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Sublattices of a distributive lattice 

VACLAV K O U B E K 

At the Mini-Conference on Lattice Theory in Szeged, 1974, M. S e k a n i n a has 
formulated the following problem: Is it true that if a lattice B contains an arbitrarily 
large finite number of pairwise disjoint sublattices, isomorphic to a lattice A, then 
B also contains an infinite number of such sublattices? The aim of the present 
paper is to construct two countable distributive lattices A and B which are counter-
examples, i.e. such that for any m = 1, 2, 3, ..., B contains m disjoint copies of A, 
but it does not contain infinitely many such copies. An independent solution of 
Sekanina's problem was found by I . K o r e c in a paper to appear (personal com-
munication). 

An analogous problem can be formulated for other structures than lattices 
and various concepts of subobject, e.g. summand. In the second part a general 
formulation of this problem is exhibited. 

1. We recall that a graph (.X, R) (i.e. RcXxX) is bipartite if it is symmetric 
and there exists a subset M of X such that if (x, y)£R then x£M 

D e f i n i t i o n . A graph (X, R) is strongly reduced if for any distinct points 
x,y£X there exists at most one point z with (z, x), (z,y)£R. 

C o n v e n t i o n . Denote by N the set of all natural numbers, by Z the set of 
all integers. 

C o n s t r u c t i o n 1.1. We shall construct countable, connected, strongly re-
duced, bipartite graphs (Xt, Rt) with z'€N, i > l such that 

a) for every x£Xt, card {z: (x, z)6i?,}€{2, 3}; 
b) if f : (Xi, Ri)-+(Xj, Rj) is a one-to-one compatible mapping then i=j and 

/ is the identity. 
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Put 

= {(*, yY- (*, y(L Z), (y^O^ye {i, - <}U 

U{i + 2 fc+l : fc?N}U{-i-3fe-l: k£ N}) (sgnx = sgn^)}5 

R, = {((*, 0), (x+1, 0)): x6 Z}U{((x, 0), ( x - 1 , 0)): Z}U 

u{(0+S, y), (y + t,y)):(y€{i+2k + i:keN}U 

U{—i —3fc—1: *€N}U{i , - i } ) , ( | s - i | = 1), (s_Mj> ==0)}U 

U {((y - , 0), (y, y)), ((y, y), (y - J L , o)): y € {i+ 2k +1: k € N} U 

U{—f—3Jfe—1: fc€N}U{i, -i}}. 

It is clear that {X,, Rt) is a countable, symmetric, strongly reduced graph. Set 
= is even}, then Ri(z((Xi-Mi)XMi)U(MiX(Xi-AQ) and 

therefore (Xi, /?,) is a bipartite graph. Further, for every x£X,, 

We shall prove Property b). If f:(X¡, Rt)~*(Xj, Rj) is a one-to-one compatible 
mapping then for { / - 1 , 1 - i ' }U {i+2k:k£N}U {-i-3k: k£N},f(x, 0)€ {( / ' -1 ,0) , 
(1 - j , 0)}U {(j+2k, Q):kiN}(J{(-j-3k, 0): A:£N}. Hence / ( { ( / - 1 , 0 ) , (1 - / , 0)})e 
€{ (7 -1 ,0 ) , (1-./, 0)} and therefore i=j. Further, fix, 0)6{0>, 0): y€Z}. If 
/ ( /—1,0)=(1 — 0 ) then f(i+2k,0)=(-i-2k,0) but the latter is impossible, 
thus /(/—1, 0)=(/—1, 0) and so is f(x, 0)=(x, 0) for every x€Z. Hence / is 
the identity. 

Let us introduce the notation X~(Xlt Mt), N, i>1 . 

{Xt, R,) 

Fig.l 

card {z: (x, z)£Ri}e{2, 3}. 
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C o n s t r u c t i o n 1.2. Let X = (A', R, M) where (X, R) is a bipartite graph and 
MczX such that if (x,y)£R then x £ M iff y$M. Set 

Af = {ZcX:(3(x,y)£R)(xeM and Z = (M-{x})U{3;»}; 

Ai = {Zc X: (3xeM)(3Kc{y: (y, x)eR})(K is finite and Z = (M-{x}) UK)}; 

A§ = { Z c X: (B x£X-M)(3Kcz {y: (y, x)£R})(K is finite and Z = (M-K)U {*})}; 

Af = { Z c X: (3K<-M)(K is finite and Z = M- J5T)}; 

Af = {Zc: X: (3K<z X-M)(K is finite and Z = M U X)}. 

Put AX=\J A f , Bx = Ax\J{<b,X). For Z, VtB* define Z V F = Z U F , Z A F = 
¡=1 

= Z H F, then it is easy to verify that (Ax, U, D) and (Bx, U, f l ) are lattices (and 
hence they are distributive). Moreover, Ax and Bx are countable iff X is countable. 

