Sublattices of a distributive lattice

VÁCLAV K OUBEK

At the Mini-Conference on Lattice Theory in Szeged, 1974, M. Sekanina has formulated the following problem: Is it true that if a lattice B contains an arbitrarily large finite number of pairwise disjoint sublattices, isomorphic to a lattice A, then B also contains an infinite number of such sublattices? The aim of the present paper is to construct two countable distributive lattices A and B which are counterexamples, i.e. such that for any $m=1,2,3, \ldots, B$ contains m disjoint copies of A, but it does not contain infinitely many such copies. An independent solution of Sekanina's problem was found by I. Korec in a paper to appear (personal communication).

An analogous problem can be formulated for other structures than lattices and various concepts of subobject, e.g. summand. In the second part a general formulation of this problem is exhibited.

1. We recall that a graph (X, R) (i.e. $R \subset X \times X)$ is bipartite if it is symmetric and there exists a subset M of X such that if $(x, y) \in R$ then $x \in M$ iff $y \notin M$.

Definition. A graph (X, R) is strongly reduced if for any distinct points $x, y \in X$ there exists at most one point z with $(z, x),(z, y) \in R$.

Convention. Denote by \mathbf{N} the set of all natural numbers, by \mathbf{Z} the set of all integers.

Construction 1.1. We shall construct countable, connected, strongly reduced, bipartite graphs (X_{i}, R_{i}) with $i \in \mathbf{N}, i>1$ such that
a) for every $x \in X_{i}$, card $\left\{z:(x, z) \in R_{i}\right\} \in\{2,3\}$;
b) if $f:\left(X_{i}, R_{i}\right) \rightarrow\left(X_{j}, R_{j}\right)$ is a one-to-one compatible mapping then $i=j$ and f is the identity.

Put

$$
\begin{aligned}
X_{i}= & \{(x, y):(x, y \in \mathbf{Z}),(y \neq 0 \Rightarrow y \in\{i,-i\} \cup \\
& \cup\{i+2 k+1: k \in \mathbf{N}\} \cup\{-i-3 k-1: k \in \mathbf{N}\})(\operatorname{sgn} x=\operatorname{sgn} y)\}, \\
R_{i}= & \{((x, 0),(x+1,0)): x \in \mathbf{Z}\} \cup\{((x, 0),(x-1,0)): x \in \mathbf{Z}\} \cup \\
& \cup\{((y+s, y),(y+t, y)):(y \in\{i+2 k+1: k \in \mathbf{N}\} \cup \\
& \cup\{-i-3 k-1: k \in \mathbf{N}\} \cup\{i,-i\}),(|s-t|=1),(s y, t y \geqq 0)\} \cup \\
& \cup\left\{\left(\left(y-\frac{y}{|y|}, 0\right),(y, y)\right),\left((y, y),\left(y-\frac{y}{|y|}, 0\right)\right): y \in\{i+2 k+1: k \in \mathbf{N}\} \cup\right. \\
& \cup\{-i-3 k-1: k \in \mathbf{N}\} \cup\{i,-i\}\} .
\end{aligned}
$$

Fig. 1

It is clear that (X_{i}, R_{i}) is a countable, symmetric, strongly reduced graph. Set $M_{i}=\left\{(x, y) \in X_{i}: x\right.$ is even $\}$, then $R_{i} \subset\left(\left(X_{i}-M_{i}\right) \times M_{i}\right) \cup\left(M_{i} \times\left(X_{i}-M_{i}\right)\right)$ and therefore $\left(X_{i}, R_{i}\right)$ is a bipartite graph. Further, for every $x \in X_{i}$,

$$
\operatorname{card}\left\{z:(x, z) \in R_{i}\right\} \in\{2,3\}
$$

We shall prove Property b). If $f:\left(X_{i}, R_{i}\right) \rightarrow\left(X_{j}, R_{j}\right)$ is a one-to-one compatible mapping then for $x \in\{i-1,1-i\} \cup\{i+2 k: k \in \mathbf{N}\} \cup\{-i-3 k: k \in \mathbf{N}\}, f(x, 0) \in\{(j-1,0)$, $(1-j, 0)\} \cup\{(j+2 k, 0): k \in \mathbf{N}\} \cup\{(-j-3 k, 0): k \in \mathbf{N}\}$. Hence $f(\{(i-1,0),(1-i, 0)\}) \in$ $\in\{(j-1,0),(1-j, 0)\}$ and therefore $i=j$. Further, $f(x, 0) \in\{(y, 0): y \in \mathbf{Z}\}$. If $f(i-1,0)=(1-i, 0)$ then $f(i+2 k, 0)=(-i-2 k, 0)$ but the latter is impossible, thus $f(i-1,0)=(i-1,0)$ and so is $f(x, 0)=(x, 0)$ for every $x \in Z$. Hence f is the identity.

Let us introduce the notation $\mathfrak{X}_{i}=\left(X_{i}, R_{i}, M_{i}\right), i \in \mathbf{N}, i>1$.

Construction 1.2. Let $\mathfrak{X}=(X, R, M)$ where (X, R) is a bipartite graph and $M \subset X$ such that if $(x, y) \in R$ then $x \in M$ iff $y \notin M$. Set
$A_{1}^{\mathcal{*}}=\{Z \subset X:(\exists(x, y) \in R)(x \in M$ and $Z=(M-\{x\}) \cup\{y\})\} ;$
$A_{2}^{\mathfrak{x}}=\{Z \subset X:(\exists x \in M)(\exists K \subset\{y:(y, x) \in R\})(K$ is finite and $Z=(M-\{x\}) \cup K)\} ;$
$A_{3}^{\mathfrak{*}}=\{Z \subset X:(\exists x \in X-M)(\exists K \subset\{y:(y, x) \in R\})(K$ is finite and $Z=(M-K) \cup\{x\})\} ;$
$A_{4}^{\neq}=\{Z \subset X:(\exists K \subset M)(K$ is finite and $Z=M-K)\} ;$
$A_{5}^{*}=\{Z \subset X:(\exists K \subset X-M)(K$ is finite and $Z=M \cup K)\}$.
Put $A^{\mathfrak{¥}}=\bigcup_{i=1}^{5} A_{i}^{\mathfrak{x}}, B^{\mathfrak{x}}=A^{\mathfrak{x}} \cup\{\emptyset, X\}$. For $Z, V \in B^{\mathfrak{x}}$ define $Z \vee V=Z \cup V, Z \wedge V=$ $=Z \cap V$, then it is easy to verify that $\left(A^{\mathfrak{Z}}, \cup, \cap\right)$ and $\left(B^{\mathfrak{x}}, \cup, \cap\right)$ are lattices (and hence they are distributive). Moreover, $A^{\mathfrak{x}}$ and $B^{\mathfrak{x}}$ are countable iff X is countable.

