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Sublattices of a distributive lattice

VACLAV K OUBEK

At the Mini-Conference on Lattice Theory in Szeged, 1974, M. SEKANINA has
formulated the following problem: Is it true that if a lattice B contains an arbitrarily
large finite number of pairwise disjoint sublattices, isomorphic to a lattice 4, then
B also contains an infinite number of such sublattices? The aim of the present
paper is to construct two countable distributive lattices 4 and B which are counter-
examples, i.e. such that for any m=1, 2,3, ..., B contains m disjoint copies of 4,
" but it does not contain infinitely many such copies. An independent solution of
Sekanina’s problem was found by I. KoREC in a paper to appear (personal com-
munication).

An analogous problem can be formulated for other structures than lattices
and various concepts of subobject, e.g. summand. In the second part a general
formulation of this problem is exhibited.

1. We recall that a graph (X, R) (i.e. RCXXX) is bipartite if it is symmetric
and there exists a subset M of X such that if (x, y)€R then xe M iff y¢ M.

Definition. A graph (X, R) is strongly reduced if for any distinct points
x,y€X there exists at most one point z with (z, x), (z, y)€R.

Convention. Denote by N the set of all natural numbers, by Z the set of
all integers.

Construction 1.1. We shall construct countable, connected, strongly re-
duced, bipartite graphs (X;, R;) with i€N, i>1 such that

a) for every x€X;, card {z: (x, 2)€R;}€ {2, 3};

b) if f: (X;, R)—-(X;, R;) is a one-to-one compatible mapping then i=; and
f is the identity.
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Put
X ={(x, y): (x, y€Z), (v # 0= ye{i, —i}U
U{i+2k+1: ke NJU{—i—3k—1: kEN}) (sgnx = sgnp)},
R ={((x, 0), (x+1, 0)): x€¢ Z}U{((x, 0), (x—1, 0)): x€ Z}U
U{(0+s, 1), 0 +1, p): (pe{i+2k+1: ke N}U
U{—i—3k—1: ke N}U{i, —i}), (Is—2] = 1), (sy, ty = O)}U

U{((y—ﬁ,o), o 1), (v, s (y—lTyl,o)): ye{i+2k+1: ke NJU

U{—i—3k—1: ke N}U{i, —i}}.
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1t is clear that (X;, R) is a countable, symmetric, strongly reduced graph. Set
M;={(x,»)€X;:x is even}, then R,C((X;—M)XM)U(M;X(X;—M))

and
"therefore (X;, R)) is a bipartite graph. Further, for every x€X,,

card {z: (x, z)€R;}€ {2, 3}.

We shall prove Property b). If f: (X;, R)—~(X;, R;) is a one-to-one compatible
mapping then for x€ {i—1, 1 —i}U {i+2k: ke N}U{—i—3k:keN}, f(x,0)€{(j—1,0),
(1—j, 0YU{(j+2k, 0): keN}U {(—j—3k, 0): keN}. Hence f({(i—1,0), (1—i, 0)})¢
€{(j—1,0),(1—4,0)} and therefore i=j. Further, f(x,0)€{(y,0): y€Z}). If
f(i—=1,00=(1-i,0) then f(i+2k,0)=(—i—2k,0) but the latter is impossible,

thus f(i—1,0)=(—1,0) and so is f(x, 0)=(x,0) for every x€Z. Hence f is
the identity.

Let us introduce the notation X;=(X;, R;, M), i¢N, i>1.
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Construction 1.2, Let ¥=(X, R, M) where (X, R) is a bipartite graph and
McX such that if (x, y)€R then xeM iff y¢ M. Set

AF ={Zc X:(3(x, »ER)(xe M and Z = (M—{xpU{})};

A5 = {Zc X: @xe M)(3K{y: (n, MER)(K isfinite and Z = (M~ {x)U K)};
A3 ={Zc X: @xeX—~M)(3K {y: (y, VERY(K is finite and Z = (M~ K)U{x}))};
A§={ZCX: (3K M)(K is finite and Z = M— K)}; '
Af={Zc X: QK X—-M)(K is finite and Z = M U K)}.

Put A*= UA’€ B*=4*U{0, X}. For Z,VeB* define ZVV=ZUV, ZAV=

=ZNV, then it is easy to verify that (4%, U, N) and (B%, U, N) are lattices (and
hence they are distributive). Moreover, 4* and B* are countable iff X is countable.