Let 3L = (X,R,M), 9 )=(F , S, N) where (X, R), {Y, S) are bipartite graphs 
and for (x, jK-R (or (x, y)65), x£M iff y^M (or iff y$N, respectively). 
If / : X-Y such that f(M)<zN and / : (X, R)-»(Y, S) is a one-to-one compatible 
mapping then <p: BX-*BV (or cp/Ax: Ax—A®) is a one-to-one lattice homomorph-
ism, where <p (Z) = ( f ( Z ) U N ) - f ( M - Z ) if Z*9,X, <p(0) = 0, (p(X)=Y. We 
shall write YX=(A*, U, fl), Tf=(p/Ax, <PX=(Bx, U, 0 ) , <Pf=(p. 

N o t e 1.3. Denote by Gr the category whose objects are triples ( X , R , M ) 
where (X , R) is a bipartite graph and McX such that if (x, y)£R then x£M iff 
y$M and whose morphisms f : (X, R, M)-*(Y, N, S) are one-to-one mappings 
f: (X, R)^(Y, S) with f(M)<zN. Denote by DLat the category of distributive 
lattices and one-to-one lattice homomorphisms. Then (P, are faithful functors 
from Gr to DLat. 

D e f i n i t i o n . Let 21 be a lattice. An element x of 4C is called meet-infinite 
(or join-infinite) if there exists an infinite subset B of 91 such that for any distinct 
points a,b£B, at\b~x (or a\lb=x, respectively). 

L e m m a 1.4. Let 3£ = (X, R, M) be an object of Gr such that M and X—M 
are infinite and for every x£X the set {y: (x, y)£R} is finite. Then for Z f A x we have 

a) Z is a meet-infinite element i f f Zz>M\ 
b) Z is a join-infinite element i f f ZCLM. 

P r o o f . If F z ) M then it is clear that F i s meet-infinite ( F = ( F U {x})f l(FU {j}) 
for every x^y, x, y£X— V). Let F be meet-infinite. Let 3S<zAx be an infinite set 
with W1C\ JV2= V for every W^W^®. If M - F ^ 0 then M-W?± 
r^M—V holds only for finitely many and so is finite because the set 
{y: (x, y)£R) is finite for every x£X, a contradiction; thus M — F = 0 and hence 
FDM . The proof of case b) is analogous. 
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L e m m a 1.5. Let f : 21-»© be a one-to-one lattice homomorphism. If a621 
is a meet-infinite (join-infinite) element then f(a) is meet-infinite (join-infinite), too.-

P r o o f . The proof is easy and is therefore omitted. 

L e m m a 1.6. Let X = (X, R, M) be an object of Gr such that for every x£X 
the set {y : (x, j)€-R} is finite. Let Z, V£B* be such that there exists an infinite set 
3)czBs with the following properties: 1) for every W

7
, fl = K (or 

W1UW2=V); 2) Zz>W (or ZczW) for every Then Z=X (or Z = 0 , 
respectively). 

P r o o f . Clearly, X is finite iff Bs is finite. If the set {y : (x, is finite for 
every x£X then X is finite iff M and X—M are finite. By Lemma 1.4 we get that 
VZA5 and therefore either Z—X or If Z£A*, we have that Z— V is finite 
and therefore £8 is not infinite, a contradiction. 

P r o p o s i t i o n 1.7. Let X = (X, R, M), "i) = {Y,S,N) be objects of Gr 
such that 

a) (X, R), (Y, S) are strongly reduced; 
b) for every x£X the set {y: (y, x)£R} is finite and has at least two points; 
c) M, X-M, N, Y-N are infinite. 

If f : WX-^Wi) (or f : — <i>9)J is a one-to-one lattice homomorphism then there 
exists a morphism g: (X, R, M)-*{Y, S, N) of Gr with xPg=f (or <Pg=f, re-
spectively). 
ess^"-" 

P r o o f . By Lemmas 1.4 and 1.5, f ( A f ) ^ A f , f(A^)c:A^. Now we shall 
prove f(A*)czAf. Since for every Z£A*, Z—M and M—Z are nonempty, we 
get that f(Z)£A*\JA\\JA*, hence / ( ^ c ^ L U f L U ® . Assume thai there 
exists Z£A? with f(Z)€Af. Then there exists VX£A\ with VXUZ£A* and 
Vxr\Z$Af. Then f(Vx)U/CZ)6^® and f{Vx)C\f{Z)iA*. Therefore ( / ( . F i ) - W ) n 
n ( / ( Z ) - 7 V ) ^ 0 but (N —f(Fj))fl(N —f(Z))=0. We shall prove f{V1)-N= 
—f(Z)—N, hence we get a contradiction because (Y, S) is strongly reduced. 
Choose V2£A? with V2UZ, V2(J V, £Af, V2HZ, V2nVx£A*. Then V2U Z= 
^.V2UV1=ZUV2UV1 (we use that F^Z^Af and therefore V1-M=Z-M). 
Then / ( V 2 ) U/ (Z) = / ( V2) U / ( V,) =f(Z) U/( V2) U / ( V,), hence (f(V2)Uf(Z))~ 
- J V = ( / ( F 2 ) U / ( K 1 ) ) - / V . Since f(Vx)D/(F2), f(Z)C\f(V2)^, we have 
(f(Vi)-N)n(nV2)-N) = & and (f(Z)-N)fl(f(V2) — N) — 0. Thus f(Z)-N= 
=f(V1)—N. We obtain that f(Af)cAf because it can be proved analogously 

