not contain infinitely many such copies. An independent solution of Sekanina's problem was found by I. KOREC in a paper to appear (personal communication).

An analogous problem can be formulated for other structures than lattices and various concepts of subobject, e.g. summand. In the second part a general formulation of this problem is exhibited.

1. We recall that a graph (X, R) (i.e. $R \subset X \times X$) is bipartite if it is symmetric and there exists a subset M of X such that if $(x, y) \in R$ then $x \in M$ iff $y \notin M$.

Definition. A graph (X, R) is strongly reduced if for any distinct points $x, y \in X$ there exists at most one point z with $(z, x), (z, y) \in R$.

Convention. Denote by N the set of all natural numbers, by Z the set of all integers.

Construction 1.1. We shall construct countable, connected, strongly reduced, bipartite graphs (X_i, R_i) with $i \in \mathbb{N}$, i > 1 such that

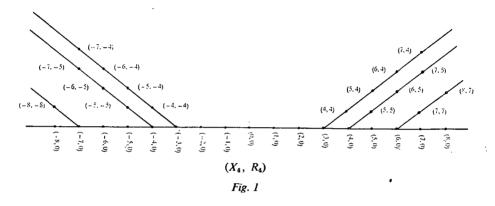
a) for every $x \in X_i$, card $\{z: (x, z) \in R_i\} \in \{2, 3\};$

b) if $f: (X_i, R_i) \rightarrow (X_j, R_j)$ is a one-to-one compatible mapping then i=j and f is the identity.

Received October 3, 1977.

Put

$$\begin{aligned} X_i &= \{ (x, y) \colon (x, y \in \mathbf{Z}), \ (y \neq 0 \Rightarrow y \in \{i, -i\} \cup \\ &\cup \{i + 2k + 1 \colon k \in \mathbf{N}\} \cup \{-i - 3k - 1 \colon k \in \mathbf{N}\} \} \ (\text{sgn } x = \text{sgn } y) \}, \\ R_i &= \{ ((x, 0), (x + 1, 0)) \colon x \in \mathbf{Z}\} \cup \{ ((x, 0), (x - 1, 0)) \colon x \in \mathbf{Z}\} \cup \\ &\cup \{ ((y + s, y), (y + t, y)) \colon (y \in \{i + 2k + 1 \colon k \in \mathbf{N}\} \cup \\ &\cup \{ (-i - 3k - 1 \colon k \in \mathbf{N}\} \cup \{i, -i\}), \ (|s - t| = 1), \ (sy, ty \ge 0) \} \cup \\ &\cup \{ ((y - \frac{y}{|y|}, 0), \ (y, y)), \ ((y, y), \ (y - \frac{y}{|y|}, 0)) \colon y \in \{i + 2k + 1 \colon k \in \mathbf{N}\} \cup \\ &\cup \{ -i - 3k - 1 \colon k \in \mathbf{N}\} \cup \{i, -i\} \}. \end{aligned}$$



It is clear that (X_i, R_i) is a countable, symmetric, strongly reduced graph. Set $M_i = \{(x, y) \in X_i : x \text{ is even}\}$, then $R_i \subset ((X_i - M_i) \times M_i) \cup (M_i \times (X_i - M_i))$ and therefore (X_i, R_i) is a bipartite graph. Further, for every $x \in X_i$,

card
$$\{z: (x, z) \in R_i\} \in \{2, 3\}.$$

We shall prove Property b). If $f: (X_i, R_i) \to (X_j, R_j)$ is a one-to-one compatible mapping then for $x \in \{i-1, 1-i\} \cup \{i+2k: k \in \mathbb{N}\} \cup \{-i-3k: k \in \mathbb{N}\}, f(x, 0) \in \{(j-1, 0), (1-j, 0)\} \cup \{(j+2k, 0): k \in \mathbb{N}\} \cup \{(-j-3k, 0): k \in \mathbb{N}\}$. Hence $f(\{(i-1, 0), (1-i, 0)\}) \in \{(j-1, 0), (1-j, 0)\}$ and therefore i=j. Further, $f(x, 0) \in \{(y, 0): y \in \mathbb{Z}\}$. If f(i-1, 0) = (1-i, 0) then f(i+2k, 0) = (-i-2k, 0) but the latter is impossible, thus f(i-1, 0) = (i-1, 0) and so is f(x, 0) = (x, 0) for every $x \in \mathbb{Z}$. Hence f is the identity.

Let us introduce the notation $\mathfrak{X}_i = (X_i, R_i, M_i), i \in \mathbb{N}, i > 1$.

Construction 1.2. Let $\mathfrak{X} = (X, R, M)$ where (X, R) is a bipartite graph and $M \subset X$ such that if $(x, y) \in R$ then $x \in M$ iff $y \notin M$. Set $A_1^{\mathfrak{X}} = \{Z \subset X: (\exists (x, y) \in R) (x \in M \text{ and } Z = (M - \{x\}) \cup \{y\})\};$ $A_2^{\mathfrak{X}} = \{Z \subset X: (\exists x \in M) (\exists K \subset \{y: (y, x) \in R\}) (K \text{ is finite and } Z = (M - \{x\}) \cup K)\};$ $A_3^{\mathfrak{X}} = \{Z \subset X: (\exists x \in X - M) (\exists K \subset \{y: (y, x) \in R\}) (K \text{ is finite and } Z = (M - K) \cup \{x\})\};$ $A_4^{\mathfrak{X}} = \{Z \subset X: (\exists K \subset M) (K \text{ is finite and } Z = M - K)\};$ $A_5^{\mathfrak{X}} = \{Z \subset X: (\exists K \subset X - M) (K \text{ is finite and } Z = M \cup K)\}.$

Put $A^{\mathfrak{X}} = \bigcup_{i=1}^{5} A_{i}^{\mathfrak{X}}, B^{\mathfrak{X}} = A^{\mathfrak{X}} \cup \{\emptyset, X\}$. For $Z, V \in B^{\mathfrak{X}}$ define $Z \lor V = Z \cup V, Z \land V = Z \cap V$, then it is easy to verify that $(A^{\mathfrak{X}}, \cup, \cap)$ and $(B^{\mathfrak{X}}, \cup, \cap)$ are lattices (and hence they are distributive). Moreover, $A^{\mathfrak{X}}$ and $B^{\mathfrak{X}}$ are countable iff X is countable.

Let $\mathfrak{X}=(X, R, M)$, $\mathfrak{Y}=(Y, S, N)$ where (X, R), (Y, S) are bipartite graphs and for $(x, y) \in R$ (or $(x, y) \in S$), $x \in M$ iff $y \notin M$ (or $x \in N$ iff $y \notin N$, respectively). If $f: X \to Y$ such that $f(M) \subset N$ and $f: (X, R) \to (Y, S)$ is a one-to-one compatible mapping then $\varphi: B^{\mathfrak{X}} \to B^{\mathfrak{Y}}$ (or $\varphi/A^{\mathfrak{X}}: A^{\mathfrak{X}} \to A^{\mathfrak{Y}}$) is a one-to-one lattice homomorphism, where $\varphi(Z) = (f(Z) \cup N) - f(M-Z)$ if $Z \neq \emptyset, X, \varphi(\emptyset) = \emptyset, \varphi(X) = Y$. We shall write $\Psi \mathfrak{X} = (A^{\mathfrak{X}}, \cup, \cap), \ \Psi f = \varphi/A^{\mathfrak{X}}, \ \Phi \mathfrak{X} = (B^{\mathfrak{X}}, \cup, \cap), \ \Phi f = \varphi$.