Let $\mathfrak{X}=(X, R, M), \mathfrak{Y}=(Y, S, N)$ where $(X, R),(Y, S)$ are bipartite graphs and for $(x, y) \in R$ (or $(x, y) \in S$), $x \in M$ iff $y \nsubseteq M$ (or $x \in N$ iff $y \notin N$, respectively). If $f: X \rightarrow Y$ such that $f(M) \subset N$ and $f:(X, R) \rightarrow(Y, S)$ is a one-to-one compatible mapping then $\varphi: B^{\mathfrak{x}} \rightarrow B^{\mathfrak{Y}}$ (or $\varphi / A^{\mathfrak{x}}: A^{\mathfrak{x}} \rightarrow A^{\mathfrak{Y}}$) is a one-to-one lattice homomorphism, where $\varphi(Z)=(f(Z) \cup N)-f(M-Z)$ if $Z \neq \emptyset, X, \varphi(\emptyset)=\emptyset, \varphi(X)=Y$. We shạll write $\Psi \mathfrak{X}=\left(A^{\mathfrak{¥}}, \cup, \cap\right), \Psi f=\varphi / A^{\mathfrak{x}}, \Phi \mathfrak{X}=\left(B^{\mathfrak{x}}, \cup, \cap\right), \Phi f=\varphi$.

Note 1.3. Denote by $\mathbf{G r}$ the category whose objects are triples (X, R, M) where (X, R) is a bipartite graph and $M \subset X$ such that if $(x, y) \in R$ then $x \in M$ iff $y \notin M$ and whose morphisms $f:(X, R, M) \rightarrow(Y, N, S)$ are one-to-one mappings $f:(X, R) \rightarrow(Y, S)$ with $f(M) \subset N$. Denote by DLat the category of distributive lattices and one-to-one lattice homomorphisms. Then Φ, Ψ are faithful functors from Gr to DLat.

Definition. Let \mathfrak{H} be a lattice. An element x of \mathfrak{A} is called meet-infinite (or join-infinite) if there exists an infinite subset B of \mathfrak{H} such that for any distinct points $a, b \in B, a \wedge b=x$ (or $a \vee b=x$, respectively).

Lemma 1.4. Let $\mathfrak{X}=(X, R, M)$ be an object of $\mathbf{G r}$ such that M and $X-M$ are infinite and for every $x \in X$ the set $\{y:(x, y) \in R\}$ is finite. Then for $Z \in A^{\mathfrak{x}}$ we have
a) Z is a meet-infinite element iff $Z \supset M$;
b) Z is a join-infinite element iff $Z \subset M$.

Proof. If $V \supset M$ then it is clear that V is meet-infinite $(V=(V \cup\{x\}) \cap(V \cup\{y\})$ for every $x \neq y, x, y \in X-V$.). Let V be meet-infinite. Let $\mathscr{B} \subset A^{x}$ be an infinite set with $W_{1} \cap W_{2}=V$ for every $W_{1} \neq W_{2}, W_{i}, W_{2} \in \mathscr{B}$. If $M-V \neq \emptyset$ then $M-W \neq$ $\neq M-V$ holds only for finitely many $W \in \mathscr{B}$, and so \mathscr{B} is finite because the set $\{y:(x, y) \in R\}$ is finite for every $x \in X$, a contradiction; thus $M-V=\emptyset$ and hence $V \supset M$. The proof of case b) is analogous.

Lemma 1.5. Let $f: \mathfrak{U} \rightarrow \mathfrak{B}$ be a one-to-one lattice homomorphism. If $a \in \mathfrak{Y}$ is a meet-infinite (join-infinite) element then $f(a)$ is meet-infinite (join-infinite), too.

Proof. The proof is easy and is therefore omitted.
Lemma 1.6. Let $\mathfrak{X}=(X, R, M)$ be an object of $\mathbf{G r}$ such that for every $x \in X$ the set $\{y:(x, y) \in R\}$ is finite. Let $Z, V \in B^{\geq}$be such that there exists an infinite set $\mathscr{B} \subset B^{\mathfrak{x}}$ with the following properties: 1) for every $W_{1}, W_{2} \in \mathscr{B}, W_{1} \cap W_{2}=V$ (or $W_{1} \cup W_{2}=V$); 2) $Z \supset W$ (or $Z \subset W$) for every $W \in \mathscr{B}$. Then $Z=X$ (or $Z=\emptyset$, respectively).

Proof. Clearly, X is finite iff B^{x} is finite. If the set $\{y:(x, y) \in R\}$ is finite for every $x \in X$ then X is finite iff M and $X-M$ are finite. By Lemma 1.4 we get that $V \in A_{5}^{¥}$ and therefore either $Z=X$ or $Z \in A_{5}^{¥}$. If $Z \in A_{5}^{¥}$, we have that $Z-V$ is finite and therefore \mathscr{B} is not infinite, a contradiction.

Proposition 1.7. Let $\mathfrak{X}=(X, R, M), \mathfrak{Y}=(Y, S, N)$ be objects of $\mathbf{G r}$ such that
a) $(X, R),(Y, S)$ are strongly reduced;
b) for every $x \in X$ the set $\{y:(y, x) \in R\}$ is finite and has at least two points;
c) $M, X-M, N, Y-N$ are infinite.

If $f: \Psi \mathfrak{X} \rightarrow \Psi \mathfrak{Y}$ (or $f: \Phi \mathfrak{X} \rightarrow \Phi \mathfrak{Y}$) is a one-to-one lattice homomorphism then there exists a morphism $g:(X, R, M) \rightarrow(Y, S, N)$ of Gr with $\Psi g=f$ (or $\Phi g=f$, respectively).

Proof. By Lemmas 1.4 and $1.5, f\left(A_{5}^{*}\right) \subset A_{5}^{श}, f\left(A_{4}^{\mathcal{*}}\right) \subset A_{4}^{\mathfrak{V}}$. Now we shall prove $f\left(A_{1}^{\mathfrak{F}}\right) \subset A_{1}^{\mathfrak{D}}$. Since for every $Z \in A_{1}^{\mathfrak{\chi}}, Z-M$ and $M-Z$ are nonempty, we
 exists $Z \in A_{1}^{\boldsymbol{x}}$ with $f(Z) \in A_{2}^{\mathscr{D}}$. Then there exists $V_{1} \in A_{1}^{\mathcal{X}}$ with $V_{1} \cup Z \in A_{5}^{\mathcal{X}}$ and $V_{1} \cap Z \notin A_{4}^{\mathcal{Z}}$. Then $f\left(V_{1}\right) \cup f(Z) \in A_{5}^{Ð}$ and $f\left(V_{1}\right) \cap f(Z) \notin A_{4}^{¥}$. Therefore $\left(f\left(V_{1}\right)-N\right) \cap$ $\cap(f(Z)-N) \neq \emptyset$ but $\left(N-f\left(V_{1}\right)\right) \cap(N-f(Z))=\emptyset$. We shall prove $f\left(V_{1}\right)-N=$ $=f(Z)-N$, hence we get a contradiction because (Y, S) is strongly reduced. Choose $V_{2} \in A_{1}^{¥}$ with $V_{2} \cup Z, V_{2} \cup V_{1} \in A_{5}^{¥}, \quad V_{2} \cap Z, V_{2} \cap V_{1} \in A_{4}^{¥}$. Then $V_{2} \cup Z=$ $-V_{2} \cup V_{1}=Z \cup V_{2} \cup V_{1}$ (we use that $V_{1} \cap Z \notin A_{4}^{\mathcal{x}}$ and therefore $V_{1}-M=Z-M$). Then $\quad f\left(V_{2}\right) \cup f(Z)=f\left(V_{2}\right) \cup f\left(V_{1}\right)=f(Z) \cup f\left(V_{2}\right) \cup f\left(V_{1}\right)$, hence $\quad\left(f\left(V_{2}\right) \cup f(Z)\right)-$ $-N=\left(f\left(V_{2}\right) \cup f\left(V_{1}\right)\right)-N$. Since $\quad f\left(V_{1}\right) \cap f\left(V_{2}\right), f(Z) \cap f\left(V_{2}\right) \in A_{4}^{\mathfrak{D}}, \quad$ we have $\left(f\left(V_{1}\right)-N\right) \cap\left(f\left(V_{2}\right)-N\right)=\emptyset$ and $(f(Z)-N) \cap\left(f\left(V_{2}\right)-N\right)=\emptyset$. Thus $f(Z)-N=$ $=f\left(V_{1}\right)-N$. We obtain that $f\left(A_{1}^{\mathcal{Z}}\right) \subset A_{1}^{\mathfrak{V}}$ because it can be proved analogously that $f\left(A_{1}^{\mathfrak{\chi}}\right) \cap A_{3}^{\mathscr{V}}=\emptyset$. Hence $f\left(A_{2}^{\mathcal{Z}}\right) \subset A_{2}^{\mathfrak{D}}, f\left(A_{3}^{\boldsymbol{\chi}}\right) \subset A_{3}^{\mathfrak{Y}}$. Define $g: X \rightarrow Y$ as follows:
for $x \in M, g(x)=y$ where $f(M-\{x\})=N-\{y\}$,
for $x \notin M, g(x)=y$ where $f(M \cup\{x\})=N \cup\{y\}$.
(Since $f\left(A_{1}^{*}\right) \subset A_{1}^{\underline{1}}$, we get that for every $v \in M, f(M-\{v\})=N-\{w\}$ where $w \in N$ and for every $v \in X-M, f(M \cup\{v\})=N \cup\{w\}$ where $w \in Y-N$.) It is clear that $g(M) \subset N$ and g is one-to-one. If $(x, y) \in R$ with $x \in M$ then $Z=(M-\{x\}) \cup\{y\} \in A_{1}^{x}$ and therefore $f(Z) \in A_{1}^{\mathfrak{M}}$. Since $Z \supset M-\{x\}$, we get that $f(Z) \supset N-\{g(x)\}$ and since $Z \subset M \cup\{y\}$, we get that $f(Z) \subset N \cup\{g(y)\}$. Hence $f(Z)=(N-\{g(x)\}) \cup$ $\cup\{g(y)\}$ and so $(g(x), g(y)) \in S$. It is clear that $\Psi g=f$. If $f: \Phi \mathfrak{X} \rightarrow \Phi \mathfrak{Y}$ then by
 $f(X)=Y$ and the rest follows from the foregoing part of the proof.