that f(Af)DAf=0. Hence f(A%)cAf, f(A*)cA* Define g: X-+Y as follows: 
for xdM, g(x)=y where f(M—{x})=N—{y}, 
for x$M,g(x)=y where / ( M U {x}) =NU 
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(Since f(A*)c:Af, we get that for every v^M, f{M—{v})=N—{w) where w£N 
and for every v£X-M, f(MU{v})=NU{w} where w£Y-N.) It is clear that 
g(M)<zN and g is one-to-one. If (x, y)£R with x£M then Z=(M-{x])]J{y}ZA\ 
and therefore /(Z)eAf. Since Z=>M-{x}, we get that f(Z)zDN-{g{x)} and 
since ZczMU {y}, we get that f(Z)czNU {g(y)}. Hence f(Z)=(N-{g(x)})U 
U{gO>)} and so (g(x) ,g( j ) )€5 . It is clear that If / : then by 
Lemmas 1.4 and 1.5 f(A*)c:Aj!,f{A*)c:A*. Therefore by Lemma 1.6 / ( 0 ) = 0 , 
f(X)=Y and the rest follows from the foregoing part of the proof. 

C o r o l l a r y 1.8. Put 91 ¡ = f £ ; , = (for 3ch see Construction 1.1). 
If f : 21,-*Sfj (or f : S , — i s a one-to-one lattice homomorphism then i=j 
and f is the identity. 

C o n s t r u c t i o n 1.9. Let T be a set. Put 

7 = (Z: ( Z c e x p T ) , (Z ^ 0), (Z is finite), (V£Z => (V * 0 and F or T—V is finite)), 

( V F 1 , F 2 € Z ) ( F 1 - F 2 ^ 0 ) } . 

Define a partial ordering s on 7 as follows: Z x s Z 2 iff for every V£Z1 there 
exists WiZ2 with Vz>W. Clearly, s is a reflexive and transitive relation. Since 
for every Z£ Y, F 2 € Z implies we get that ZX^Z2^ZX iff ZX=Z2\ 
thus s is a partial ordering. 

Now if we put 

ZiVZ2 = {VeZ1UZ2: (fVeZ1UZ2=>fV-V ^ 0 or W= V)}\ 

ZxAZ2 = {F: (3F I €Z 1 ) (BF 2 €Z 2 ) (F= VxUV2), 

( v ^ e z ^ c v ^ e z ^ ^ u ^ C F ^ w1uw2 = F ) } , 

we get that (Y, is a partial ordering induced by a lattice (Y, V, A) and it is 
easy to verify that (F, A, V) is a distributive lattice. Put S>(T)=(Y, V, A). We 
shall identify t£T with {{i}}<E Y, i.e. Ta Y. It is clear that the sublattice of 3>(T) 
generated by T is a free distributive lattice over T. Furthermore, no element Z 
of 3>(T) is join-infinite and Z £ Y is meet-infinite iff there exists an infinite set 
F c T with F€Z. 

Let U be a set and let {£/,•,•: i, y'6N} be a cover of U. Define 

F = { Z c exp U: (Z is finite), (F<E Z => (F ^ 0), (F is finite or 

(3/, N)([/;>J —F is finite))), (VFX, F 2 6Z)(F X -F 2 * 0)}. 

Define a partial ordering S on Y as follows: ZX^Z2 iff for every VdZx there 
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exists W£Z2 with Vz> W. Clearly, ^ is a partial ordering and if we put 

Z I V Z 2 = { F £ Z J U Z 2 : ( V f V € Z 1 U Z 2 ) ( f V a V = > f V = F ) } ; 

Z X A Z 2 = { V : ( B F 1 € Z 1 ) ( B F 2 6 Z 2 ) ( K = F X U F 2 ) , ( V ^ € Z , ) , 

( v ^ e y ^ u w j c F=> fVjUff^ — v)} 

then (Y, V, A) is a distributive lattice induced by the ordering Put 

Y = {Z€ Y: Fg Z (V is infinite, (Bi, j, m,n£N) 

((¿, j ) * (m, n), V-U,j * 0, V-Um<n * 0))}, 

then Y is an ideal in Y. Let ~ be the congruence relation generated by Y. Then 
Z X ~ Z 2 iff VeY whenever F 6 ( Z 1 - Z 2 ) U ( Z 2 - Z 1 ) . Hence if we put 