Note 1.3. Denote by **Gr** the category whose objects are triples (X, R, M)where (X, R) is a bipartite graph and $M \subset X$ such that if $(x, y) \in R$ then $x \in M$ iff $y \notin M$ and whose morphisms $f: (X, R, M) \rightarrow (Y, N, S)$ are one-to-one mappings $f: (X, R) \rightarrow (Y, S)$ with $f(M) \subset N$. Denote by **DLat** the category of distributive lattices and one-to-one lattice homomorphisms. Then Φ, Ψ are faithful functors from **Gr** to **DLat**.

Definition. Let \mathfrak{A} be a lattice. An element x of \mathfrak{A} is called *meet-infinite* (or *join-infinite*) if there exists an infinite subset B of \mathfrak{A} such that for any distinct points $a, b \in B$, $a \wedge b = x$ (or $a \vee b = x$, respectively).

Lemma 1.4. Let $\mathfrak{X}=(X, R, M)$ be an object of **Gr** such that M and X-M are infinite and for every $x \in X$ the set $\{y: (x, y) \in R\}$ is finite. Then for $Z \in A^{\mathfrak{X}}$ we have

a) Z is a meet-infinite element iff $Z \supset M$;

b) Z is a join-infinite element iff $Z \subset M$.

. •

Proof. If $V \supset M$ then it is clear that V is meet-infinite $(V = (V \cup \{x\}) \cap (V \cup \{y\}))$ for every $x \neq y$, $x, y \in X - V$. Let V be meet-infinite. Let $\mathscr{B} \subset A^{\mathfrak{X}}$ be an infinite set with $W_1 \cap W_2 = V$ for every $W_1 \neq W_2$, W_1 , $W_2 \in \mathscr{B}$. If $M - V \neq \emptyset$ then $M - W \neq$ $\neq M - V$ holds only for finitely many $W \in \mathscr{B}$, and so \mathscr{B} is finite because the set $\{y: (x, y) \in R\}$ is finite for every $x \in X$, a contradiction; thus $M - V = \emptyset$ and hence $V \supset M$. The proof of case b) is analogous.

Lemma 1.5. Let $f: \mathfrak{A} \to \mathfrak{B}$ be a one-to-one lattice homomorphism. If $a \in \mathfrak{A}$ is a meet-infinite (join-infinite) element then f(a) is meet-infinite (join-infinite), too.

Proof. The proof is easy and is therefore omitted.

Lemma 1.6. Let $\mathfrak{X}=(X, R, M)$ be an object of **Gr** such that for every $x \in X$ the set $\{y: (x, y) \in R\}$ is finite. Let $Z, V \in B^{\mathfrak{X}}$ be such that there exists an infinite set $\mathfrak{B} \subset B^{\mathfrak{X}}$ with the following properties: 1) for every $W_1, W_2 \in \mathfrak{B}, W_1 \cap W_2 = V$ (or $W_1 \cup W_2 = V$); 2) $Z \supset W$ (or $Z \subset W$) for every $W \in \mathfrak{B}$. Then Z = X (or $Z = \emptyset$, respectively).

Proof. Clearly, X is finite iff $B^{\mathfrak{x}}$ is finite. If the set $\{y: (x, y) \in R\}$ is finite for every $x \in X$ then X is finite iff M and X - M are finite. By Lemma 1.4 we get that $V \in A_5^{\mathfrak{x}}$ and therefore either Z = X or $Z \in A_5^{\mathfrak{x}}$. If $Z \in A_5^{\mathfrak{x}}$, we have that Z - V is finite and therefore \mathscr{B} is not infinite, a contradiction.

Proposition 1.7. Let $\mathfrak{X}=(X, R, M)$, $\mathfrak{Y}=(Y, S, N)$ be objects of Gr such that

a) (X, R), (Y, S) are strongly reduced;

b) for every $x \in X$ the set $\{y: (y, x) \in R\}$ is finite and has at least two points; c) M, X-M, N, Y-N are infinite.

If $f: \Psi \mathfrak{X} \to \Psi \mathfrak{Y}$ (or $f: \Phi \mathfrak{X} \to \Phi \mathfrak{Y}$) is a one-to-one lattice homomorphism then there exists a morphism $g: (X, R, M) \to (Y, S, N)$ of **Gr** with $\Psi g = f$ (or $\Phi g = f$, respectively).

Proof. By Lemmas 1.4 and 1.5, $f(A_5^{\mathfrak{X}}) \subset A_5^{\mathfrak{Y}}$, $f(A_4^{\mathfrak{X}}) \subset A_4^{\mathfrak{Y}}$. Now we shall prove $f(A_1^{\mathfrak{X}}) \subset A_1^{\mathfrak{Y}}$. Since for every $Z \in A_1^{\mathfrak{X}}$, Z - M and M - Z are nonempty, we get that $f(Z) \in A_1^{\mathfrak{Y}} \cup A_2^{\mathfrak{Y}} \cup A_3^{\mathfrak{Y}}$, hence $f(A_1^{\mathfrak{X}}) \subset A_1^{\mathfrak{Y}} \cup A_2^{\mathfrak{Y}} \cup A_3^{\mathfrak{Y}}$. Assume that there exists $Z \in A_1^{\mathfrak{X}}$ with $f(Z) \in A_2^{\mathfrak{Y}}$. Then there exists $V_1 \in A_1^{\mathfrak{X}}$ with $V_1 \cup Z \in A_5^{\mathfrak{X}}$ and $V_1 \cap Z \notin A_4^{\sharp}$. Then $f(V_1) \cup f(Z) \in A_5^{\mathfrak{Y}}$ and $f(V_1) \cap f(Z) \notin A_4^{\sharp}$. Therefore $(f(V_1) - N) \cap A_5^{\mathfrak{Y}}$. $\cap (f(Z)-N) \neq \emptyset$ but $(N-f(V_1)) \cap (N-f(Z)) = \emptyset$. We shall prove $f(V_1)-N = \emptyset$ =f(Z)-N, hence we get a contradiction because (Y, S) is strongly reduced. Choose $V_2 \in A_1^{\sharp}$ with $V_2 \cup Z$, $V_2 \cup V_1 \in A_5^{\sharp}$, $V_2 \cap Z$, $V_2 \cap V_1 \in A_4^{\sharp}$. Then $V_2 \cup Z =$ $=V_2 \cup V_1 = Z \cup V_2 \cup V_1$ (we use that $V_1 \cap Z \notin A_4^{\sharp}$ and therefore $V_1 - M = Z - M$). Then $f(V_2) \cup f(Z) = f(V_2) \cup f(V_1) = f(Z) \cup f(V_2) \cup f(V_1)$, hence $(f(V_2) \cup f(Z)) -N = (f(V_2) \cup f(V_1)) - N$. Since $f(V_1) \cap f(V_2), f(Z) \cap f(V_2) \in A_A^{\mathfrak{V}}$ we have $(f(V_1)-N)\cap (f(V_2)-N)=\emptyset$ and $(f(Z)-N)\cap (f(V_2)-N)=\emptyset$. Thus $f(Z)-N=\emptyset$ $=f(V_1)-N$. We obtain that $f(A_1^{\mathfrak{X}}) \subset A_1^{\mathfrak{Y}}$ because it can be proved analogously that $f(A_1^{\mathfrak{X}}) \cap A_3^{\mathfrak{Y}} = \emptyset$. Hence $f(A_2^{\mathfrak{X}}) \subset A_2^{\mathfrak{Y}}$, $f(A_3^{\mathfrak{X}}) \subset A_3^{\mathfrak{Y}}$. Define $g: X \to Y$ as follows: for $x \in M$, g(x) = y where $f(M - \{x\}) = N - \{y\}$,

for $x \notin M$, g(x) = y where $f(M \cup \{x\}) = N \cup \{y\}$.