Let X=(X, R, M), Y=(Y, S, N) where (X, R), (¥, S) are bipartite graphs
and for (x,y)€R (or (x,y)€S), xéM iff y¢M (or x¢N iff y¢ N, respectively).
If f: X—-Y such that f(M)cN and f: (X, R)—(Y, S) is a one-to-one compatible
mapping then ¢: B*—~BY (or ¢/4*: A*—~A?) is a one-to-one lattice homomorph-
ism, where @(Z)=(f(Z)UN)—f(M-Z) if Z=0,X, ¢@)=0, o(X)=Y. We
shall write PX=(4% U, N), Pf=¢/4* &#X=(B%, U, N), of=0.

Note 1.3. Denote by Gr the category whose objects are triples (X, R, M)
where (X, R).is a bipartite graph and McX such that if (x, y)€R then x¢ M iff
y¢M and whose morphisms f: (X, R, M)—(Y, N, S) are one-to-one mappings
f: (X, R)~(Y, S) with f(M)cN. Denote by DLat the category of distributive
lattices and one-to-one lattice homomorphisms. Then &, ¥ are faithful functors
from Gr to DLat.

Definition. Let U be a lattice. An element x of U is called meet-infinite
(or join-infinite) if there exists an infinite subset B of U such that for any distinct
points a,beB, aAb=x (or aVb=x, respectively).

Lemma 1.4. Let X=(X, R, M) be an object of Gr such that M and X—M
are mﬁmte and for every x€ X the set {y: (x, y)ER} is finite. Then for Z E A* we have

a) Z is a meet-infinite element iff ZOM,

b) Z is a join-infinite element iff Zc M.

Proof. If ¥'>M then it is clear that ¥ is meet-infinite (V=(V'U {xhN (VU {y})
for every x#y, x, y€X—V). Let ¥V be meet-infinite. Let B A* be an infinite set
with WiNW,=V for every W,=W,, W;, Wo,cB. If M—V=@ then M—W>=
“M—V holds only for finitely many W¢e4, and so & is finite because the set
{y: (x, y)€R} is finite for every x€X, a contradiction; thus M —¥V=0 and hence
VoM. The proof of case b) is analogous.
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Lemma 1.5. Let f: U—~B be a one-to-one lattice homomorphism. If a<qA
is a meet-infinite (join-infinite) element then f(a) is meet-infinite (join-infinite), too.

Proof. The proof is easy and is therefore omitted.

Lemma 1.6. Let X=(X, R, M) be an object of Gr such that for every x€X
the set {y: (x,y)ER} is finite. Let Z, V€ B® be such that there exists an infinite set
B BE with the following properties: 1) for every W,, W,eB, W\NW,=V (or
WiUW,=V); 2) ZoOW (or ZcW) for every WeRB. Then Z=X (or Z=0,
respectively).

Proof. Clearly, X is finite iff B* is finite. If the set {y: (x, ¥)€R} is finite for
every x€X then X is finite iff M and X—M are finite. By Lemma 1.4 we get that
V€ AS and therefore either Z=X or Z€AL. If Z€ A%, we have that Z—V is finite
and therefore # is not infinite, a contradiction.

Proposition 1.7. Let X=(X,R, M), D=(Y, S,N) be objects of Gr
such that - :
a) (X, R), (Y, S) are strongly reduced;
b) for every x€X the set {y: (y, x)€R} is finite and has at least two points;
¢) M,X—M,N,Y—N are infinite.
If f: PX->YY (or f: DX~V ) is a one-to-one lattice homomorphism then there
exists a morphism g: (X, R, M)—~(Y, S,N) of Gr with Wg=f (or &g=f, re-
spectively).

mE‘Proof. By Lemmas 1.4 and 1.5, f(4})cAD, f(4))c4). Now we shall
prove f(A¥)cA?. Since for every Z€AY, Z—M and M—Z are nonempty, we
get that f(Z)€e4PUAPUAD, hence f(AD)cAPUAPUA?. Assume that there
exists Z€AT with f(Z)€AY. Then there exists V,€4T with V,UZ€A¥ and
ViNZ 4§ Af. Then f(V)US(Z)€A? and f(Vy)Nf(Z)§ AF. Therefore (f(V)—N)N
N(f(Z)—-N)=0 but (N—f(V))N(N—-f(Z))=9. We shall prove f(V;)—N=
=f(Z)—N, hence we get a contradiction because (Y, S) is strongly reduced.
Choose V.€4F with V,UZ, V,UV,€4%, V,NZ, V,NV,€45. Then V,UZ=
=V,UV,=ZUV,UV; (we use that V;NZ¢ AF and therefore V,—M=Z—M).
Then f(V)Uf(Z)=f(V)Uf(V)=fZ)Uf(V)Uf(V)), hence (f(V)Uf(Z))—
—N=(f(P)USV))=N. Since f)NSVD), FZ)NF(V)EAD, we have
(f)=NN(F(V)—N)=0 and (F(Z)—N)N(f(V)—N)=9. Thus f(Z)~N=
=f(V})—N. We obtain that f(AF)c4? because it can be proved analogously
that f(AHNAP=0. Hence f(43)cA?, f(A5)cA?. Define g: X—~Y as follows:

for xeM, g(x)=y where f(M—{xP=N—{y},

for x¢ M, g(x)=y where f(MU{x})=NU{y}.
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(Since f(AT)c A4, we get that for every vEM, f(M—{v}) =N—{w} where wcN
and for every veX—M, f(MU{p))=NU{w} where weY—N.) It is clear that
g(M)C N and g is one-to-one. If (x, y)€R with x¢ M then Z=(M—{x})U{y}e 4%
and therefore f(Z)€A?. Since ZoM—{x}, we get that f(Z)DN—{g(x)} and
since ZcMU{y}, we get that A(Z)cNU{g(»)}. Hence f(Z)=(N—{gx)})V
U{g(»)} and so (g(x), g(»))€S. It is clear that Yg=f. If f: ®X—~&Y then by
Lemmas 1.4 and 1.5 f(4¥cA?, f(4))cA]. Therefore by Lemma 1.6 f(0)=9,
f(X)=Y and the rest follows from the foregoing part of the proof.

Corollary 1.8. Put W,=VX,, B,=0X, (for X;, see Construction 1.1).
If f:9-U; (or f.B,~B;) is a one-to-one lattice homomorphism then i=j
and f is the identity.

Construction 1.9. Let T be a set. Put
Y ={Z:(ZcexpT), (Z # 0), (Z isfinite), (V€ Z = (V # 9 and V or T—V isfinite)),

(V. Vo€ Z) =V, = D)}
Define a partial ordering = on Y as follows: Z,=Z, iff for every V¢Z, there
exists WeZ, with V> W. Clearly, = is a reflexive and transitive relation. Since
for every Z€ Y, V,, V,€Z implies V;—V,=0, we get that Z,=Z,=Z7, iff Z,=2Z,;
thus = is a partial ordering.
Now if we put

ZNZy = VE€Z,UZy: WEZM Zy > WV %0 or W=V)};
ZNZ, ={V: V€ ZY PRV Z)(V =W Uy,
(VW€ Z)(YWE ZY)(W U W) V=W UW, = V)},

we get that (Y, =) is a partial ordering induced by a lattice (Y, V, A) and it is
easy to verify that (¥, A, V) is a distributive lattice. Put 2(T)=(Y, V, A). We
shall identify t€ T with {{r}}€Y, ie. TcY. It is clear that the sublattice of 2 (T)
generated by 7" is a free distributive lattice over 7. Furthermore, no element Z
of 2(T) is join-infinite and Z¢Y is meet-infinite iff there exists an infinite set
VcT with VeZ.

Let U be a set and let {U, ;: i, jeN} be a cover of U. Define

Y={ZcexpU: (Z is finite), (V€ Z = (V = 0), (V' is finite or
3, jeN)(U; ;—V is ﬁnite))), (YN, Ve ZYV -V, = ﬂ)}

Define a partial ordering = on Y as follows: Z,=Z, iff for every V€Z, there
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exists W¢Z, with VDO W. Clearly, = is a partial ordering and if we put
ZNZ,={VEZ,UZy,: YWEZ,UZYW V=W =V))};
ZNZy = {V: BNEZ) (AN Z)(V = WU V), (VW€ Z)),
(Ve Z)(HUWCV = WU, = V)}

then (Y, V, A) is a distributive lattice induced by the ordering =. Put

Y={ZeY: Ve Z= (V is infinite, (3i, j, m, n€N)
((l’ J) = (ms n)a V_(Ji,j # 0: V— Um,n # G))}s

then Y is an ideal in Y. Let ~ be the congruence relation generated by Y. Then
Z,~Z, iff V€Y whenever V¢(Z,—Z,)U(Z,—Z,). Hence if we put

Y={ZeY:VeZ= (V is finite or (31, j¢e N)(U, ;,—V is finite, VCU;, )},

we get that (¥, =) induces operations sup and inf as follows: sup {Z;, Z,}=
=Z\NZ,, inf{Z,, Z,}=Z,AZ, if Z,NZ,¢¥, =0 otherwise. Clearly, (¥, sup, inf)
is a lattice. Since. (¥, sup, inf) is isomorphic to (Y, V, A)/~, we get that it is dis-
tributive. We shall identify uc U with {{u}}¢¥, ie. Uc¥. Notice that the sub-
lattice of (¥, sup, inf) generated by U is a free distributive lattice over U. Introduce
the notation ¥(U, U, ;: i, jEN)=(Y, sup, inf) (further on we shall write only
V, A instead of sup, inf).