Y = {Z€ Y: F e z => (V is finite or ( B ' , . / € N ) ( t / w - F is finite, Fc£/ ;>J))}, 

we get that (Y, s ) induces operations sup and inf as follows: s u p { Z 1 , Z 2 } = 
= Z1VZ2 , inf {Z1, Z 2 }=Z 1 AZ 2 if Z1AZ2£Y, = 0 otherwise. Clearly, (Y, sup, inf) 
is a lattice. Since. (Y, sup, inf) is isomorphic to (Y, V, A ) / ~ , we get that it is dis-
tributive. We shall identify ud U with {{w}}£Y, i.e. t / c Y . Notice that the sub-
lattice of (Y, sup, inf) generated by U is a free distributive lattice over U. Introduce 
the notation %>(U, Uj •: i, / £ N ) = (Y, sup, inf) (further on we shall write only 
V, A instead of sup, inf). 

L e m m a 1.10. For every cover {i/i;J-: i, y'6N} of U no element of 
Uit j: i, J£N} is join-infinite. An element Z of ^(U, Uit j: i, j£N) is meet-in-

finite i f f 
a) either Z ^ 0 and there exists V^Z such that V is infinite, 
b) or Z = 0 and there exist infinitely many i, j£ N such that XJitj is infinite. 

P r o o f . Let Z € Y, we prove that it is not join-infinite. Let be a subset of 
Y such that Z 1 V Z 2 = Z for any distinct Z l 5 Z2^ST. Then Z X U Z 2 3 Z and for 
every V^(Z1UZ2)-Z there exists W£Z with VD W. Hence, if F 6 Z - Z , for 
Z^ST then V£Zj for every Z j € f - { Z t } and if Z p Z where Z £ 2 T then Z, = Z. 
Therefore we get that 2T is finite and Z is not join-infinite. 

Let Z€ Y, Z ^ 0 be such that every F € Z is finite. We shall prove that Z is 
not meet-infinite. Let 9~<ZLY be such that Z J A Z 2 = Z for any distinct Z X , 

Hence if FEZ, with K D Vx then for every W 2 £ Z 2 , V V1U tV2 and there 
exists F2£Z2 with F = F 1 U F 2 . On the other hand, for every V£Z there exists 
F j ^ Z j with KD V1. Now, for every F £ Z and every Z^ST we choose Wy i^Zi 
with Wvi<zV. Then for i ^ j , WVi\J lVVj=V. Therefore for every F g Z 
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the set {Wv i: ZiZZT} is finite and if W v ^ V then W v ^ W V t i for every 
Z ^ Z j , Z^ST. Hence the set {Z^.T: ( f V v ^ V)} is finite. Let ST' be 
a subset of 2T with Z^S'' iff Z,o>Z. It suffices to prove that ST' is finite. For 
any distinct ZX,Z2^ST' and every V1£Z1 — Z, V2£Z2—Z, there exists V£Z with 
V1UV2z>V. For every Z£3"-{Z}, we choose Vt£Z,-Z and put W—Vid 
n U V. Now if Z ^ Z j then W,U WjcV for some V£Z. Since ÍJ V is a finite 

Vtz Vtz 
set, we get that there exists only a finite set such that if Z^ST" then V— 
— for every V£Z. Hence ST' is finite because if W p C for some 
V^Z then W,— Vi= V, a contradiction (notice that F6Z,). Thus ST is finite and 
Z is not meet infinite. 

If there exists an infinite set Vf_Z then put ST={{W\ JV€Z-{V}}U 
U{F-{JC}}: x£V}. Clearly, i f Z l 5 Z 2 € ^ Z^Z2 then ZtAZ2=Z and is 
infinite since V is infinite. 

If Z = 0 and M = {(i, j): UitJ is infinite} is infinite, then put &~={{Uitj): 
(z, 7)6M}. Then ¿T is infinite and for distinct Z , , Z 2 t ^ Z1AZ2 = 0 = Z. 

Let be an infinite subset of #( ( / , UUj: i, N) such that for distinct Z l 5 

Z j A Z 2 7 Í 0 . Then for every {0} there exists an infinite set F F 6 Z ; and if 
Z , ^ Z j then K;U Vj is not a subset of any Um n , m, N, but every V, is a subset 
of some Um n . Hence if Z ^ Z j then (mt, n^irrij, rtj) and Um „ is infinite. 

C o n s t r u c t i o n 1.11. Choose countably infinite sets T and U and a covering 
{Uitj: i, N} of U such that UtJ is infinite, and if i+j=m+n then UUjC\ Um n—&, 
otherwise the intersection is a singleton. Choose a mapping s: £/—T such that 
e|U iyJ: Uij-~T is a bijection for every (z, » S N X N and choose a bijection 

l1'- N—T. Set K = { q > , í ) : G > € N ) , g í e " 1 (/z ( [ y ] ) ) ) } . 