(Since $f(A_1^{\mathfrak{X}}) \subset A_1^{\mathfrak{Y}}$, we get that for every $v \in M$, $f(M - \{v\}) = N - \{w\}$ where $w \in N$ and for every $v \in X - M$, $f(M \cup \{v\}) = N \cup \{w\}$ where $w \in Y - N$.) It is clear that $g(M) \subset N$ and g is one-to-one. If $(x, y) \in R$ with $x \in M$ then $Z = (M - \{x\}) \cup \{y\} \in A_1^{\mathfrak{X}}$ and therefore $f(Z) \in A_1^{\mathfrak{Y}}$. Since $Z \supset M - \{x\}$, we get that $f(Z) \supset N - \{g(x)\}$ and since $Z \subset M \cup \{y\}$, we get that $f(Z) \subset N \cup \{g(y)\}$. Hence $f(Z) = (N - \{g(x)\}) \cup$ $\cup \{g(y)\}$ and so $(g(x), g(y)) \in S$. It is clear that $\Psi g = f$. If $f: \Phi \mathfrak{X} \to \Phi \mathfrak{Y}$ then by Lemmas 1.4 and 1.5 $f(A_5^{\mathfrak{Y}}) \subset A_5^{\mathfrak{Y}}$, $f(A_4^{\mathfrak{X}}) \subset A_4^{\mathfrak{Y}}$. Therefore by Lemma 1.6 $f(\emptyset) = \emptyset$, f(X) = Y and the rest follows from the foregoing part of the proof.

Corollary 1.8. Put $\mathfrak{A}_i = \Psi \mathfrak{X}_i$, $\mathfrak{B}_i = \Phi \mathfrak{X}_i$ (for \mathfrak{X}_i , see Construction 1.1). If $f: \mathfrak{A}_i \to \mathfrak{A}_j$ (or $f: \mathfrak{B}_i \to \mathfrak{B}_j$) is a one-to-one lattice homomorphism then i=j and f is the identity.

Construction 1.9. Let T be a set. Put

$$Y = \{Z : (Z \subset \exp T), (Z \neq \emptyset), (Z \text{ is finite}), (V \in Z \Rightarrow (V \neq \emptyset \text{ and } V \text{ or } T - V \text{ is finite})\}, (\forall V_1, V_2 \in Z)(V_1 - V_2 \neq \emptyset)\}.$$

Define a partial ordering \leq on Y as follows: $Z_1 \leq Z_2$ iff for every $V \in Z_1$ there exists $W \in Z_2$ with $V \supset W$. Clearly, \leq is a reflexive and transitive relation. Since for every $Z \in Y$, V_1 , $V_2 \in Z$ implies $V_1 - V_2 \neq \emptyset$, we get that $Z_1 \leq Z_2 \leq Z_1$ iff $Z_1 = Z_2$; thus \leq is a partial ordering.

Now if we put

$$Z_1 \lor Z_2 = \{ V \in Z_1 \cup Z_2 : (W \in Z_1 \cup Z_2 \Rightarrow W - V \neq \emptyset \text{ or } W = V) \};$$

$$Z_1 \land Z_2 = \{ V : (\exists V_1 \in Z_1) (\exists V_2 \in Z_2) (V = V_1 \cup V_2),$$

$$(\forall W_1 \in Z_1) (\forall W_2 \in Z_2) ((W_1 \cup W_2) \subset V \Rightarrow W_1 \cup W_2 = V) \},$$

we get that (Y, \leq) is a partial ordering induced by a lattice (Y, \lor, \land) and it is easy to verify that (Y, \land, \lor) is a distributive lattice. Put $\mathcal{D}(T)=(Y, \lor, \land)$. We shall identify $t \in T$ with $\{\{t\}\} \in Y$, i.e. $T \subset Y$. It is clear that the sublattice of $\mathcal{D}(T)$ generated by T is a free distributive lattice over T. Furthermore, no element Z of $\mathcal{D}(T)$ is join-infinite and $Z \in Y$ is meet-infinite iff there exists an infinite set $V \subset T$ with $V \in Z$.

Let U be a set and let $\{U_{i,j}: i, j \in \mathbb{N}\}$ be a cover of U. Define

$$\overline{Y} = \{ Z \subset \exp U \colon (Z \text{ is finite}), (V \in Z \Rightarrow (V \neq \emptyset), (V \text{ is finite or} \\ (\exists i, j \in \mathbb{N})(U_{i,j} - V \text{ is finite})) \}, (\forall V_1, V_2 \in Z)(V_1 - V_2 \neq \emptyset) \}.$$

Define a partial ordering \leq on \overline{Y} as follows: $Z_1 \leq Z_2$ iff for every $V \in Z_1$ there

exists $W \in \mathbb{Z}_2$ with $V \supset W$. Clearly, \leq is a partial ordering and if we put

$$Z_1 \lor Z_2 = \{ V \in Z_1 \cup Z_2 \colon (\forall W \in Z_1 \cup Z_2) (W \subset V \Rightarrow W = V) \};$$

$$Z_1 \land Z_2 = \{ V \colon (\exists V_1 \in Z_1) (\exists V_2 \in Z_2) (V = V_1 \cup V_2), (\forall W_1 \in Z_1), (\forall W_2 \in Z_2) ((W_1 \cup W_2) \subset V \Rightarrow W_1 \cup W_2 = V) \}$$

then $(\overline{Y}, \vee, \wedge)$ is a distributive lattice induced by the ordering \leq . Put

$$\overline{Y} = \{ Z \in \overline{Y} \colon V \in Z \Rightarrow (V \text{ is infinite, } (\exists i, j, m, n \in \mathbb{N}) \\ ((i, j) \neq (m, n), V - U_{i, j} \neq \emptyset, V - U_{m, n} \neq \emptyset) \} \},$$

then \overline{Y} is an ideal in \overline{Y} . Let \sim be the congruence relation generated by \overline{Y} . Then $Z_1 \sim Z_2$ iff $V \in \overline{Y}$ whenever $V \in (Z_1 - Z_2) \cup (Z_2 - Z_1)$. Hence if we put

$$\tilde{Y} = \{ Z \in \overline{Y} : V \in Z \Rightarrow (V \text{ is finite or } (\exists i, j \in \mathbb{N}) (U_{i,j} - V \text{ is finite, } V \subset U_{i,j}) \},\$$

we get that (\tilde{Y}, \leq) induces operations sup and inf as follows: sup $\{Z_1, Z_2\} = Z_1 \lor Z_2$, inf $\{Z_1, Z_2\} = Z_1 \land Z_2$ if $Z_1 \land Z_2 \in \tilde{Y}$, $= \emptyset$ otherwise. Clearly, $(\tilde{Y}, \text{sup, inf})$ is a lattice. Since $(\tilde{Y}, \text{sup, inf})$ is isomorphic to $(\bar{Y}, \lor, \land)/\sim$, we get that it is distributive. We shall identify $u \in U$ with $\{\{u\}\} \in \tilde{Y}$, i.e. $U \subset \tilde{Y}$. Notice that the sublattice of $(\tilde{Y}, \text{sup, inf})$ generated by U is a free distributive lattice over U. Introduce the notation $\mathscr{C}(U, U_{i,j}; i, j \in \mathbb{N}) = (\tilde{Y}, \text{sup, inf})$ (further on we shall write only \lor, \land instead of sup, inf).