Lemma 1.10. For every cover {U,;:i, jeN} of U no element of
%(U, U, ;: i, JEN} is join-infinite. An element Z of %(U, U, ;: i, jEN) is meet-in-
Sinite iff

a) either Z#0 and there exists VEZ such that V is infinite,

b) or Z=0 and there exist infinitely many i, jEN such that U, ; is infinite.

Proof. Let Z€Y, we prove that it is not join-infinite. Let J be a subset of
Y such that Z,VZ,=Z for any distinct Z,, Z,€J. Then Z,UZ,>Z and for
every Ve(Z,UZ,)—Z there exists W¢cZ with Vo W. Hence, if V€Z-Z; for
Z;€7 then VeZ; forevery Z;€T—{Z;} and if Z,0Z where Z;€7 then Z;=Z.
Therefore we get that J is finite and Z is not join-infinite.

Let ZcY, Z=0 be such that every V€Z is finite. We shall prove that Z is
not meet-infinite. Let I ¥ be such that Z,AZ,=Z for any distinct Z,, Z,€7.
Hence if V€Z, V,€Z, with VoV, then for every W,€Z,, V pV,UW, and there
exists V,€Z, with V=V,UV,. On the other hand, for every V¢Z there exists
Vi€Z; with Vo V,;. Now, for every V€Z and every Z;€J we choose Wy £Z;
with W, ,cV. Then for ixj, W, ;UW, ;=V. Therefore for every WcZ



Sublattices of a distributive lattice 143

the set {W, ;: Z;€J} is finite and if Wy =V then W, =W, ; for every
Z;#Z;, Z;¢J. Hence the set {Z;€T:(3VEZ) (Wy ;#V)} is finite. Let I’ be
a subset of  with Z;¢g "’ iff Z;oZ. It suffices to prove that 7 is finite. For
any distinct Z,, Z,€J’ and every V,€Z,—Z, V,€Z,—Z, there exists V¢Z with
Vi,UV,oV. For every Z;€F —{Z}, we choose V;€Z,—Z and put W;=V,N
N U V. Nowif Z;=Z; then W;UW;cV for some V€Z. Since | V is a finite

vez VezZ
set, we get that there exists only a finite set 7”7 such that if Z,€7" then V—

—W,=0 for every V€Z. Hence J ' is finite because if W,DV for some
VeZ then W,=V,=V, a contradiction (notice that ¥€Z;). Thus Z is finite and
Z is not meet infinite.

If there exists an infinite set V¢€Z then put I={{W: WeZ—{V}}U
U{V—{x}}: x¢V}). Cleartly, if Z,, 2,67, Z,#Z, then Z;AZ,=Z and 7 is
infinite since V is infinite.

If Z=0 and M={(i, j): U, is infinite} is infinite, then put F={{U; ;}:
(i, j))eM}. Then J is infinite and for distinct Z,, Z,€7, Z,AZ,=0=Z.

Let Z be an infinite subset of (U, U, ;: i, j€N) such that for distinct Z;, Z,€ 7,
Z,NZ,#0. Then for every Z;€J— {0} there exists an infinite set V;€Z; and if
Z;#Z; then V;UV; is not a subset of any U, ,, m, n€N, but every V;is a subset

J m,n?

of some U,,,“,,i. Hence if Z;#Z; then (m;,n)#(m;,n;) and U, , is infinite.