Let S0Í be the sublattice of 3l(T)x [J » f (for 93; see Corollary 1.8) generated 
by the set , € N 

U 

^ = {(*, W/cn): (<€ T), ((z is odd), ( [ i - ] ) * /) => at = 0 

[(i is even), ( „ ( [ ! ] ) * t) => a, = X ^ , („ ([!]) = , =• fl|€ ®,)} 

U{({K}, {a,},6N): (T-V is finite), (Vi6N)(a f = 0)}. 

It is clear that 5 is a countable set and therefore 9Ji is a countable distributive 

lattice. For i £ T set z(t) = (t, {a,},eN) where a(t)£S and = if ¡i (JyJ j = L 
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Let 91 be the sublattice of <g(U, Uitj: i, j£N)X [I®-1 with s~ 

=card £—1 ( [ i ] ) j generated by the set 

Q = {("> K,«}(*«)en): («6 U), ((p is odd), 

=> aPf9 = 0), ((p is even), (q ^ u) => ap<q = X ^ ) , 

(? = «=» aP,,e»[-|j)}U{({K}, {ap,q}(p,qKk): 

(3i, j € N ) ( ( £ / , - i s finite), (VczU^)), 

(V(p, ?)€K( f l p ,4 = 0))}. 

Since g is a countable set, 5ft is a distributive lattice. For u£U, put /?(") = 
= (". {ap,,}(p,,)€K)i6 w h e r e = i f 4 = U-

L e m m a 1.12. Let (t, {«,-},• €N) ¿e a /jo/wi where t£3)(T) and a ;6S [ i / 2 ] / o r euery 
/£N. Then (t, {a,}l€N) w a point of 9Ji i f f the following conditions hold: 

a) if i is odd and « ¡^0 then t is greater than or equal to p 

b) if i is even and at^Xli/2j then either t is less than or equal to p f i y l j 
or for every z"6 N, a ; = 0 and every set V£t is infinite. 

Let (w, {aPtq\p>q)eK) be a point where Uitj: i,j£ N) and ap ,9€© [ p / 2 ! for 
every (p, <7)6K. Then (w, {a p ? } ( p ^ € K ) is a point o/5ft i f f the following conditions hold: 

a) if p is odd and «P i ??£0 then u is greater than or equal to q; 
b) if p is even and apq?±X\pl2} then either u is less than or equal to q or for 

every (p,q)£K, apq = Q and either w = 0 or every set V£u is infinite. 

P r o o f . Easy. 
Notice, if (w, „Jen) i s a point of 5ft then there exist only finitely many 

(p,q)£ K with apq=0, X[p/2y Hence we get 

C o r o l l a r y 1.13. An element (u, {ap 9)(p 9)€K) of 5ft is meet-infinite i f f either 
there exists an infinite set V(zU with Vdu or « = 0, or there exists (p, <?)€K with 
XlPi2]^ap,q^Mip/2y An element (u, {aPi9}(Pi?)6K) of 91 is join-infinite i f f there exists 
(p,q)£K with Mlp/2]^apq^<d. 

P r o o f . The statement follows from Lemmas 1.4, 1.10, 1.12 and the fact that 
if ZlDZ2 = 0 then either Z, = 0 or Z2=0 and if Z1UZ2=Xi then either Zx=Xi 
or Z2=Xt in each S f . 

P r o p o s i t i o n 1.14. Let <p\ 501—5)1 be a one-to-one lattice homomorphism. Then 
for every t£T, (¡9(a(/)) = /?(«) where s(u) = t. 
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P r o o f . Set (p{a(?)) = («', {ap i j ( p > 9 ) € K)- Since a{t) is join-infinite, we get accord-
ing; to Corollary 1.13 and Lemma 1.12 that there exists u ' ^ U such that either 
u ' ^ u ' or u ' ^ u ' . 

a) First we prove that u' — u'. Assume the contrary, i.e. for some t0£T, 
u'o^u'o. We know that there exists a finite set IVc U with W^u'". Now if 
u'o^u'" (in the case «'»>«'», the proof is analogous) then put Lt={u£U: «>«'} 
for t£T. Clearly, L, is a finite set for every t£T. Now there exists a finite subset 
f c T with f l L , = f l L,- Then V {<*('): is join-infinite and therefore 

fgr tgT' 
f | (see Corollary 1.13 and Lemma 1.12). For t^T-T' put 

16 T 

E, = {(', W/6N )€ 2K: ( [ y ] ) = i ) , 0' is even) => a, = M [ l / 2 ] J , 

(i is odd(3x6M [ i / 2 ] ) (a f = Muin~{x}))}. 