Lemma 1.10. For every cover $\{U_{i,j}: i, j \in \mathbb{N}\}$ of U no element of $\mathscr{C}(U, U_{i,j}: i, j \in \mathbb{N})$ is join-infinite. An element Z of $\mathscr{C}(U, U_{i,j}: i, j \in \mathbb{N})$ is meet-in-finite iff

a) either $Z \neq \emptyset$ and there exists $V \in Z$ such that V is infinite,

b) or $Z=\emptyset$ and there exist infinitely many i, $j \in \mathbb{N}$ such that $U_{i,i}$ is infinite.

Proof. Let $Z \in \tilde{Y}$, we prove that it is not join-infinite. Let \mathscr{T} be a subset of \tilde{Y} such that $Z_1 \lor Z_2 = Z$ for any distinct $Z_1, Z_2 \in \mathscr{T}$. Then $Z_1 \lor Z_2 \supset Z$ and for every $V \in (Z_1 \cup Z_2) - Z$ there exists $W \in Z$ with $V \supset W$. Hence, if $V \in Z - Z_i$ for $Z_i \in \mathscr{T}$ then $V \in Z_j$ for every $Z_j \in \mathscr{T} - \{Z_i\}$ and if $Z_i \supset Z$ where $Z_i \in \mathscr{T}$ then $Z_i = Z$. Therefore we get that \mathscr{T} is finite and Z is not join-infinite.

Let $Z \in \tilde{Y}$, $Z \neq \emptyset$ be such that every $V \in Z$ is finite. We shall prove that Z is not meet-infinite. Let $\mathscr{T} \subset \tilde{Y}$ be such that $Z_1 \wedge Z_2 = Z$ for any distinct $Z_1, Z_2 \in \mathscr{T}$. Hence if $V \in Z$, $V_1 \in Z_1$ with $V \supset V_1$ then for every $W_2 \in Z_2$, $V \supseteq V_1 \cup W_2$ and there exists $V_2 \in Z_2$ with $V = V_1 \cup V_2$. On the other hand, for every $V \in Z$ there exists $V_1 \in Z_1$ with $V \supset V_1$. Now, for every $V \in Z$ and every $Z_i \in \mathscr{T}$ we choose $W_{V,i} \in Z_i$ with $W_{V,i} \subset V$. Then for $i \neq j$, $W_{V,i} \cup W_{V,j} = V$. Therefore for every $V \in Z$ the set $\{W_{V,i}: Z_i \in \mathcal{T}\}$ is finite and if $W_{V,i} \neq V$ then $W_{V,i} \neq W_{V,j}$ for every $Z_j \neq Z_i, Z_j \in \mathcal{T}$. Hence the set $\{Z_i \in \mathcal{T}: (\exists V \in Z) \ (W_{V,i} \neq V)\}$ is finite. Let \mathcal{T}' be a subset of \mathcal{T} with $Z_i \in \mathcal{T}'$ iff $Z_i \supset Z$. It suffices to prove that \mathcal{T}' is finite. For any distinct $Z_1, Z_2 \in \mathcal{T}'$ and every $V_1 \in Z_1 - Z, \ V_2 \in Z_2 - Z$, there exists $V \in Z$ with $V_1 \cup V_2 \supset V$. For every $Z_i \in \mathcal{T}' - \{Z\}$, we choose $V_i \in Z_i - Z$ and put $W_i = V_i \cap \bigcap_{V \in Z} V$. Now if $Z_i \neq Z_j$ then $W_i \cup W_j \subset V$ for some $V \in Z$. Since $\bigcup_{V \in Z} V$ is a finite set, we get that there exists only a finite set $\mathcal{T}'' \subset \mathcal{T}'$ such that if $Z_i \in \mathcal{T}''$ then $V - W_i \neq \emptyset$ for every $V \in Z$. Hence \mathcal{T}' is finite because if $W_i \supset V$ for some $V \in Z$ then $W_i = V_i = V$, a contradiction (notice that $V \in Z_i$). Thus \mathcal{T} is finite and Z is not meet infinite.

If there exists an infinite set $V \in Z$ then put $\mathscr{T} = \{\{W: W \in Z - \{V\}\} \cup \bigcup \{V - \{x\}\}: x \in V\}$. Clearly, if $Z_1, Z_2 \in \mathscr{T}, Z_1 \neq Z_2$ then $Z_1 \wedge Z_2 = Z$ and \mathscr{T} is infinite since V is infinite.

If $Z=\emptyset$ and $\mathbf{M} = \{(i, j): U_{i,j} \text{ is infinite}\}\$ is infinite, then put $\mathscr{T} = \{\{U_{i,j}\}: (i, j)\in \mathbf{M}\}$. Then \mathscr{T} is infinite and for distinct $Z_1, Z_2\in\mathscr{T}, Z_1\wedge Z_2=\emptyset=Z$.

Let \mathscr{T} be an infinite subset of $\mathscr{C}(U, U_{i,j}; i, j \in \mathbb{N})$ such that for distinct $Z_1, Z_2 \in \mathscr{T}$, $Z_1 \wedge Z_2 \neq \emptyset$. Then for every $Z_i \in \mathscr{T} - \{\emptyset\}$ there exists an infinite set $V_i \in Z_i$ and if $Z_i \neq Z_j$ then $V_i \cup V_j$ is not a subset of any $U_{m,n}, m, n \in \mathbb{N}$, but every V_i is a subset of some U_{m,n_i} . Hence if $Z_i \neq Z_j$ then $(m_i, n_i) \neq (m_j, n_j)$ and U_{m,n_i} is infinite.

Construction 1.11. Choose countably infinite sets T and U and a covering $\{U_{i,j}: i, j \in \mathbb{N}\}$ of U such that $U_{i,j}$ is infinite, and if i+j=m+n then $U_{i,j} \cap U_{m,n} = \emptyset$, otherwise the intersection is a singleton. Choose a mapping $\varepsilon: U \to T$ such that $\varepsilon | U_{i,j}: U_{i,j} \to T$ is a bijection for every $(i, j) \in \mathbb{N} \times \mathbb{N}$ and choose a bijection $\mu: \mathbb{N} \to T$. Set $\mathbb{K} = \left\{ (p, q): (p \in \mathbb{N}), \left(q \in \varepsilon^{-1} \left(\mu \left(\left[\frac{p}{2} \right] \right) \right) \right) \right\}$.