Corollary 1.8. Put $\mathfrak{G}_{i}=\Psi \mathfrak{\mathfrak { X }}_{i}, \mathfrak{B}_{i}=\Phi \mathfrak{X}_{i}$ (for \mathfrak{X}_{i}, see Construction 1.1). If $f: \mathfrak{M}_{i} \rightarrow \mathfrak{H}_{j}$ (or $f: \mathfrak{B}_{i} \rightarrow \mathfrak{B}_{j}$) is a one-to-one lattice homomorphism then $i=j$ and f is the identity.

Construction 1.9. Let T be a set. Put
$Y=\{Z:(Z \subset \exp T),(Z \neq \emptyset),(Z$ is finite $),(V \in Z \Rightarrow(V \neq \emptyset$ and V or $T-V$ is finite $))$,

$$
\left.\left(\forall V_{1}, V_{2} \in Z\right)\left(V_{1}-V_{2} \neq \emptyset\right)\right\}
$$

Define a partial ordering \leqq on Y as follows: $Z_{1} \leqq Z_{2}$ iff for every $V \in Z_{1}$ there exists $W \in Z_{2}$ with $V \supset W$. Clearly, \leqq is a reflexive and transitive relation. Since for every $Z \in Y, V_{1}, V_{2} \in Z$ implies $V_{1}-V_{2} \neq \emptyset$, we get that $Z_{1} \leqq Z_{2} \leqq Z_{1}$ iff $Z_{1}=Z_{2}$; thus \leqq is a partial ordering.

Now if we put

$$
\begin{aligned}
Z_{1} \vee Z_{2}= & \left\{V \in Z_{1} \cup Z_{2}:\left(W \in Z_{1} \cup Z_{2} \Rightarrow W-V \neq \emptyset \text { or } W=V\right)\right\} ; \\
Z_{1} \wedge Z_{2}= & \left\{V:\left(\exists V_{1} \in Z_{1}\right)\left(\exists V_{2} \in Z_{2}\right)\left(V=V_{1} \cup V_{2}\right),\right. \\
& \left.\left(\forall W_{1} \in Z_{1}\right)\left(\forall W_{2} \in Z_{2}\right)\left(\left(W_{1} \cup W_{2}\right) \subset V \Rightarrow W_{1} \cup W_{2}=V\right)\right\},
\end{aligned}
$$

we get that (Y, \leqq) is a partial ordering induced by a lattice (Y, \vee, \wedge) and it is easy to verify that (Y, \wedge, \vee) is a distributive lattice. Put $\mathscr{D}(T)=(Y, \vee, \wedge)$. We shall identify $t \in T$ with $\{\{t\}\} \in Y$, i.e. $T \subset Y$. It is clear that the sublattice of $\mathscr{D}(T)$ generated by T is a free distributive lattice over T. Furthermore, no element Z of $\mathscr{D}(T)$ is join-infinite and $Z \in Y$ is meet-infinite iff there exists an infinite set $V \subset T$ with $V \in Z$.

Let U be a set and let $\left\{U_{i, j}: i, j \in \mathbf{N}\right\}$ be a cover of U. Define

$$
\begin{aligned}
\stackrel{\rightharpoonup}{Y}= & \{Z \subset \exp U:(Z \text { is finite }),(V \in Z \Rightarrow(V \neq \emptyset),(V \text { is finite or } \\
& \left.\left.\left.(\exists i, j \in \mathbf{N})\left(U_{i, j}-V \text { is finite }\right)\right)\right),\left(\forall V_{1}, V_{2} \in Z\right)\left(V_{1}-V_{2} \neq \emptyset\right)\right\} .
\end{aligned}
$$

Define a partial ordering \leqq on \bar{Y} as follows: $Z_{1} \leqq Z_{2}$ iff for every $V \in Z_{1}$ there
exists $W \in Z_{2}$ with $V \supset W$. Clearly, \leqq is a partial ordering and if we put

$$
\begin{aligned}
Z_{1} \vee Z_{2}= & \left\{V \in Z_{1} \cup Z_{2}:\left(\forall W \in Z_{1} \cup Z_{2}\right)(W \subset V \Rightarrow W=V)\right\} ; \\
Z_{1} \wedge Z_{2}= & \left\{V:\left(\exists V_{1} \in Z_{1}\right)\left(\exists V_{2} \in Z_{2}\right)\left(V=V_{1} \cup V_{2}\right),\left(\forall W_{1} \in Z_{1}\right),\right. \\
& \left.\left(\forall W_{2} \in Z_{2}\right)\left(\left(W_{1} \cup W_{2}\right) \subset V \Rightarrow W_{1} \cup W_{2}=V\right)\right\}
\end{aligned}
$$

then (\bar{Y}, \vee, \wedge) is a distributive lattice induced by the ordering \leqq. Put

$$
\begin{aligned}
\bar{Y}= & \{Z \in \bar{Y}: V \in Z \Rightarrow(V \text { is infinite, }(\exists i, j, m, n \in \mathbf{N}) \\
& \left.\left.\left((i, j) \neq(m, n), V-U_{i, j} \neq \emptyset, V-U_{m, n} \neq \emptyset\right)\right)\right\},
\end{aligned}
$$