M

Construction 1.11. Choose countably infinite sets 7 and U and a covering
{U, ;: i, jeN} of U such that Uy ; is infinite, and if i+j=m+n then U; ;NU, =0,
otherwise the intersection is a singleton. Choose a mapping ¢: U—~T such that
elU; ;: Uy ;~T is a bijection for every (i, j))ENXN and choose a bijection

p: N=T. Set K={(p, 9): (pEN), [qerl (v ([-g-]))]}

Let 9M be the sublattice of 2(T)X J[ B; (for B, see Corollary 1.8) generated
by the set fen

S= {(t, {a;}ieN): (teT), [(i is odd), [u [[%]] 5 t) = q; = 0] ,

. . i _ ) i _
((1 is even), (/1 ([5]] # t] =>aq; = X[LZ]] R (,u ([2]) =t= q,€ %,-]}U
U{{¥}, {aikien): (T—V is finite), (Vie N)(g; = 0)}.
It is clear that S is a countable set and therefore 9 is a countable distributive

lattice. For 7€T set a(t)=(t, {a;};cn) where a(z)€S and a;=M, if u([%”=t.
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Let 9 be the sublattice of €(U, U, ;: IJEN)X [123’* with  §;=
=card e“l[ ([ ]]] generated by the set

Q0 = {(u, {ap.p0ex): WED), ((p is odd), (g = u) =
=a,,=0),((piseven), (¢ #u)=a,,= X[z])’

(q =u=a,,¢ %[g])}U{({V}, {ap,0}p,90¢%):

(3i, jeN)((U,,;~V is finite), V< U, ),
(V(p, DEK(ay, = D)}.

Since Q is a countable set, M is a distributive lattice. For u€U, put B(u)=
=, {a,, .00 €Q Where a, ;=M 7) if g=u

Lemma 1.12. Let (¢, {a;};cn) be a point where t€D(T) and a,€B;,; for every
iEN. Then (1, {a;};cn) is a point of M iff the following conditions hold:

a) if i is odd and a;#0 then t is greater than or equal to [[%D

b) if i is even and a;=Xy then either t is less than or equal to p [[ ]]
or for every i€N, a;=0 and every set V€t is infinite.

Let (u, {ap',q}(p,q)ex) be a point where u€4(U, U, ;: i, jéN) and a, ,€B,, for
every (p, q)€K. Then (u, {ap’ q}(p' 2ex) is a point of N iff the following conditions hold:

a) if p is odd and a, 0 then u is greater than or equal to q;

b) if p is even and a, ,#X,,. then either u is less than or equal to q or for
every (p,q)€K, a, ,=0 and either u=0 or every set VEu is infinite.

Proof. Easy.

Notice, if (u, {a }(p ock) 18 a point of 9 then there exist only finitely many
(p, )€K with a, =0, X,.,;. Hence we get

Corollary 1.13. A4n element (u, {ap’q)(p’q)éx) of M is meet-infinite iff either
there exists an infinite set VC U with V€Eu or u=0, or there exists (p, q)€K with
X,m#a, ;DM .. Anelement (u, {a, Y, oex) of N is join-infinite iff there exists
(p, Q€K with M, 0a, #0.

Proof. The statement follows from Lemmas 1.4, 1.10, 1.12 and the fact that
if Z,NZ,=0 then either Z,=0 or Z,=0 and if Z,UZ,=X, then either Z,=X;
or Z,=X, in each ‘B,.

Proposition 1.14. Let ¢: M—~N be a one-to-one lattice homomorphism. Then
Sfor every t€T, o(a(t))=B W) where eu)=t.



Sublattices of a distributive lattice 1-45

Proof. Set ¢(a())=(/, {a, },.ock)- Since a(?) is join-infinite, we get accord-
ing. to Corollary 1.13 and Lemma 1.12 that there exists #'€U such that either
=it or u=i'.

" a) First we prove that u'=#'. Assume the contrary, ie. for some t,€T,
uwozi>, We know that there exists a finite set Wc U with Wcu's. Now if
w'o<ii' (in the case w'e>iu', the proof is analogous) then put L,={ucU: u>u'}
for t¢T. Clearly, L, is a finite set for every t€7T. Now there exists a finite subset
T'cT with ﬂ L= ﬂ L,. Then V{a(t): t€T’} is join-infinite and therefore

N L0 (see Corollary 1.13 and Lemma 1.12). For t€T—T’ put

1€T

E = {(t: {afien) € M: [(ﬂ ([%]J = t] , (i is even) = a, = M[,./Z]] ,
(i is odd (Fx€ My o) (a; = M[‘./2]~{x}))},

Hence, if e,, e, are distinct points of E, then e,Ve,=a(?) and e,Vc#e,Ve,
ey/Ac=e,Nc where c=\/{a(t): t€T’}. For wed, let o(w)={0®", b} )}, nek-
Since no element of 4(U, U, ;: i, jEN) is join-infinite, the set E,={ecE,: v*=u'}
is infinite for every t€T—T" (because for infinitely many e,, e,€E,, v**=v*2 and
then necessarily »=u«"). Hence for e€E,, v*'*=1v""V¢, Now, for distinct ¢,
t,¢T—T" and for eIEE,l, ezeE,z, we have e Ae,=a(f)Aua(ty). Thus, for every
distinct points ¢, t,eT—1T,