Let \mathfrak{M} be the sublattice of $\mathscr{D}(T) \times \prod_{i \in \mathbb{N}} \mathfrak{B}_i$ (for \mathfrak{B}_i see Corollary 1.8) generated by the set

$$S = \left\{ (t, \{a_i\}_{i \in \mathbb{N}}) \colon (t \in T), \left((i \text{ is odd}), \left(\mu\left(\left[\frac{i}{2}\right]\right) \neq t \right) \Rightarrow a_i = \emptyset \right), \\ \left((i \text{ is even}), \left(\mu\left(\left[\frac{i}{2}\right]\right) \neq t \right) \Rightarrow a_i = X_{\left[\frac{i}{2}\right]} \right), \quad \left(\mu\left(\left[\frac{i}{2}\right]\right) = t \Rightarrow a_i \in \mathfrak{B}_j \right) \right\} \cup \\ \cup \left\{ (\{V\}, \{a_i\}_{i \in \mathbb{N}}) \colon (T - V \text{ is finite}), (\forall i \in \mathbb{N}) (a_i = \emptyset) \right\}.$$

It is clear that S is a countable set and therefore \mathfrak{M} is a countable distributive lattice. For $t \in T$ set $\alpha(t) = (t, \{a_i\}_{i \in \mathbb{N}})$ where $\alpha(t) \in S$ and $a_i = M_i$ if $\mu\left(\left[\frac{i}{2}\right]\right) = t$.

Let
$$\mathfrak{N}$$
 be the sublattice of $\mathscr{C}(U, U_{i,j}: i, j \in \mathbb{N}) \times \prod_{i \in \mathbb{N}} \mathfrak{B}_i^{s_i}$ with $s_i = = \operatorname{card} \varepsilon^{-1} \left(\mu \left(\left[\frac{i}{2} \right] \right) \right)$ generated by the set
 $Q = \left\{ (u, \{a_{p,q}\}_{(p,q) \in \mathbb{K}}) : (u \in U), ((p \text{ is odd}), (q \neq u) \Rightarrow a_{p,q} = \emptyset), ((p \text{ is even}), (q \neq u) \Rightarrow a_{p,q} = X_{\left[\frac{p}{2} \right]} \right\},$
 $(q = u \Rightarrow a_{p,q} \in \mathfrak{B}_{\left[\frac{p}{2} \right]}) \right\} \cup \left\{ (\{V\}, \{a_{p,q}\}_{(p,q) \in \mathbb{K}}) : (\exists i, j \in \mathbb{N}) ((U_{i,j} - V \text{ is finite}), (V \subset U_{i,j})), (\forall (p,q) \in \mathbb{K} (a_{p,q} = \emptyset)) \right\}.$

Since Q is a countable set, \mathfrak{N} is a distributive lattice. For $u \in U$, put $\beta(u) = = (u, \{a_{p,q}\}_{(p,q)\in \mathbf{K}}) \in Q$ where $a_{p,q} = M_{\lfloor \frac{p}{2} \rfloor}$ if q = u.

Lemma 1.12. Let $(t, \{a_i\}_{i \in \mathbb{N}})$ be a point where $t \in \mathcal{D}(T)$ and $a_i \in \mathfrak{B}_{[i/2]}$ for every $i \in \mathbb{N}$. Then $(t, \{a_i\}_{i \in \mathbb{N}})$ is a point of \mathfrak{M} iff the following conditions hold:

a) if i is odd and $a_i \neq \emptyset$ then t is greater than or equal to $\mu\left(\left|\frac{i}{2}\right|\right)$;

b) if i is even and $a_i \neq X_{[i/2]}$ then either t is less than or equal to $\mu\left(\left[\frac{i}{2}\right]\right)$ or for every $i \in \mathbb{N}$, $a_i = \emptyset$ and every set $V \in t$ is infinite.

Let $(u, \{a_{p,q}\}_{(p,q)\in \mathbb{K}})$ be a point where $u \in \mathscr{C}(U, U_{i,j}: i, j \in \mathbb{N})$ and $a_{p,q} \in \mathfrak{B}_{[p/2]}$ for every $(p,q)\in \mathbb{K}$. Then $(u, \{a_{p,q}\}_{(p,q)\in \mathbb{K}})$ is a point of \mathfrak{N} iff the following conditions hold: a) if p is odd and $a_{p,q} \neq \emptyset$ then u is greater than or equal to q;

b) if p is even and $a_{p,q} \neq X_{\lfloor p/2 \rfloor}$ then either u is less than or equal to q or for every $(p,q) \in \mathbf{K}$, $a_{p,q} = \emptyset$ and either $u = \emptyset$ or every set $V \in u$ is infinite.

Proof. Easy.

Notice, if $(u, \{a_{p,q}\}_{(p,q)\in \mathbf{K}})$ is a point of \mathfrak{N} then there exist only finitely many $(p,q)\in \mathbf{K}$ with $a_{p,q}=\emptyset, X_{\lfloor p/2 \rfloor}$. Hence we get

Corollary 1.13. An element $(u, \{a_{p,q}\}_{(p,q)\in \mathbf{K}})$ of \mathfrak{N} is meet-infinite iff either there exists an infinite set $V \subset U$ with $V \in u$ or $u = \emptyset$, or there exists $(p,q) \in \mathbf{K}$ with $X_{[p/2]} \neq a_{p,q} \supset M_{[p/2]}$. An element $(u, \{a_{p,q}\}_{(p,q)\in \mathbf{K}})$ of \mathfrak{N} is join-infinite iff there exists $(p,q) \in \mathbf{K}$ with $M_{[p/2]} \supset a_{p,q} \neq \emptyset$.

Proof. The statement follows from Lemmas 1.4, 1.10, 1.12 and the fact that if $Z_1 \cap Z_2 = \emptyset$ then either $Z_1 = \emptyset$ or $Z_2 = \emptyset$ and if $Z_1 \cup Z_2 = X_i$ then either $Z_1 = X_i$ or $Z_2 = X_i$ in each \mathfrak{B}_i .

Proposition 1.14. Let $\varphi: \mathfrak{M} \to \mathfrak{N}$ be a one-to-one lattice homomorphism. Then for every $t \in T$, $\varphi(\alpha(t)) = \beta(u)$ where $\varepsilon(u) = t$. Proof. Set $\varphi(\alpha(t)) = (u^t, \{a_{p,q}^t\}_{(p,q) \in \mathbf{K}})$. Since $\alpha(t)$ is join-infinite, we get according to Corollary 1.13 and Lemma 1.12 that there exists $\overline{u}^t \in U$ such that either $u^t \leq \overline{u}^t$ or $u^t \geq \overline{u}^t$.

a) First we prove that $u^t = \overline{u}^t$. Assume the contrary, i.e. for some $t_0 \in T$, $u^{t_0} \neq \overline{u}^{t_0}$. We know that there exists a finite set $W \subset U$ with $W \in u^{t_0}$. Now if $u^{t_0} < \overline{u}^{t_0}$ (in the case $u^{t_0} > \overline{u}^{t_0}$, the proof is analogous) then put $L_t = \{u \in U: u > u^t\}$ for $t \in T$. Clearly, L_t is a finite set for every $t \in T$. Now there exists a finite subset $T' \subset T$ with $\bigcap_{t \in T} L_t = \bigcap_{t \in T'} L_t$. Then $\bigvee \{\alpha(t): t \in T'\}$ is join-infinite and therefore $\bigcap_{t \in T} L_t \neq \emptyset$ (see Corollary 1.13 and Lemma 1.12). For $t \in T - T'$ put

$$E_t = \left\{ (t, \{a_i\}_{i \in \mathbb{N}}) \in \mathfrak{M} \colon \left(\left(\mu\left(\left[\frac{i}{2}\right]\right) = t \right), \text{ (i is even)} \Rightarrow a_t = M_{[i/2]} \right), \right.$$