then \bar{Y} is an ideal in \bar{Y}. Let \sim be the congruence relation generated by \bar{Y}. Then $Z_{1} \sim Z_{2}$ iff $V \in \bar{Y}$ whenever $V \in\left(Z_{1}-Z_{2}\right) \cup\left(Z_{2}-Z_{1}\right)$. Hence if we put

$$
\tilde{Y}=\left\{Z \in \bar{Y}: V \in Z \Rightarrow\left(V \text { is finite or }(\exists i, j \in \mathbf{N})\left(U_{i, j}-V \text { is finite, } V \subset U_{i, j}\right)\right)\right\},
$$

we get that (\tilde{Y}, \leqq) induces operations sup and inf as follows: $\sup \left\{Z_{1}, Z_{2}\right\}=$ $=Z_{1} \vee Z_{2}$, inf $\left\{Z_{1}, Z_{2}\right\}=Z_{1} \wedge Z_{2}$ if $Z_{1} \wedge Z_{2} \in \tilde{Y},=\emptyset$ otherwise. Clearly, (\tilde{Y}, sup, inf $)$ is a lattice. Since. $(\tilde{Y}, \sup$, inf $)$ is isomorphic to $(\bar{Y}, \vee, \wedge) / \sim$, we get that it is distributive. We shall identify $u \in U$ with $\{\{u\}\} \in \tilde{Y}$, i.e. $U \subset \tilde{Y}$. Notice that the sublattice of (\tilde{Y}, sup, inf) generated by U is a free distributive lattice over U. Introduce the notation $\mathscr{C}\left(U, U_{i, j}: i, j \in \mathbf{N}\right)=(\tilde{Y}$, sup, inf) (further on we shall write only \vee, \wedge instead of sup, inf).

Lemma 1.10. For every cover $\left\{U_{i, j}: i, j \in \mathbf{N}\right\}$ of U no element of $\mathscr{C}\left(U, U_{i, j}: i, j \in \mathbf{N}\right)$ is join-infinite. An element Z of $\mathscr{C}\left(U, U_{i, j}: i, j \in \mathbf{N}\right)$ is meet-infinite iff
a) either $Z \neq \emptyset$ and there exists $V \in Z$ such that V is infinite,
b) or $Z=\emptyset$ and there exist infinitely many $i, j \in \mathbf{N}$ such that $U_{i, j}$ is infinite.

Proof. Let $Z \in \tilde{Y}$, we prove that it is not join-infinite. Let \mathscr{T} be a subset of \tilde{Y} such that $Z_{1} \vee Z_{2}=Z$ for any distinct $Z_{1}, Z_{2} \in \mathscr{T}$. Then $Z_{1} \cup Z_{2} \supset Z$ and for every $V \in\left(Z_{1} \cup Z_{2}\right)-Z$ there exists $W \in Z$ with $V \supset W$. Hence, if $V \in Z-Z_{i}$ for $Z_{i} \in \mathscr{T}$ then $V \in Z_{j}$ for every $Z_{j} \in \mathscr{T}-\left\{Z_{i}\right\}$ and if $Z_{i} \supset Z$ where $Z_{i} \in \mathscr{T}$ then $Z_{i}=Z$. Therefore we get that \mathscr{T} is finite and Z is not join-infinite.

Let $Z \in \tilde{Y}, Z \neq \emptyset$ be such that every $V \in Z$ is finite. We shall prove that Z is not meet-infinite. Let $\mathscr{T} \subset \tilde{Y}$ be such that $Z_{1} \wedge Z_{2}=Z$ for any distinct $Z_{1}, Z_{2} \in \mathscr{T}$. Hence if $V \in Z, V_{1} \in Z_{1}$ with $V \supset V_{1}$ then for every $W_{2} \in Z_{2}, V \nsupseteq V_{1} \cup W_{2}$ and there exists $V_{2} \in Z_{2}$ with $V=V_{1} \cup V_{2}$. On the other hand, for every $V \in Z$ there exists $V_{1} \in Z_{1}$ with $V \supset V_{1}$. Now, for every $V \in Z$ and every $Z_{i} \in \mathscr{T}$ we choose $W_{V, i} \in Z_{i}$ with $W_{V, i} \subset V$. Then for $i \neq j, W_{V, i} \cup W_{V, j}=V$. Therefore for every $V \in Z$
the set $\left\{W_{V, i}: Z_{i} \in \mathscr{T}\right\}$ is finite and if $W_{V, i} \neq V$ then $W_{V, i} \neq W_{V, j}$ for every $Z_{j} \neq Z_{i}, Z_{j} \in \mathscr{T}$. Hence the set $\left\{Z_{i} \in \mathscr{T}:(\exists V \in Z)\left(W_{V, i} \neq V\right)\right\}$ is finite. Let \mathscr{T}^{\prime} be a subset of \mathscr{T} with $Z_{i} \in \mathscr{T}^{\prime}$ iff $Z_{i} \supset Z$. It suffices to prove that \mathscr{T}^{\prime} is finite. For any distinct $Z_{1}, Z_{2} \in \mathscr{T}^{\prime}$ and every $V_{1} \in Z_{1}-Z, V_{2} \in Z_{2}-Z$, there exists $V \in Z$ with $V_{1} \cup V_{2} \supset V$. For every $Z_{i} \in \mathscr{T}^{\prime}-\{Z\}$, we choose $V_{i} \in Z_{i}-Z$ and put $W_{i}=V_{i} \cap$ $\cap \bigcup_{V \in Z} V$. Now if $Z_{i} \neq Z_{j}$ then $W_{i} \cup W_{j} \subset V$ for some $V \in Z$. Since $\bigcup_{V \in Z} V$ is a finite set, we get that there exists only a finite set $\mathscr{T}^{\prime \prime} \subset \mathscr{T}^{\prime}$ such that if $Z_{i} \in \mathscr{T}^{\prime \prime}$ then $V-$ $-W_{i} \neq \emptyset$ for every $V \in Z$. Hence \mathscr{T}^{\prime} is finite because if $W_{i} \supset V$ for some $V \in Z$ then $W_{i}=V_{i}=V$, a contradiction (notice that $V \in Z_{i}$). Thus \mathscr{T} is finite and Z is not meet infinite.

If there exists an infinite set $V \in Z$ then put $\mathscr{T}=\{\{W: W \in Z-\{V\}\} \cup$ $\cup\{V-\{x\}\}: x \in V\}$. Clearly, if $Z_{1}, Z_{2} \in \mathscr{T}, Z_{1} \neq Z_{2}$ then $Z_{1} \wedge Z_{2}=Z$ and \mathscr{T} is infinite since V is infinite.

If $Z=\emptyset$ and $\mathbf{M}=\left\{(i, j): U_{i, j}\right.$ is infinite $\}$ is infinite, then put $\mathscr{T}=\left\{\left\{U_{i, j}\right\}:\right.$ $(i, j) \in \mathbf{M}\}$. Then \mathscr{T} is infinite and for distinct $Z_{1}, Z_{2} \in \mathscr{T}, Z_{1} \wedge Z_{2}=\emptyset=Z$.