(@) e;Ves£e,Ve for any e, e,€E, and verVe=peaVe,

(b) eNe=a(f,)Na(ty) for every veEE,l, ecE, .
Since for every 1€ T— T’ there exists only a finite subset K,CK such that (p, ¢)€K,
whenever b, =0, X, and @V, {b,, 4 p.0pe) €M Where e€E,, therefore there
exists (p;,q,)€K and an infinite set E,cCE, such that bel‘“#b“?\" whenever
e,, e, are distinct points of E,. Since a(t)Aa(t’)=eVc for every t, t ET T’ and
e€E,, we get that B30V =p (see Lemma 1.6) and since in B, Z,NZ,=0 implies
either Z,=0 or Zz—ﬂ we have that for every 1’ €T—T’, t#t’ and every e€E,,

=9 Since g,€ ﬂ L, for every T€eT—T" and since () L, is finite, we get a

teT
contradlctlon Hence u‘° =i’

-b) Now, we prove that a; --Mu,,21 Assume the contrary, i.e. a; ,=Z% M,
If p is odd then for ¢/, t”ET t'st”#t, t'#t, the element e= (oc(t)ch(t NA
A ()Vea(t”)) is both meet- and join-infinite. On the other hand, if ¢@(e)=
=% {0}, o}p mex) then b =0 or Xy, if (p,q)(p,u) and b; ,=Z, which
contradicts Lemmas 1.4 and 1.5. If p is even, the proof is analogous. Thus

ay =M.

10
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c¢) Now we prove that e(f)=t. Let i, be an odd natural number with
p([—;ﬂ])=t, let p, be an odd natural number with u([%]]=e(u'). It suffices
to prove that iy=p,. Define y:%B, ~B, as follows: yY(Z)=bjz, where
ez=(t {a;};en) and if y[[ii)]=t and i is odd then @,=Z, while if i/ is even

then a,=M,, (recall that ¢(e,)=(v", {biZ}, »ex))- Itis clear that y is a lattice
homomorphism (it is a composition of the embedding of B, into M, of ¢ and
of the projection from RN to B, - We shall prove that y is one -to-one. By Lemma
1.6 it suffices to prove that zﬁIQIo is one-to-one. First we shall prove that for every
ZeW, , v*z=u'. Hence, it follows immediately that y is one-to-one and by
Corollary 1.8, iy=p,. Put

E, = {(’, {ai}ien): [[# ([%]] = t), (i is even) = q; = M[i/z]] ,

(i is odd = (3x€ My p)(a; = M[i/?]_{x}))}’

o= s (1 ([2]) = ) 3 v = = 4

(l iS Odd = (3 xE X[i/Z]—M[i/2])(ai = M[,/g]U{x}))}.

Clearly, if we verify that for e€ E,UE,, v*=u/, then for every Z¢ ‘ZI,.O, ver =1,
Since for any distinct e;, e,€E; (e;, e,€E,), e,Ve,=a(t) (e;Ae;=a(t), resp.) we
get that there exists at most one e, € F, (or e,€ E,) with %144’ (or v°2#u') because
for ucU, if u,Vu,=u (or u,Au,=u) then either u;=u or u,=u. Then neces-
sarily v*=u'=v"2. Choose a homomorphism ¢: 2(T)—~M such that o()=a(t)
for every t€T (clearly, such a homomorphism exists). Now we can choose t'£2(T)
such that #’>¢ and +°*? and v° are incomparable. Then o (t")Ae,=a(r) (observe

that if o(t')=(t, {a;};cn) then for an odd i with p[[%]]:t, a;= M), but

¢o(a (")) Ap(e))=@(a(r)), a contradiction. Thus for every ecE,, v°=u'. Analog-

ously, we prove that v®'=u'. The proof is concluded.

Theorem 1.15. For every natural number i, there exist pairwise disjoint sub-
lattices Ny, Ny, ..., R,_, of the lattice | which are isomorphic to M, but there are
not infinitely many pairwise disjoint sublattices N,, Ny, ... of R which are. iso-
morphic to IMN.