Hence, if e1,e2 are distinct points of Et then e 1 Ve 2 =a( / ) and ^ V c ^ e 2 V c, 
exAc=e2Ac where c= V{«(/): t€T'}. For w€93i, let <p(w) = {(vw, bw

pJ\p qKK. 
Since no element of U, {/, i, N) is join-infinite, the set E,= {e£Et: ve=u'} 
is infinite for every t^T—T' (because for infinitely many el,e2£El, vei = ve2 and 
then necessarily vCl = u'). Hence for e£Et, yeVc=f<z( , )Vc . Now, for distinct 
t2£T—T' and for e1^Eh, e 2 6 , we have e1Ae2=a(t1)Aa(t2). Thus, for every 
distinct points t ^ t z Z T — T ' , 

(a) e ^ c ^ e ^ c for any e 1 , e 2 £ E h and i>eiVc = t>eaVc, 
(b) eAe=a( / 1 )Aa( i 2 ) for every -e£Et, 

Since for every t£T—T' there exists only a finite subset K , c K such that (p, Kr 

whenever bpq^&, X[p/2] and (veVc, {¿y J ^ ^ K ) ^ where e£ET, therefore there 
exists (p,, q,)£K and an infinite set £ t c £ , such that whenever 
e, , e2 are distinct points of Et. Since a ( i ) A a ( / ' ) = e V c for every t, t'ZT—T' and 
e£E,, we get that bfj^x(,">=</) (see Lemma 1.6) and since in S ; Z 1 H Z 2 = 0 implies 
either Z j = 0 or Z 2 = 0 , we have that for every t'£T—T', t?*t' and every e£E, . , 
be =0 . Since D Lt for every i£T—T' and since P) L, is finite, we get a 

' ' t(T t(.T 

contradiction. Hence w'° = u'°. 
b) Now, we prove that a p , u = M [ m ] . Assume the contrary, i.e. a P i U = Z ^ M l p / 2 ) . 

If p is odd then for / ' , t"ir, i V i V i , t'^t, the element e=(<x(i)Vce(0)A 
A(a(/)Va(?")) is both meet- and join-infinite. On the other hand, if <p(e) = 
= (ve'{be

pJ(P,i) 6 k) then be
p q = & or X[p/2] if (p, q)^(p, u) and b\ u=Z, which 

contradicts Lemmas 1.4 and 1.5. If p is even, the proof is analogous. Thus 
at,u=MW2V 

10 
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c) Now we prove that E(if) = t. Let i0 be an odd natural number with 

= let pQ be an odd natural number with p 11 su®068 

to prove that i0=p0. Define tp: ®,0—®Po as follows: (¡/{Z)=be^u, where 

ez=(t, {a,}i€N) and if p ( [ y j j = ' anc* ' °dd then a¡=Z, while if / is even 

then a,=Mm (recall that <p(ez)=(uez, {¿pf9}(Pi9KK))- It is clear that i/̂  is a lattice 
homomorphism (it is a composition of the embedding of ©,o into 9Ji, of <p and 
of the projection from 9Í to ©Po). We shall prove that ip is one-to-one. By Lemma 
1.6 it suffices to prove that <A|2I,0 is one-to-one. First we shall prove that for every 
Z €31/, vez=u'. Hence, it follows immediately that ij/ is one-to-one and by 
Corollary 1.8, i0=p0. Put 

E-, = |(I, {a,},€ N): ( [Y]) = (' is even) =• a¡ = Mim , 

(i is odd => (3x€ M [ i /2 ])(a i = M [ l / 2 ] - {x}))J, 

E2 = |(i , {a,},eN): [[yj] = , (i is even) ^ a¡ = M i m j , 

(i is odd =• (3xe xím-Mui2ú(a¡ = Mim 

Clearly, if we verify that for e££\U£ 2> ve=u', then for every Z£21, , ve* = ü, 
Since for any distinct el,e2£E1 (e¡, e2£E2), e1Ve2=a(t) (e1Ae2 = a(t), resp.) we 
get that there exists at most one e1^E1 (or e2 € E2) with vei7±u' (or v"2 ̂  u1) because 
for u£U, if uxVu2 = u (or U1AU2 = U) then either u¡ = u or u2 = u. Then neces-
sarily v"1 Choose a homomorphism a\ 3¡{T)-+ 9JÍ such that o(t)=x(t) 
for every 16 T (clearly, such a homomorphism exists). Now we can choose t'f__$)(T) 
such that t'>t and va(,) and u"2 are incomparable. Then a(t')/\e2=n(t) (observe 

that if o(t') = {t, {fl/}/€N) then for an odd i with p = a,=Mmi), but 

(p (a (<')) A (p (e2) ?¿<p(a (/)), a contradiction. Thus for every e£E2, ve = u'. Ariálog-
ously, we prove that vei=u'. The proof is concluded. 

T h e o r e m 1.15. For every natural number i,'there exist pairwise disjoint sub-
lattices 9l0, 9lj , ..., 9l i_1 of the lattice 91 which are isomorphic to SDZ, but there are 
not infinitely many pairwise disjoint sublattices 910,91!,... of 9Í which are iso-
morphic to 93J. 