$$(i \text{ is odd} (\exists x \in M_{[i/2]})(a_i = M_{[i/2]} - \{x\}))$$

Hence, if e_1, e_2 are distinct points of E_t then $e_1 \lor e_2 = \alpha(t)$ and $e_1 \lor c \neq e_2 \lor c$, $e_1 \land c = e_2 \land c$ where $c = \lor \{\alpha(t) : t \in T'\}$. For $w \in \mathfrak{M}$, let $\varphi(w) = \{(v^w, b^w_{p,q})\}_{(p,q) \in \mathbf{K}}$. Since no element of $\mathscr{C}(U, U_{i,j} : i, j \in \mathbf{N})$ is join-infinite, the set $\overline{E}_t = \{e \in E_t : v^e = u^t\}$ is infinite for every $t \in T - T'$ (because for infinitely many $e_1, e_2 \in E_t, v^{e_1} = v^{e_2}$ and then necessarily $v^{e_1} = u^t$). Hence for $e \in \overline{E}_t, v^{e \lor c} = v^{\alpha(t) \lor c}$. Now, for distinct t_1 , $t_2 \in T - T'$ and for $e_1 \in \overline{E}_{t_1}, e_2 \in \overline{E}_{t_2}$, we have $e_1 \land e_2 = \alpha(t_1) \land \alpha(t_2)$. Thus, for every distinct points $t_1, t_2 \in T - T'$,

- (a) $e_1 \lor c \neq e_2 \lor c$ for any $e_1, e_2 \in \overline{E}_{t_1}$ and $v^{e_1 \lor c} = v^{e_2 \lor c}$,
- (b) $e \wedge \bar{e} = \alpha(t_1) \wedge \alpha(t_2)$ for every $e \in \bar{E}_{t_1}, \ \bar{e} \in \bar{E}_{t_2}$.

Since for every $t \in T - T'$ there exists only a finite subset $\mathbf{K}_t \subset \mathbf{K}$ such that $(p, q) \in \mathbf{K}_t$ whenever $b_{p,q} \neq \emptyset$, $X_{\lfloor p/2 \rfloor}$ and $(v^{e^{V_c}}, \{b_{p,q}\}_{(p,q)\in \mathbf{K}}) \in \mathfrak{N}$ where $e \in E_t$, therefore there exists $(p_t, q_t) \in \mathbf{K}$ and an infinite set $\tilde{E}_t \subset E_t$ such that $b_{p_t,q_t}^{e_1 \vee c} \neq b_{p_t,q_t}^{e_2 \vee c}$ whenever e_1, e_2 are distinct points of \tilde{E}_t . Since $\alpha(t) \wedge \alpha(t') \leq e^{V_c}$ for every $t, t' \in T - T'$ and $e \in E_t$, we get that $b_{p_t,q_t}^{\alpha(t) \wedge \alpha(t')} = \emptyset$ (see Lemma 1.6) and since in $\mathfrak{B}_i Z_1 \cap Z_2 = \emptyset$ implies either $Z_1 = \emptyset$ or $Z_2 = \emptyset$, we have that for every $t' \in T - T'$, $t \neq t'$ and every $e \in \overline{E}_{t'}$, $b_{p_t,q_t}^e = \emptyset$. Since $q_i \in \bigcap_{t \in T} L_t$ for every $i \in T - T'$ and since $\bigcap_{t \in T} L_t$ is finite, we get a

contradiction. Hence $u^{t_0} = \bar{u}^{t_0}$.

b) Now, we prove that $a_{\bar{p},u} = M_{[\bar{p}/2]}$. Assume the contrary, i.e. $a_{\bar{p},u} = Z \neq M_{[\bar{p}/2]}$. If \bar{p} is odd then for $t', t'' \in T, t' \neq t'' \neq t$, $t' \neq t$, the element $e = (\alpha(t) \lor \alpha(t')) \land \land (\alpha(t) \lor \alpha(t''))$ is both meet- and join-infinite. On the other hand, if $\varphi(e) = = (v^e, \{b_{p,q}^e\}_{(p,q)\in \mathbf{K}})$ then $b_{p,q}^e = \emptyset$ or $X_{[p/2]}$ if $(p,q) \neq (\bar{p},u)$ and $b_{\bar{p},u}^e = Z$, which contradicts Lemmas 1.4 and 1.5. If \bar{p} is even, the proof is analogous. Thus $a_{p,u} = M_{[\bar{p}/2]}$.

c) Now we prove that $\varepsilon(u') = t$. Let i_0 be an odd natural number with $\mu\left(\left[\frac{i_0}{2}\right]\right) = t$, let p_0 be an odd natural number with $\mu\left(\left[\frac{p_0}{2}\right]\right) = \varepsilon(u')$. It suffices to prove that $i_0 = p_0$. Define $\psi: \mathfrak{B}_{i_0} \to \mathfrak{B}_{p_0}$ as follows: $\psi(Z) = b_{p,u'}^{e_Z}$ where $e_Z = (t, \{a_i\}_{i \in \mathbb{N}})$ and if $\mu\left(\left[\frac{i}{2}\right]\right] = t$ and i is odd then $a_i = Z$, while if i is even then $a_i = M_{[i/2]}$ (recall that $\varphi(e_Z) = (v^{e_Z}, \{b_{p,q}^{e_Z}\}_{(p,q) \in \mathbb{K}})$). It is clear that ψ is a lattice homomorphism (it is a composition of the embedding of \mathfrak{B}_{i_0} into \mathfrak{M} , of φ and of the projection from \mathfrak{N} to \mathfrak{B}_{p_0}). We shall prove that ψ is one-to-one. By Lemma 1.6 it suffices to prove that $\psi | \mathfrak{A}_{i_0}$ is one-to-one. First we shall prove that for every $Z \in \mathfrak{A}_{i_0}, v^{e_Z} = u^t$. Hence, it follows immediately that ψ is one-to-one and by Corollary 1.8, $i_0 = p_0$. Put

$$E_{1} = \left\{ (t, \{a_{i}\}_{i \in \mathbb{N}}) : \left(\left(\mu\left(\left[\frac{i}{2}\right]\right) = t \right), (i \text{ is even}) \Rightarrow a_{i} = M_{[i/2]} \right), \\ (i \text{ is odd} \Rightarrow (\exists x \in M_{[i/2]})(a_{i} = M_{[i/2]} - \{x\})) \right\}, \\ E_{2} = \left\{ (t, \{a_{i}\}_{i \in \mathbb{N}}) : \left(\left(\mu\left(\left[\frac{i}{2}\right]\right) = t \right), (i \text{ is even}) \Rightarrow a_{i} = M_{[i/2]} \right), \\ (i \text{ is odd} \Rightarrow (\exists x \in X_{[i/2]} - M_{[i/2]})(a_{i} = M_{[i/2]} \cup \{x\})) \right\}.$$

Clearly, if we verify that for $e \in E_1 \cup E_2$, $v^e = u^t$, then for every $Z \in \mathfrak{A}_{i_0}$, $v^{e_2} = u^t$. Since for any distinct $e_1, e_2 \in E_1$ $(e_1, e_2 \in E_2)$, $e_1 \vee e_2 = \alpha(t)$ $(e_1 \wedge e_2 = \alpha(t)$, resp.) we get that there exists at most one $e_1 \in E_1$ (or $e_2 \in E_2$) with $v^{e_1} \neq u^t$ (or $v^{e_2} \neq u^t$) because for $u \in U$, if $u_1 \vee u_2 = u$ (or $u_1 \wedge u_2 = u$) then either $u_1 = u$ or $u_2 = u$. Then necessarily $v^{e_1} \leq u^t \leq v^{e_2}$. Choose a homomorphism $\sigma: \mathcal{D}(T) \to \mathfrak{M}$ such that $\sigma(t) = \alpha(t)$ for every $t \in T$ (clearly, such a homomorphism exists). Now we can choose $t' \in \mathcal{D}(T)$ such that t' > t and $v^{\sigma(t')}$ and v^{e_2} are incomparable. Then $\sigma(t') \wedge e_2 = \alpha(t)$ (observe that if $\sigma(t') = (t, \{a_i\}_{i \in \mathbb{N}})$ then for an odd i with $\mu\left(\left[\frac{i}{2}\right]\right) = t, a_i = M_{[i/2]}$), but $\varphi(\sigma(t')) \wedge \varphi(e_2) \neq \varphi(\alpha(t))$, a contradiction. Thus for every $e \in E_2$, $v^e = u^t$. Analogously, we prove that $v^{e_1} = u^t$. The proof is concluded.