Let \mathscr{T} be an infinite subset of $\mathscr{C}\left(U, U_{i, j}: i, j \in \mathbf{N}\right)$ such that for distinct $Z_{1}, Z_{2} \in \mathscr{T}$, $Z_{1} \wedge Z_{2} \neq \emptyset$. Then for every $Z_{i} \in \mathscr{T}-\{\emptyset\}$ there exists an infinite set $V_{i} \in Z_{i}$ and if $Z_{i} \neq Z_{j}$ then $V_{i} \cup V_{j}$ is not a subset of any $U_{m, n}, m, n \in \mathbf{N}$, but every V_{i} is a subset of some $U_{m_{i}, n_{i}}$. Hence if $Z_{i} \neq Z_{j}$ then $\left(m_{i}, n_{i}\right) \neq\left(m_{j}, n_{j}\right)$ and $U_{m_{i}, n_{i}}$ is infinite.

Construction 1.11. Choose countably infinite sets T and U and a covering $\left\{U_{i, j}: i, j \in \mathbf{N}\right\}$ of U such that $U_{i, j}$ is infinite, and if $i+j=m+n$ then $U_{i, j} \cap U_{m, n}=\emptyset$, otherwise the intersection is a singleton. Choose a mapping $\varepsilon: U_{\rightarrow} \rightarrow T$ such that $\varepsilon \mid U_{i, j}: U_{i, j} \rightarrow T$ is a bijection for every $(i, j) \in \mathbf{N} \times \mathbf{N}$ and choose a bijection $\mu: \mathbf{N} \rightarrow T$. Set $\mathbf{K}=\left\{(p, q):(p \in \mathbf{N}),\left(q \in \varepsilon^{-1}\left(\mu\left(\left[\frac{p}{2}\right]\right)\right)\right)\right\}$.

Let \mathfrak{M} be the sublattice of $\mathscr{D}(T) \times \prod_{i \in \mathbb{N}} \mathfrak{B}_{i}$ (for \mathfrak{B}_{i} see Corollary 1.8) generated by the set

$$
\begin{aligned}
S= & \left\{\left(t,\left\{a_{i}\right\}_{i \in \mathbf{N}}\right):(t \in T),\left((i \text { is odd }),\left(\mu\left(\left[\frac{i}{2}\right]\right) \neq t\right) \Rightarrow a_{i}=\emptyset\right),\right. \\
& \left.\left((i \text { is even }),\left(\mu\left(\left[\frac{i}{2}\right]\right) \neq t\right) \Rightarrow a_{i}=X_{\left[\frac{i}{2}\right]}\right),\left(\mu\left(\left[\frac{i}{2}\right]\right)=t \Rightarrow a_{i} \in \mathfrak{B}_{j}\right]\right\} \cup \\
& \cup\left\{\left(\{V\},\left\{a_{i}\right\}_{i \in \mathbf{N}}\right):(T-V \text { is finite }),(\forall i \in \mathbf{N})\left(a_{i}=\emptyset\right)\right\} .
\end{aligned}
$$

It is clear that S is a countable set and therefore \mathfrak{M} is a countable distributive lattice. For $t \in T$ set $\alpha(t)=\left(t,\left\{a_{i}\right\}_{i \in \mathrm{~N}}\right)$ where $\alpha(t) \in S$ and $a_{i}=M_{i}$ if $\mu\left(\left[\frac{i}{2}\right]\right)=t$.

Let \mathfrak{N} be the sublattice of $\mathscr{C}\left(U, U_{i, j}: i, j \in \mathbb{N}\right) \times{ }_{i \in \mathbb{N}} \mathfrak{B}_{i}^{s_{i}}$ with $s_{i}=$ $=\operatorname{card} \varepsilon^{-1}\left(\mu\left(\left[\frac{i}{2}\right]\right)\right)$ generated by the set

$$
\begin{aligned}
Q= & \left\{\left(u,\left\{a_{p, q}\right\}_{(p, q) \in \mathbf{K}}\right):(u \in U),((p \text { is odd }),(q \neq u) \Rightarrow\right. \\
& \left.\Rightarrow a_{p, q}=\emptyset\right),\left((p \text { is even }),(q \neq u) \Rightarrow a_{p, q}=X_{\left[\frac{p}{2}\right]}\right), \\
& \left.\left(q=u \Rightarrow a_{p, q} \in \mathfrak{B}_{\left[\frac{p}{2}\right]}\right)\right\} \cup\left\{\left(\{V\},\left\{a_{p, q}\right\}_{(p, q) \in \mathbf{K}}\right):\right. \\
& (\exists i, j \in \mathbf{N})\left(\left(U_{i, j}-V \text { is finite }\right),\left(V \subset U_{i, j}\right)\right), \\
& \left.\left(\forall(p, q) \in \mathbf{K}\left(a_{p, q}=\emptyset\right)\right)\right\} .
\end{aligned}
$$

Since Q is a countable set, \mathfrak{N} is a distributive lattice. For $u \in U$, put $\beta(u)=$ $=\left(u,\left\{a_{p, q}\right\}_{(p, q) \in K}\right) \in Q$ where $a_{p, q}=M_{\left[\frac{p}{2}\right]}$ if $q=u$.

Lemma 1.12. Let $\left(t,\left\{a_{i}\right\}_{i \in \mathrm{~N}}\right)$ be a point where $t \in \mathscr{D}(T)$ and $a_{i} \in \mathfrak{B}_{[i / 2]}$ for every $i \in \mathbf{N}$. Then $\left(t,\left\{a_{i}\right\}_{i \in \mathrm{~N}}\right)$ is a point of \mathfrak{M} iff the following conditions hold:
a) if i is odd and $a_{i} \neq \emptyset$ then t is greater than or equal to $\mu\left(\left[\frac{i}{2}\right]\right)$;
b) if i is even and $a_{i} \neq X_{[i / 2]}$ then either t is less than or equal to $\mu\left(\left[\frac{i}{2}\right]\right)$ or for every $i \in \mathbf{N}, a_{i}=\emptyset$ and every set $V \in t$ is infinite.

Let $\left(u,\left\{a_{p, q}^{\prime}\right\}_{(p, q) \in \mathbb{K}}\right)$ be a point where $u \in \mathscr{C}\left(U, U_{i, j}: i, j \in \mathbf{N}\right)$ and $a_{p, q} \in \mathfrak{B}_{[p / 2]}$ for every $(p, q) \in \mathbf{K}$. Then $\left(u,\left\{a_{p, q}\right\}_{(p, q) \in \mathbb{K}}\right)$ is a point of \mathfrak{N} iff the following conditions hold:
a) if p is odd and $a_{p, q} \neq \emptyset$ then u is greater than or equal to q;
b) if p is even and $a_{p, q} \neq X_{[p / 2]}$ then either u is less than or equal to q or for every $(p, q) \in \mathbf{K}, a_{p, q}=\emptyset$ and either $u=\emptyset$ or every set $V \in u$ is infinite.

Proof. Easy.
Notice, if ($u,\left\{a_{p, q}\right\}_{(p, q) \in \mathbb{K}}$) is a point of \mathfrak{N} then there exist only finitely many $(p, q) \in \mathbb{K}$ with $a_{p, q}=\emptyset, X_{[p / 2]}$. Hence we get

Corollary 1.13. An element $\left(u,\left\{a_{p, q}\right)_{(p, q) \in \mathbf{K}}\right)$ of \mathfrak{N} is meet-infinite iff either there exists an infinite set $V \subset U$ with $V \in u$ or $u=\emptyset$, or there exists $(p, q) \in \mathbb{K}$ with $X_{[p / 2]} \neq a_{p, q} \supset M_{[p / 2]}$. An element $\left(u,\left\{a_{p, q}\right\}_{(p, q) \in \mathbb{K}}\right)$ of \mathfrak{N} is join-infinite iff there exists $(p, q) \in \mathbf{K}$ with $M_{[p / 2]} \supset a_{p, q} \neq \emptyset$.