P r o o f . Let {<pk}kgN be a sequence of one-to-one lattice homomorphisms from 
9)1 to 91. Then for arbitrary k£N and t£T, (pk{a{t))=fi(u) where e(u) = t. Further, 
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for every finite set T'czT there exists a point y(r')€2>t such that y(7") = a 0 ) 
iff tiT-T'. On the other hand, if U'cU is an infinite set and £ / ' - C / , . ^ 0 for 
any i, N, then for every u£U' iff e=(0, {ap q}(p q)e K) where apq=9 
for every (p,q)£K. Therefore there exist ik, jk£N with q>k(<x(t)) = (u', {ap>i}(p,,)eK) 
where {w'}=e_ 1(i)n U{ j for every t£T. Therefore there exist k^ki with 

Put V}=^kl,;tint/ik2,Jk2 e(u) = t. Then (pki(a(t)) = <pki(a{t)) 
and {<pfe (9Ji)}fc e N a r e n o t pairwise disjoint. 

Let A: be a natural number. For every j^k define 1pj: <2i(T)-~<t>{U, Uitj: i,j£N) 
as follows: \j/j(Z)= {e~1(V)C]U^_J)J: V^Z}. Clearly, the ip/s are one-to-one 
homomorphisms and {^ j (^(T))} J s k are pairwise disjoint. Define cpj-. 9Ji — 91, 
<Pj('> M / e n ) : = ( h ( 0 , {¿P>,}(P>i)€K) w h e r e b i ^ f , ) = a i - T h e n W j - J = k } is a family 
of pairwise disjoint one-to-one latlice homomorphisms. The proof is concluded. 

2. Let us formulate the above problem in a general category with a class 9JI 
of its morphisms. 

D e f i n i t i o n . Let Jf" be a category with a cosingleton 0. Let f,g:A—B be 
morphisms of X. We shall say that / , g are disjoint if 

0 A 
| / 
1 

A—^— 
is a pull back. 

D e f i n i t i o n . Let J f be a category, let 9JJ be a class of its morphisms. A pair 
(A, B) of objects is said to have the property (S^,) if for every n= 1, 2, ... there 
exist n pairwise disjoint 9Ji-morphisms from A to B, but there do not exist in-
finitely many such morphisms. We say that JT fulfils Sekanina's axiom with re-
spect to 9)i if no pair of objects has the property (S^). 

Now we can formulate the foregoing result as follows: The pair (®i, 91) of 
countable distributive lattices has the property (Sal) with Jl the class of all 
monomorphisms. 

Now we establish some other results: 

T h e o r e m 2.1. The category of sets, the category of vector spaces and the 
category of unary algebras with one operation fulfil Sekanina's axiom with respect 
to 9JI for every class 9Ji containing all monomorphisms. 

Proof . Easy. 

Theorem 2.2. The category of complete, completely distributive Boolean al-
gebras fulfils Sekanina's axiom with respect to the class of all monomorphisms. 

10« 
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Proof . The statement follows immediately from the well-known fact that 
every complete, completely distributive Boolean algebra is the algebra of all sub-
sets of some set. 

T h e o r e m 2.3. The category of graphs or unary algebras with a operations 
(a is a cardinal, a >0J fulfils Sekanina's axiom with respect to the class of all 
summands. 

Proof . The statement follows from the fact that / : A—B is sumand iff 
A is isomorphic to the sum of some components of B. 

Now we recall that a monomorphism / in a category J f is an extremal mono-
morphism if any epimorphism e is an isomorphism whenever f=goe for some 
morphism g of J f . In the category of graphs or topological spaces extremal mono-
morphisms are embeddings to full subgraphs or subspaces. 

I. KOREC showed that there exists a pair (A, B) of countable graphs or countable 
unary algebras with two operations which have the property (S^) where 90Z is the 
class of all extremal monomorphisms. 

T h e o r e m 2.4. There exists a pair (A, B) of connected, countable, bipartite 
graphs with the property (5^) where 501 is an arbitrary class of monomorphisms con-
taining all extremal monomorphisms. 

T h e o r e m 2.5. There exists a pair (A, B) of continua with the property (Sw) 
where A is a subcontinuum of the plane, B is a subcontinuum of the cube and SR is 
an arbitrary class of monomorphisms containing all extremal monomorphisms. 

P r o o f of T h e o r e m s 2.4 a n d 2.5. Put X= {a, b, c}U(NX {0, 1}), 

R = {((0, 0), a), ((0, 0), b), ((0, 0), c), (a, (0, 0)), (b, (0, 0)), (c, (0, 0))}U 

U{((/,0), (¿,1)), ((/, 1), (¿,0)): ¿6 N}U 

U{((i, 0), ( /+1 , 0)), ((< + 1, 0), (/, 0)): /€ N}. 

(X,R) 

Fig. 2 
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Clearly, (X , R) is a connected, countable bipartite graph. Choose a bijection (p 
from L={(x, y,z, v):(x,y,z, ygN), (x+y^z + v)} to N. Put (Y, S) = (X, R)X 
X(NXN, A)/~ where ( N x N , A) is the smallest reflexive relation on N x N and 
~ is the smallest equivalence relation on Z x N x N with 

(k, 1, x, y) ~ (k, 1, z, v) whenever (p(x, y, z, v) = k. 