Theorem 1.15. For every natural number i, there exist pairwise disjoint sublattices $\mathfrak{N}_0, \mathfrak{N}_1, \ldots, \mathfrak{N}_{i-1}$ of the lattice \mathfrak{N} which are isomorphic to \mathfrak{M} , but there are not infinitely many pairwise disjoint sublattices $\mathfrak{N}_0, \mathfrak{N}_1, \ldots$ of \mathfrak{N} which are isomorphic to \mathfrak{M} .

Proof. Let $\{\varphi_k\}_{k \in \mathbb{N}}$ be a sequence of one-to-one lattice homomorphisms from \mathfrak{M} to \mathfrak{N} . Then for arbitrary $k \in \mathbb{N}$ and $t \in T$, $\varphi_k(\alpha(t)) = \beta(u)$ where $\varepsilon(u) = t$. Further,

for every finite set $T' \subset T$ there exists a point $\gamma(T') \in \mathfrak{M}$ such that $\gamma(T') \leq \alpha(t)$ iff $t \in T - T'$. On the other hand, if $U' \subset U$ is an infinite set and $U' - U_{i,j} \neq \emptyset$ for any $i, j \in \mathbb{N}$, then $e \leq \beta(u)$ for every $u \in U'$ iff $e = (\emptyset, \{a_{p,q}\}_{(p,q) \in \mathbb{K}})$ where $a_{p,q} = \emptyset$ for every $(p,q) \in \mathbb{K}$. Therefore there exist $i_k, j_k \in \mathbb{N}$ with $\varphi_k(\alpha(t)) = (u^t, \{a_{p,q}\}_{(p,q) \in \mathbb{K}})$ where $\{u^t\} = \varepsilon^{-1}(t) \cap U_{i_k, j_k}$ for every $t \in T$. Therefore there exist $k_1 \neq k_2$ with $i_{k_1} + j_{k_1} \neq i_{k_2} + j_{k_2}$. Put $\{u\} = U_{i_{k_1}, j_{k_1}} \cap U_{i_{k_2}, j_{k_2}}$ $\varepsilon(u) = t$. Then $\varphi_{k_1}(\alpha(t)) = \varphi_{k_2}(\alpha(t))$ and $\{\varphi_k(\mathfrak{M})\}_{k \in \mathbb{N}}$ are not pairwise disjoint.

Let k be a natural number. For every $j \leq k$ define $\psi_j: \mathcal{D}(T) \rightarrow \mathcal{C}(U, U_{i,j}: i, j \in \mathbb{N})$ as follows: $\psi_j(Z) = \{\varepsilon^{-1}(V) \cap U_{(k-j),j}: V \in Z\}$. Clearly, the ψ_j 's are one-to-one homomorphisms and $\{\psi_j(\mathcal{D}(T))\}_{j \leq k}$ are pairwise disjoint. Define $\varphi_j: \mathfrak{M} \rightarrow \mathfrak{N}$, $\varphi_j(t, \{a_i\}_{i \in \mathbb{N}}) = (\psi_j(t), \{b_{p,q}\}_{(p,q) \in \mathbb{K}})$ where $b_{i,\psi_j(t)} = a_i$. Then $\{\varphi_j: j \leq k\}$ is a family of pairwise disjoint one-to-one lattice homomorphisms. The proof is concluded.

2. Let us formulate the above problem in a general category with a class \mathfrak{M} of its morphisms.

Definition. Let \mathscr{K} be a category with a cosingleton \emptyset . Let $f, g: A \rightarrow B$ be morphisms of \mathscr{K} . We shall say that f, g are *disjoint* if

is a pull back.

Definition. Let \mathscr{K} be a category, let \mathfrak{M} be a class of its morphisms. A pair (A, B) of objects is said to have the property $(S_{\mathfrak{M}})$ if for every n=1, 2, ... there exist *n* pairwise disjoint \mathfrak{M} -morphisms from *A* to *B*, but there do not exist infinitely many such morphisms. We say that \mathscr{K} fulfils Sekanina's axiom with respect to \mathfrak{M} if no pair of objects has the property $(S_{\mathfrak{M}})$.

Now we can formulate the foregoing result as follows: The pair $(\mathfrak{M}, \mathfrak{N})$ of countable distributive lattices has the property $(S_{\mathcal{M}})$ with \mathcal{M} the class of all monomorphisms.

Now we establish some other results:

Theorem 2.1. The category of sets, the category of vector spaces and the category of unary algebras with one operation fulfil Sekanina's axiom with respect to \mathfrak{M} for every class \mathfrak{M} containing all monomorphisms.

Proof. Easy.

Theorem 2.2. The category of complete, completely distributive Boolean algebras fulfils Sekanina's axiom with respect to the class of all monomorphisms.

10*

Proof. The statement follows immediately from the well-known fact that every complete, completely distributive Boolean algebra is the algebra of all subsets of some set.

Theorem 2.3. The category of graphs or unary algebras with α operations (α is a cardinal, $\alpha > 0$) fulfils Sekanina's axiom with respect to the class of all summands.

Proof. The statement follows from the fact that $f: A \rightarrow B$ is sumand iff A is isomorphic to the sum of some components of B.

Now we recall that a monomorphism f in a category \mathscr{K} is an *extremal mono-morphism* if any epimorphism e is an isomorphism whenever $f=g \circ e$ for some morphism g of \mathscr{K} . In the category of graphs or topological spaces extremal monomorphisms are embeddings to full subgraphs or subspaces.

I. KOREC showed that there exists a pair (A, B) of countable graphs or countable unary algebras with two operations which have the property $(S_{\mathfrak{M}})$ where \mathfrak{M} is the class of all extremal monomorphisms.

Theorem 2.4. There exists a pair (A, B) of connected, countable, bipartite graphs with the property $(S_{\mathfrak{M}})$ where \mathfrak{M} is an arbitrary class of monomorphisms containing all extremal monomorphisms.

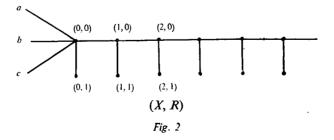
Theorem 2.5. There exists a pair (A, B) of continua with the property $(S_{\mathfrak{M}})$ where A is a subcontinuum of the plane, B is a subcontinuum of the cube and \mathfrak{M} is an arbitrary class of monomorphisms containing all extremal monomorphisms.