Proof. The statement follows from Lemmas $1.4,1.10,1.12$ and the fact that if $Z_{1} \cap Z_{2}=\emptyset$ then either $Z_{1}=\emptyset$ or $Z_{2}=\emptyset$ and if $Z_{1} \cup Z_{2}=X_{i}$ then either $Z_{1}=X_{i}$ or $Z_{2}=X_{i}$ in each \mathfrak{B}_{i}.

Proposition 1.14. Let $\varphi: \mathfrak{M} \rightarrow \mathfrak{M}$ be a one-to-one lattice homomorphism. Then for every $t \in T, \varphi(\alpha(t))=\beta(u)$ where $\varepsilon(u)=t$.

Proof. Set $\varphi(\alpha(t))=\left(u^{t},\left\{a_{p, q}^{t}\right\}_{(p, q) \in K}\right)$. Since $\alpha(t)$ is join-infinite, we get according to Corollary 1.13 and Lemma 1.12 that there exists $\dot{u}^{t} \in U$ such that either $u^{t} \leqq \bar{u}^{t}$ or $u^{t} \geqq \bar{u}^{t}$.
a) First we prove that $u^{t}=\bar{u}^{t}$. Assume the contrary, i.e. for some $t_{0} \in T$, $u^{t_{0}} \neq \bar{u}^{t_{0}}$. We know that there exists a finite set $W \subset U$ with $W \in u^{t_{0}}$. Now if $u^{t_{0}}<\bar{u}^{t_{0}}$ (in the case $u^{t_{0}}>\bar{u}^{t_{0}}$, the proof is analogous) then put $L_{t}=\left\{u \in U: u>u^{t}\right\}$ for $t \in T$. Clearly, L_{t} is a finite set for every $t \in T$. Now there exists a finite subset $T^{\prime} \subset T$ with $\bigcap_{t \in T} L_{t}=\bigcap_{t \in T^{\prime}} L_{t}$. Then $\vee\left\{\alpha(t): t \in T^{\prime}\right\}$ is join-infinite and therefore $\bigcap_{t \in T} L_{t} \neq \emptyset$ (see Corollary 1.13 and Lemma 1.12). For $t \in T-T^{\prime}$ put

$$
\begin{aligned}
E_{t}=\{ & \left\{\left(t,\left\{a_{i}\right\}_{i \in \mathrm{~N}}\right) \in \mathfrak{M}:\left(\left(\mu\left(\left[\frac{i}{2}\right]\right)=t\right),(i \text { is even }) \Rightarrow a_{t}=M_{[i / 2]}\right),\right. \\
& \left.\left(i \text { is odd }\left(\exists x \in M_{[i / 2]}\right)\left(a_{i}=M_{[i / 2]}-\{x\}\right)\right)\right\} .
\end{aligned}
$$

Hence, if e_{1}, e_{2} are distinct points of E_{t} then $e_{1} \vee e_{2}=\alpha(t)$ and $e_{1} \vee c \neq e_{2} \vee c$, $e_{1} \wedge c=e_{2} \wedge c$ where $c=\bigvee\left\{\alpha(t): t \in T^{\prime}\right\}$. For $w \in \mathfrak{M}$, let $\varphi(w)=\left\{\left(v^{w}, b_{p, q}^{w}\right)\right\}_{(p, q) \in \mathbf{K}}$. Since no element of $\mathscr{C}\left(U, U_{i, j}: i, j \in \mathbf{N}\right)$ is join-infinite, the set $\bar{E}_{t}=\left\{e \in E_{t}: v^{e}=u^{t}\right\}$ is infinite for every $t \in T-T^{\prime}$ (because for infinitely many $e_{1}, e_{2} \in E_{t}, v^{e_{1}}=v^{e_{2}}$ and then necessarily $v^{e_{1}}=u^{t}$). Hence for $e \in \bar{E}_{t}, v^{e V c}=v^{\alpha(t) V c}$. Now, for distinct t_{1}, $t_{2} \in T-T^{\prime}$ and for $e_{1} \in \bar{E}_{t_{1}}, e_{2} \in \bar{E}_{t_{2}}$, we have $e_{1} \wedge e_{2}=\alpha\left(t_{1}\right) \wedge \alpha\left(t_{2}\right)$. Thus, for every distinct points $t_{1}, t_{2} \in T-T^{\prime}$,
(a) $e_{1} \vee c \neq e_{2} \vee c$ for any $e_{1}, e_{2} \in \bar{E}_{t_{1}}$ and $v^{e_{1} \vee c}=v^{e_{2} \vee c}$,
(b) $e \wedge \bar{e}=\alpha\left(t_{1}\right) \wedge \alpha\left(t_{2}\right)$ for every $e \in \bar{E}_{t_{1}}, \bar{e} \in \bar{E}_{t_{2}}$.