, Proof. Let {¢,},.n be a sequence of one-to-one lattice homomorphisms from
M to N. Then for arbitrary k€N and 1€7T, @, (x(1))=pu) where e(u)=t. Further,
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for every finite set T7'C T there exists a point p(7")€M such that y(T)=a(r)
iff t€7—T". On the other hand, if U'c U is an infinite set and U’'—U, ;0 for
any i, jEN, then e=pg(u) for every ucU’ iff e=(®, {a, }, »Hex) Where a, =0
for every (p, g)€K. Therefore there exist iy, j,€N with @, (x()=@, {a,,},.0ex)
where {u'}=¢71(1)NU, ; for every t€T. Therefore there exist k,sk, with
Iyt # i, i, Put {u}=U,.,q‘jklﬁU,.kz’jk2 e@)=t. Then ¢, (x(1))=0,(x())
and {¢, (M)}, n are not pairwise disjoint.

Let k be a natural number. For every j=k define y;: 2(T)~%(U, U, ;: i, j€N)
as follows: ¥;(Z)={e"*(V)NU,_,,;: V€Z}. Clearly, the ;s are one-to-one
homomorphisms and {;(2(T))};, are pairwise disjoint. Define ¢;: M-~N,
@5t Aaien) =), {b,, Yp.rex) Where b,y (y=a;. Then {p;:j=k} is a family
of pairwise disjoint one-to-one lattice homomorphisms. The proof is concluded.

2. Let us formulate the above problem in a general category with a class M
of its morphisms.

Definition. Let ) be a category with a cosingleton @. Let f,g: A—~B be
morphisms of . We shall say that f, g are disjoint if

.

is a pull back.

Definition. Let " be a category, let M be a class of its morphisms. A pair
(4, B) of objects is said to have the property (Sy,) if for every n=1,2, ... there
exist n pairwise disjoint M-morphisms from A to B, but there do not exist in-
finitely many such morphisms. We say that »# fulfils Sekanina’s axiom with re-
spect to M if no pair of objects has the property (Sg,). '

Now we can formulate the foregoing result as follows: The pair (M, N) of
countable distributive lattices has the property (S,) with .# the class of all
monomorphisms.

Now we establish some other results:

Theorem 2.1. The category of sets, the category of vector spaces and the
category of unary algebras with one operation fulfil Sekanina’s axiom with respect
to M for every class M containing all monomorphisms.

Proof. Easy.

Theorem 2.2. The category of complete, completely distributive Boolean al-
gebras fulfils Sekanina’s axiom with respect to the class of all monomorphisms.

10*
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Proof. The statement follows- immediately from the well-known fact that
‘every complete, completely distributive Boolean algebra is the algebra of all sub-
sets of some set.

Theorem 2.3. The category of graphs or unary algebras with o operations
(a is a cardinal, «=0) fulfils Sekanina’s axiom with respect to: the class of all
summands.

Proof. The statement follows from the fact that f: A —~B is sumand iff
A is 1somorphic to the sum of some components of B.

Now we recall that a monomorphism f in a category X is an extremal mono-
morphism if any epimorphism e is an isomorphism whenever f=goe for some
‘morphism g of . In the category of graphs or topological spaces extremal mono-
morphisms are embeddings to full subgraphs or subspaces.

1. Korec showed that there exists a pair (4, B) of countable graphs or countable
unary algebras with two operations which have the property (Sg) where M is the
class of all extremal monomorphisms. :

- Theorem 2.4. There exists a pair (A, B) of connected, countable, bipartite
graphs with the property (Sg) where M is an arbitrary class of monomorphisms con-
taining all extremal monomorphisms.

Theorem 2.5. There exists a pair (A, B) of continua with the property (Sg)
where A is a subcontinuum of the plane, B is a subcontinuum of the cube and M is
an arbitrary class of monomorphisms containing all extremal monomorphisms.

Proof of Theorems 2.4 and 2.5. Put X={a, b, JUNX {0, 1}),
R ={((0, 0), a), ((0, 0), b), ((0, 0), c), (a, (0, 0)), (b, (0, O)), (c, (0, O))}U
U{(G, 0), G, D), (GG, 1), (i, 0)): i€ N}U
U{((i, 0), (i+1,0)), ((i+1,0), (i, 0)): i€ N}.

a

(0.0) (1,0 (2.0
0.1) (L)) @2.hn
(X, R)

Fig. 2



Sublattices of a distributive lattice 149

Clearly, (X, R) is a connected, countable bipartite graph. Choose .a bijection ¢
from L={(x,y,z, v):(x,y, 2 vEN), (x+y#z+v)} to N. Put (Y, S)=(X, R)X
X(NXN, 4)/~ where (NXN, 4) is the smallest reflexive relation on NXN and-
~ 1is the smallest equivalence relation on XXNXN with

k, 1, x,y) ~ (k,1,z,v) whenever ¢(x,y,z v)=k.