Proof of Theorems 2.4 and 2.5. Put $X = \{a, b, c\} \cup (N \times \{0, 1\}),\$

 $R = \{((0, 0), a), ((0, 0), b), ((0, 0), c), (a, (0, 0)), (b, (0, 0)), (c, (0, 0))\} \cup$

 \cup {((*i*, 0), (*i*, 1)), ((*i*, 1), (*i*, 0)): *i* \in **N**} \cup

 $\cup \{ ((i, 0), (i+1, 0)), ((i+1, 0), (i, 0)) : i \in \mathbb{N} \}.$



148

Clearly, (X, R) is a connected, countable bipartite graph. Choose a bijection φ from $\mathbf{L} = \{(x, y, z, v): (x, y, z, v \in \mathbf{N}), (x+y \neq z+v)\}$ to N. Put $(Y, S) = (X, R) \times (\mathbf{N} \times \mathbf{N}, \Delta)/\sim$ where $(\mathbf{N} \times \mathbf{N}, \Delta)$ is the smallest reflexive relation on $\mathbf{N} \times \mathbf{N}$ and \sim is the smallest equivalence relation on $X \times \mathbf{N} \times \mathbf{N}$ with

$$(k, 1, x, y) \sim (k, 1, z, v)$$
 whenever $\varphi(x, y, z, v) = k$.

Clearly, (Y, S) is a connected, countable graph. To verify that it is bipartite, it suffices to put $M = \{(k, i, x, y) \in Y: k+i \text{ is even}\}/\sim$. Let k be a natural number, $i \leq k$. Define $f_i^k: (X, R) \rightarrow (Y, S)$ as follows: $f_i^k(x)$ is the \sim -class containing (x, k, k-i). Clearly, $f_i^k, i=0, 1, \ldots, k$, are pairwise disjoint extremal monomorphisms. Let $\{f_i\}$ be a sequence of one-to-one morphisms from (X, R) to (Y, S). Since card $\{y:(y, (0, 0)) \in R\} = 4$, we get that for every i there exists $(p_i, q_i) \in \mathbb{N} \times \mathbb{N}$ such that $f_i(0, 0)$ is the \sim -class containing $(0, 0, p_i, q_i)$. Hence we easily get that $f_i(j, 0)$ is the \sim -class containing $(j, 0, p_i, q_i)$ and $f_i(j, 1)$ is the \sim -class containing $(j, 1, p_i, q_i)$. Further, there exist i_0, i_1 with $p_{i_0} + q_{i_0} \neq p_1 + q_{i_1}$. Let $k = = \varphi(p_{i_0}, q_{i_0}, p_{i_1}, q_{i_1})$. Then $f_{i_0}(k, 1) = f_{i_1}(k, 1)$ and therefore f_{i_0} and f_{i_1} are not disjoint. If we set A = (X, R), B = (Y, S), then the proof of Theorem 2.4 is concluded.

Let K be a circle with the usual topology. Choose two distinct points $a, b \in K$. Let $S = \{\{x, y\}: (x, y) \in R\}$ be equipped with the discrete topology where $R \subset X \times X$ is the relation defined above. Let P_1 be the one-point compactification of $K \times S / \sim$ with \sim standing for the smallest equivalence relation such that:

$$(a, \{x, y\}) \sim (a, \{x, z\})$$
 for every $\{x, y\}, \{x, z\} \in S$ with $x \in \{(i, j): i+j \text{ is even}\};$
 $(b, \{x, y\}) \sim (b, \{x, z\})$ for every $\{x, y\}, \{x, z\} \in S$ with $x \in \{(i, j): i+j \text{ is odd}\}.$

Clearly, P_1 is a subcontinuum of the plane. We shall assume that N has the discrete topology. Let P_2 be the one-point compactification of $P_1 \times N \times N \approx$ where \approx is the smallest equivalence relation such that if $\varphi(x, y, z, v) = k$ then

$$((a, \{(k, 0), (k, 1)\}], x, y) \approx ([a, \{(k, 0), (k, 1)\}], z, v)$$
 if k is odd,

$$([b, \{(k, 0), (k, 1)\}], x, y) \approx ([b, \{(k, 0), (k, 1)\}], z, v)$$
 if k is even,

where [x] denotes the \sim -class containing x. Clearly, P_2 is a subcontinuum of the cube. The proof that (P_1, P_2) has the property $(S_{\mathfrak{M}})$ is analogous to that of the similar statement for (X, R) and (Y, S). It suffices to realize that if $f: K \rightarrow K$ is one-to-one then f is a homeomorphism.

Theorem 2.6. There exists a pair (A, B) of 0-dimensional compact Hausdorff spaces on sets of power \aleph_1 , which has the property $(S_{\mathfrak{M}})$ where \mathfrak{M} is the class of all summands.

Proof. Define topological spaces S_n by induction as follows: S_1 is the onepoint compactification of a countable discrete set; S_n is the one-point compactification of $S_{n-1} \times N$ where N has the discrete topology. Put R_n to be the one-point compactification of \aleph_1 copies of S_n . Let T_1 be the one-point compactification of the disjoint union of R_1, R_2, \ldots Clearly, T_1 is a 0-dimensional compact Hausdorff space on a set of power \aleph_1 .

Let U be a countable set and let $\{U_{i,j}: i, j \in \mathbb{N}\}$ be a cover of U such that every $U_{i,j}$ is infinite and $U_{i,j} \cap U_{m,n} = \emptyset$ if i+j=m+n, $U_{i,j} \cap U_{m,n}$ is infinite if $i+j \neq m+n$. Choose a mapping $\psi: U \rightarrow \{1, 2, 3, ...\}$ such that $\psi|U_{i,j}$ is a bijection from $U_{i,j}$ onto $\{1, 2, 3, ...\}$ for every $i, j \in \mathbb{N}$.

Let T_2 be the one-point compactification of $T_1 \times N \times N \approx (N \times N)$ has the discrete topology) where \approx is the smallest equivalence relation such that $(x, i, j) \approx (x, m, n)$ if $x \in R_p$ and $p \in \psi(U_{i,j} \cap U_{m,n})$. Clearly, T_2 is a 0-dimensional compact Hausdorff space on a set of power \aleph_1 .

Let k be a natural number, i=0, 1, ..., k. Define $f_i^k: T_1 \rightarrow T_2$, by $f_i^k(x)$ being the \approx -class containing (x, k, k-i). It is easy to verify that f_i^k is a summand and that f_i^k and f_i^k are disjoint whenever $i \neq j$.

Let $\{f_i: T_1 \to T_2\}$ be a sequence of summands. Then for every *i*, there exist $j_i, k_i \in \mathbb{N}$ and $i_1, i_2, \ldots, i_n \in \mathbb{N}$ such that $f_i (T_1 - \bigcup_{m=1}^n R_{i_m}) \subset T_1 \times \{(j_i, k_i)\} / \approx$, therefore if $j_{i_0} + k_{i_0} \neq j_{i_1} + k_{i_1}$, we get that $\operatorname{Im} f_{i_0} \cap \operatorname{Im} f_{i_1} \neq \emptyset$ and thus f_{i_0} and f_{i_1} are not disjoint. On the other hand, there exist i_0, i_1 such that either $j_{i_0} + k_{i_0} \neq j_{i_1} + k_{i_1}$ or $(j_{i_0}, k_{i_0}) = (j_{i_1}, k_{i_1})$. Hence if we set $A = T_1, B = T_2$, the proof of the theorem is complete.

FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY MALOSTRANSKÉ NÁMĚSTÍ 25 118 00 PRAHA 1, CZECHOSLOVAKJA