Since for every $t \in T-T^{\prime}$ there exists only a finite subset $\mathbf{K}_{t} \subset \mathbf{K}$ such that $(p, q) \in \mathbf{K}_{t}$ whenever $b_{p, q} \neq \emptyset, X_{[p / 2]}$ and $\left(v^{\mathrm{eV} c},\left\{b_{p, q}\right\}_{(p, q) \in \mathrm{K}}\right) \in \mathfrak{N}$ where $e \in E_{t}$, therefore there exists $\left(p_{t}, q_{t}\right) \in \mathbf{K}$ and an infinite set $\tilde{E}_{t} \subset \bar{E}_{t}$ such that $b_{p_{t}, q_{t}}^{e_{1} v_{c}} \neq b_{p_{t}, q_{t}}^{e_{2}} \vee_{c}$ whenever e_{1}, e_{2} are distinct points of \tilde{E}_{t}. Since $\alpha(t) \wedge \alpha\left(t^{\prime}\right) \leqq e \vee c$ for every $t, t^{\prime} \in T-T^{\prime}$ and $e \in E_{t}$, we get that $b_{p_{t}, q_{t}}^{\alpha(t) \wedge\left(t^{\prime}\right)}=\emptyset$ (see Lemma 1.6) and since in $\mathfrak{B}_{i} Z_{1} \cap Z_{2}=\emptyset$ implies either $Z_{1}=\emptyset$ or $Z_{2}=\emptyset$, we have that for every $t^{\prime} \in T-T^{\prime}, t \neq t^{\prime}$ and every $e \in \bar{E}_{t^{\prime}}$, $b_{p_{t}, q_{t}}^{e}=\emptyset$. Since $q_{i} \in \bigcap_{i \in T} L_{t}$ for every $\bar{t} \in T-T^{\prime}$ and since $\bigcap_{t \in T} L_{t}$ is finite, we get a contradiction. Hence $u^{t_{0}}=\bar{u}^{t_{0}}$.
b) Now, we prove that $a_{\bar{p}, u}=M_{[\bar{p} / 2]}$. Assume the contrary, i.e. $a_{\bar{p}, u}=Z \neq M_{[\bar{p} / 2]}$. If \bar{p} is odd then for $t^{\prime}, t^{\prime \prime} \in T, t^{\prime} \neq t^{\prime \prime} \neq t, t^{\prime} \neq t$, the element $e=\left(\alpha(t) \vee \alpha\left(t^{\prime}\right)\right) \wedge$ $\wedge\left(\alpha(t) \vee \alpha\left(t^{\prime \prime}\right)\right)$ is both meet- and join-infinite. On the other hand, if $\varphi(e)=$ $=\left(v^{e},\left\{b_{p, q}^{e}\right\}_{(p, q) \in K}\right)$ then $b_{p, q}^{e}=\emptyset$ or $X_{[p / 2]}$ if $(p, q) \neq(\bar{p}, u)$ and $b_{\bar{p}, u}^{e}=Z$, which contradicts Lemmas 1.4 and 1.5. If \bar{p} is even, the proof is analogous. Thus $a_{p, u}=M_{[p / 2]}$.
c) Now we prove that $\varepsilon\left(u^{\prime}\right)=t$. Let i_{0} be an odd natural number with $\mu\left(\left[\frac{i_{0}}{2}\right]\right)=t$, let p_{0} be an odd natural number with $\mu\left(\left[\frac{p_{0}}{2}\right)\right]=\varepsilon\left(u^{t}\right)$. It suffices to prove that $i_{0}=p_{0}$. Define $\psi: \mathfrak{B}_{i_{0}} \rightarrow \mathfrak{B}_{p_{0}}$ as follows: $\psi(Z)=b_{p, u^{e}}^{e_{Z}}$ where $e_{Z}=\left(t,\left\{a_{i}\right\}_{i \in \mathrm{~N}}\right)$ and if $\mu\left(\left[\frac{i}{2}\right)\right]=t$ and i is odd then $a_{i}=Z$, while if i is even then $a_{i}=M_{[i / 2]}$ (recall that $\left.\varphi\left(e_{Z}\right)=\left(v^{e_{\mathbf{z}}},\left\{b_{p, q}^{e_{z}}\right\}_{(p, q) \in \mathrm{K}}\right)\right)$. It is clear that ψ is a lattice homomorphism (it is a composition of the embedding of $\mathfrak{B}_{i_{0}}$ into \mathfrak{M}, of φ and of the projection from \mathfrak{M} to $\mathfrak{B}_{p_{0}}$). We shall prove that ψ is one-to-one. By Lemma 1.6 it suffices to prove that $\psi \mid \mathfrak{I t}_{i_{0}}$ is one-to-one. First we shall prove that for every $Z \in \mathfrak{A}_{i_{0}}, v^{\boldsymbol{e}_{\mathbf{z}}}=u^{\mathbf{t}}$. Hence, it follows immediately that ψ is one-to-one and by Corollary 1.8, $i_{0}=p_{0}$. Put

$$
\begin{aligned}
E_{1}= & \left\{\left(t,\left\{a_{i}\right\}_{i \in \mathrm{~N}}\right):\left(\left(\mu\left(\left[\frac{i}{2}\right]\right)=t\right),(i \text { is even }) \Rightarrow a_{i}=M_{[i / 2]}\right),\right. \\
& \left.\left(i \text { is odd } \Rightarrow\left(\exists x \in M_{[i / 2]}\right)\left(a_{i}=M_{[i / 2]}-\{x\}\right)\right)\right\}, \\
E_{2}= & \left\{\left(t,\left\{a_{i}\right\}_{i \in \mathrm{~N}}\right):\left(\left(\mu\left(\left[\frac{i}{2}\right]\right)=t\right),(i \text { is even }) \Rightarrow a_{i}=M_{[i / 2]}\right),\right. \\
& \left.\left(i \text { is odd } \Rightarrow\left(\exists x \in X_{[i / 2]}-M_{[i / 2]}\right)\left(a_{i}=M_{[i / 2]} \cup\{x\}\right)\right)\right\} .
\end{aligned}
$$

Clearly, if we verify that for $e \in E_{1} \cup E_{2}, v^{e}=u^{t}$, then for every $Z \in \mathfrak{A r}_{i_{0}}, v^{e_{\mathbf{z}}}=u^{t}$. Since for any distinct $e_{1}, e_{2} \in E_{1}\left(e_{1}, e_{2} \in E_{2}\right), e_{1} \vee e_{2}=\alpha(t)\left(e_{1} \wedge e_{2}=\alpha(t)\right.$, resp.) we get that there exists at most one $e_{1} \in E_{1}$ (or $e_{2} \in E_{2}$) with $v^{e_{1}} \neq u^{t}$ (or $v^{e_{2}} \neq u^{t}$) because for $u \in U$, if $u_{1} \vee u_{2}=u$ (or $u_{1} \wedge u_{2}=u$) then either $u_{1}=u$ or $u_{2}=u$. Then necessarily $v^{e_{1}} \leqq u^{t} \leqq v^{e_{2}}$. Choose a homomorphism $\sigma: \mathscr{D}(T) \rightarrow \mathfrak{M}$ such that $\sigma(t)=\alpha(t)$ for every $t \in T$ (clearly, such a homomorphism exists). Now we can choose $t^{\prime} \dot{\mathscr{D}}(T)$ such that $t^{\prime}>t$ and $v^{\sigma\left(t^{\prime}\right)}$ and $v^{e_{2}}$ are incomparable. Then $\sigma\left(t^{\prime}\right) \wedge e_{2}=\alpha(t)$ (observe that if $\sigma\left(t^{\prime}\right)=\left(t,\left\{a_{i}\right\}_{i \in N}\right)$ then for an odd i with $\left.\mu\left(\left[\frac{i}{2}\right]\right)=t, a_{i}=M_{[i / 2]}\right)$, but $\varphi\left(\sigma\left(t^{\prime}\right)\right) \wedge \varphi\left(e_{2}\right) \neq \varphi(\alpha(t))$, a contradiction. Thus for every $e \in E_{2}, v^{e}=u^{t}$. Analogously, we prove that $v^{e_{1}}=u^{t}$. The proof is concluded.

Theorem 1.15. For every natural number i, 'there exist pairwise disjoint sublattices $\mathfrak{N}_{0}, \mathfrak{N}_{1}, \ldots, \mathfrak{N}_{i-1}$ of the lattice \mathfrak{N} which are isomorphic to \mathfrak{N}, but there are not infinitely many pairwise disjoint sublattices $\mathfrak{N}_{0}, \mathfrak{N}_{1}, \ldots$ of \mathfrak{M} which are. isomorphic to \mathfrak{M}.

Proof. Let $\left\{\varphi_{k}\right\}_{k \in N}$ be a sequence of one-to-one lattice homomorphisms from \mathfrak{M} to \mathfrak{M}. Then for arbitrary $k \in \mathbb{N}$ and $t \in T, \varphi_{k}(\alpha(t))=\beta(u)$ where $\varepsilon(u)=t$. Further,
for every finite set $T^{\prime} \subset T$ there exists a point $\gamma\left(T^{\prime}\right) \in \mathfrak{M}$ such that $\gamma\left(T^{\prime}\right) \leqq \alpha(t)$ iff $t \in T-T^{\prime}$. On the other hand, if $U^{\prime} \subset U$ is an infinite set and $U^{\prime}-U_{i, j} \neq \emptyset$ for any $i, j \in \mathbf{N}$, then $e \leqq \beta(u)$ for every $u \in U^{\prime}$ iff $e=\left(\emptyset,\left\{a_{p, q}\right\}_{(p, q) \in \mathbf{K}}\right)$ where $a_{p, q}=\emptyset$ for every $(p, q) \in \mathbf{K}$. Therefore there exist $i_{k}, j_{k} \in \mathbf{N}$ with $\varphi_{k}(\alpha(t))=\left(u^{t},\left\{a_{p, q}\right\}_{(p, q) \in \mathbf{K}}\right)$ where $\left\{u^{t}\right\}=\varepsilon^{-1}(t) \cap U_{i_{k}, j_{k}}$ for every $t \in T$. Therefore there exist $k_{1} \neq k_{2}$ with $i_{k_{1}}+j_{k_{1}} \neq i_{k_{2}}+j_{k_{2}}$. Put $\quad\{u\}=U_{i_{k 1}, j_{k 1}} \cap U_{i_{k 2}, j_{k_{2}}} \varepsilon(u)=t$. Then $\quad \varphi_{k_{1}}(\alpha(t))=\varphi_{k_{2}}(\alpha(t))$ and $\left\{\varphi_{k}(\mathfrak{M})\right\}_{k \in \mathbf{N}}$ are not pairwise disjoint.