Clearly, (Y, S) is a connected, countable graph. To verify that it is bipartite, it 
suffices to put M={(k,i,x,y)£Y: k + i is even}/~. Let k be a natural number, 
i^k. Define /¡k: (X, R)-»(Y, S) as follows: fi(x) is the ~-class containing 
(x,k,k — i). Clearly, f k , z'=0, 1, . . . , k, are pairwise disjoint extremal mono-
morphisms. Let {/¡} be a sequence of one-to-one morphisms from (X, R) to (7, 5). 
Since card {y-(y, (0, 0))gi?} = 4, we get that for every i there exists (pn qt)6NXN 
such that / ¡ (0,0) is the ~ -class containing (0, 0, pt, qt). Hence we easily get that 
/¡(j, 0) is the ~-class containing ( j , 0 , p „ q,) and /¡(j, 1) is the ~-class containing 
(j,\,Pi,q,)- Further, there exist ;0, with p. +q^p +qt . Let k = 
= (P{Pi0,%,P i l,<li)- Then fio(k,l)=fii(k,\) and therefore fa and f^ are not 
disjoint. If we set A=(X, R), B=(Y, S), then the proof of Theorem 2.4 is 
concluded. 

Let K be a circle with the usual topology. Choose two distinct points a, bfK. 
Let S={{x, y}: (x, be equipped with the discrete topology where R<0XXX 
is the relation defined above. Let P, be the one-point compactification of KX S/ ~ 
with ~ standing for the smallest equivalence relation such that: 

(a, {x, >>}) ~ (a, {x, z}) for every {x,y}, {x, z}d S with x£{(i,j): i+j is even}; 

(b, {x,y}) ~ (b, {x, z}) for every {x, j>}, {x, z} £ S with x£{(i, j): i+j is odd}. 

Clearly, P± is a subcontinuum of the plane. We shall assume that N has the discrete 
topology. Let P2 be the one-point compactification of PxXNxN/w where % 
is the smallest equivalence relation such that if q>(x,y,z,v) = k then 

((a, {(k, 0), (k, 1)}], x,y) « ([a, {(/c, 0), (k, 1)}], z, v) if k is odd, 

([*>, {(/c, 0), (k, 1)}], x, y) « ([fe, {(k, 0), (k, 1)}], z, v) if k is even, 

where [x] denotes the ~ -class containing x. Clearly, P2 is a subcontinuum of the 
cube. The proof that (P l 5 P2) has the property (Sm) is analogous to that of the 
similar statement for (X , R) and (y, S). It suffices to realize that if / : K-+K is one-
to-one then / is a homeomorphism. 

T h e o r e m 2.6. There exists a pair (A, B) of 0-dimensional compact Hausdorjf 
spaces on sets of power which has the property (5M) where SDl is the class of all 
summands. 
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P r o o f . Define topological spaces Sn by induction as follows: is the one-
point compactification of a countable discrete set; S„ is the one-point compactifica-
tion of S n _ j X N where N has the discrete topology. Put R„ to be the one-point 
compactification of Ki copies of S„. Let 7\ be the one-point compactification 
of the disjoint union of RltR2, Clearly, 7\ is a 0-dimensional compact 
Hausdorif space on a set of power Ki-

Let U be a countable set and let {£/,,,: i, y€N} be a cover of U such that every 
U j j is infinite and Ui jC\U m n =& if i+j=m+n, t^ j - f l £/mj„ is infinite if 
i+j^m + n. Choose a mapping 1p: (7—{1,2, 3, ...} such that 1p\UitJ is a bijection 
from U i j onto {1,2,3 , . . .} for every i, j£N. 

Let T2 be the one-point compactification of 7 \ X N x N / % (NXN has the discrete 
topology) where % is the smallest equivalence relation such that (x, i, j ) % (x, m, ri) 
if x£Rp and p£*p(UijC)Umi„). Clearly, T2 is a 0-dimensional compact Hausdorff 
space on a set of power Kj. 

Let k be a natural number, / = 0 , 1, ..., Ar. Define /¡k: Tx — T2, by /¡k(x) being 
the % -class containing (x, k, k — i). It is easy to verify that f f is a summand and 
that /.* and f * are disjoint whenever iVy. 

Let {/¡: Tl-+T2} be a sequence of summands. Then for every /, there exist 

j^k^N and i1,i2,...,inZN such that / , ( 7 \ - U R, ) c Tx X {(/,, * , ) } /« , there-
m = 1 m 

fore if /,. +k. ¿¿j. +k. , we get that Im/! Pi I m / . 0 and thus /) and f , Ji0 '0 Jtl ° 'o 'l J 'o J 

are not disjoint. On the other hand, there exist i0, such that either j, 
5* j i l

Jrk k or (7,o, kjJ=(j^, h j . Hence if we set A = TX, B=T2, the proof 
of the theorem is complete. 
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