Clearly, (Y, S) is a connected, countable graph. To verify that it is bipartite, it
suffices to put M={(k, i, x,»)€Y: k+i is even}/~. Let k be a natural number,
i=k. Define f}*: (X,R)—~(Y,S) as follows: f*(x) is the ~-class containing

(x, k, k—i). Clearly, f¥ i=0,1,...,k, are pairwise disjoint extremal mono-

morphisms. Let {f;} be a sequence of one-to-one morphisms from (X, R) to (Y, S).
Since card {y:(y, (0, 0))€ R} =4, we get that for every i there exists (p;, ¢;)ENXN
such that f;(0, 0) is the ~-class containing (0, 0, p;, ¢;). Hence we easily get that
f;(J, 0) is the ~-class containing (/, 0, p;, ¢;) and f;(j, 1) is the ~-class containing
(j,1.p;,q). Further, there exist iy, 4 with pit4;,#p +q;- Let k=
=@ (P> ;> 1> ;). Then f, (k, )=f; (k, 1) and therefore f; and f, are not
disjoint. If we set A=(X, R), B=(Y, S), then the proof of Theorem 2.4 is
concluded.

Let K be a circle with the usual topology. Choose two distinct points a, b€ K.
Let S={{x,y}: (x, y)ER} be equipped with the discrete topology where RC XXX
is the relation defined above. Let P, be the one-point compactification of KX S/~
with ~ standing for the smallest equivalence relation such that:

(@, {x, y}) ~ (a,{x, z}) forevery {x,y},{x,2}¢S with x€{(i,j): i+j is even};
(b, {x,y}) ~ (b, {x,z}) forevery {x,y}, {x,2}€S with x€{(i,j):i+j is odd}.

Clearly, P, is a subcontinuum of the plane. We shall assume that N has the discrete
topology. Let P, be the one-point compactification of P;XNXN/~~ where =
is the smallest equivalence relation such that if ¢(x,y, z, v)=k then

((a, {(k,0), (k, D}, x,y) = ([aA, {(k,0), (k, D}], z, v) if k is odd,
([b, {(k,0), (k, D}, x, p) = ([b, {(k,0), (k, D], z, v) if k is even,

where [x] denotes the ~-class containing x. Clearly, P, is a subcontinuum of the
cube. The proof that (P,, P,) has the property (Sy;) is analogous to that of the
similar statement for (X, R) and (Y, S). It suffices to realize that if f: K—K is one-
to-one then f is a homeomorphism.

Theorem 2.6. There exists a pair (A, B) of O-dimensional compact Hausdor[f
spaces on sets of power R, which has the property (Sg) where W is the class of all
summands.
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Proof. Define topological spaces S, by induction as follows: S; is the one-
point compactification of a countable discrete set; S, is the one-point compactifica-
tion of S,_,XN where N has the discrete topology. Put R, to be the one-point
compactification of R, copies of S,. Let T, be the one-point compactification
of the disjoint union of R,, R,,.... Clearly, T, is a 0-dimensional compact
Hausdorff space on a set of power &,.

Let U be a countable set and let {U; ;:i, j€N} be a cover of U such that every
U,; is infinite and U;;NU, =0 if i+j=m+n, U,;NU,, is infinite if
i+j=m+n. Choose a mapping y: U—~{l,2,3, ...} such that y|U;; is a bijection
from U;; onto {1,2,3,...} for every 7, jEN.

Let T, be the one-point compactification of 73 X N XN/~ (NXN has the discrete
topology) where = is the smallest equivalence relation such that (x, i, j)={(x, m, n)
if x¢R, and peY(U;;NU,,). Clearly, T, is a O-dimensional compact Hausdorff
space on a set of power R;.

Let k be a natural number, i=0, 1, ..., k. Define f*: T, ~T,, by f¥(x) being
the ~-class containing (x, k, k~i). It is easy to verify that f* is a summand and
that f¥ and f} are disjoint whenever ixj.

Let {f;: T,~T,} be a sequence of summands. Then for every i/, there exist

Ji» k€N and iy, iy, ..., i,€N such that f(T,— U R, )C Ty X{(j;, k;)}/ ~, there-
fore if j, +k; #j; +k, , we get that Imf, ﬂImf #0 and thus f, and f
are not dlS_]Olnt On the other hand, there ex1st Ig, Iy such that either j,o+ko¢
#Jy +k; or (j,.o, kio)=(jil, kil). Hence if we set A=T,,B=T,, the proof
of the theorem is complete.
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