Let k be a natural number. For every $j \leqq k$ define $\psi_{j}: \mathscr{D}(T) \rightarrow \mathscr{C}\left(U, U_{i, j}: i, j \in \mathbf{N}\right)$ as follows: $\psi_{j}(Z)=\left\{\varepsilon^{-1}(V) \cap U_{(k-j), j}: V \in Z\right\}$. Clearly, the ψ_{j} 's are one-to-one homomorphisms and $\left\{\psi_{j}(\mathscr{D}(T))\right\}_{j \leqq k}$ are pairwise disjoint. Define $\varphi_{j}: \mathfrak{M i} \rightarrow \mathfrak{N}$, $\varphi_{j}\left(t,\left\{a_{i}\right\}_{i \in \mathbf{N}}\right)=\left(\psi_{j}(t),\left\{b_{p, q}\right\}_{(p, q) \in \mathrm{K}}\right)$ where $b_{i, \psi_{j}(t)}=a_{i}$. Then $\left\{\varphi_{j}: j \leqq k\right\}$ is a family of pairwise disjoint one-to-one lattice homomorphisms. The proof is concluded.
2. Let us formulate the above problem in a general category with a class \mathfrak{M} of its morphisms.

Definition. Let \mathscr{K} be a category with a cosingleton \emptyset. Let $f, g: A \rightarrow B$ be morphisms of \mathscr{K}. We shall say that f, g are disjoint if

is a pull back.
Definition. Let \mathscr{K} be a category, let \mathfrak{M} be a class of its morphisms. A pair (A, B) of objects is said to have the property $\left(S_{\mathfrak{m}}\right)$ if for every $n=1,2, \ldots$ there exist n pairwise disjoint \mathfrak{M}-morphisms from A to B, but there do not exist infinitely many such morphisms. We say that \mathscr{K} fulfils Sekanina's axiom with respect to \mathfrak{M} if no pair of objects has the property ($S_{\mathfrak{M}}$).

Now we can formulate the foregoing result as follows: The pair ($\mathfrak{M}, \mathfrak{N}$) of countable distributive lattices has the property ($S_{\mathcal{A}}$) with \mathscr{M} the class of all monomorphisms.

Now we establish some other results:
Theorem 2.1. The category of sets, the category of vector spaces and the category of unary algebras with one operation fulfil Sekanina's axiom with respect to \mathfrak{M} for every class \mathfrak{M} containing all monomorphisms.

Proof. Easy.

Theorem 2.2. The category of complete, completely distributive Boolean algebras fulfils Sekanina's axiom with respect to the class of all monomorphisms.

Proof. The statement follows immediately from the well-known fact that every complete, completely distributive Boolean algebra is the algebra of all subsets of some set.

Theorem 2.3. The category of graphs or unary algebras with α operations $(\alpha$ is a cardinal, $\alpha>0)$ fulfils Sekanina's axiom with respect to the class of all summands.

Proof. The statement follows from the fact that $f: A \rightarrow B$ is sumand iff A is isomorphic to the sum of some components of B.

Now we recall that a monomorphism f in a category \mathscr{K} is an extremal monomorphism if any epimorphism e is an isomorphism whenever $f=g \circ e$ for some morphism g of \mathscr{K}. In the category of graphs or topological spaces extremal monomorphisms are embeddings to full subgraphs or subspaces.
I. Korec showed that there exists a pair (A, B) of countable graphs or countable unary algebras with two operations which have the property $\left(S_{\mathfrak{m}}\right)$ where \mathfrak{M} is the class of all extremal monomorphisms.

Theorem 2.4. There exists a pair (A, B) of connected, countable, bipartite graphs with the property $\left(S_{\mathfrak{N}}\right)$ where \mathfrak{M} is an arbitrary class of monomorphisms containing all extremal monomorphisms.

Theorem 2.5. There exists a pair (A, B) of continua with the property $\left(S_{\mathfrak{P}}\right)$ where A is a subcontinuum of the plane, B is a subcontinuum of the cube and \mathfrak{M} is an arbitrary class of monomorphisms containing all extremal monomorphisms.

Proof of Theorems 2.4 and 2.5. Put $X=\{a, b, c\} \cup(\mathbf{N} \times\{0,1\})$,

$$
\begin{aligned}
R=\{ & \{(0,0), a),((0,0), b),((0,0), c),(a,(0,0)),(b,(0,0)),(c,(0,0))\} \cup \\
& \cup\{((i, 0),(i, 1)),((i, 1),(i, 0)): i \in \mathbf{N}\} \cup \\
& \cup\{((i, 0),(i+1,0)),((i+1,0),(i, 0)): i \in \mathbf{N}\} .
\end{aligned}
$$

Fig. ?

Clearly, (X, R) is a connected, countable bipartite graph. Choose a bijection φ from $\mathbf{L}=\{(x, y, z, v):(x, y, z, v \in \mathbf{N}),(x+y \neq z+v)\}$ to \mathbf{N}. Put $(Y, S)=(X, R) \times$ $\times(\mathbf{N} \times \mathbf{N}, \Delta) / \sim$ where $(\mathbf{N} \times \mathbf{N}, \Delta)$ is the smallest reflexive relation on $\mathbf{N} \times \mathbf{N}$ and \sim is the smallest equivalence relation on $X \times \mathbf{N} \times \mathbf{N}$ with

$$
(k, 1, x, y) \sim(k, 1, z, v) \quad \text { whenever } \quad \varphi(x, y, z, v)=k
$$

Clearly, (Y, S) is a connected, countable graph. To verify that it is bipartite, it suffices to put $M=\{(k, i, x, y) \in Y: k+i$ is even $\} / \sim$. Let k be a natural number, $i \leqq k$. Define $f_{i}^{k}:(X, R) \rightarrow(Y, S)$ as follows: $f_{i}^{k}(x)$ is the \sim-class containing $(x, k, k-i)$. Clearly, $f_{i}^{k}, i=0,1, \ldots, k$, are pairwise disjoint extremal monomorphisms. Let $\left\{f_{i}\right\}$ be a sequence of one-to-one morphisms from (X, R) to (Y, S). Since card $\{y:(y,(0,0)) \in R\}=4$, we get that for every i there exists $\left(p_{i}, q_{i}\right) \in \mathbf{N} \times \mathbf{N}$ such that $f_{i}(0,0)$ is the \sim-class containing ($0,0, p_{i}, q_{i}$). Hence we easily get that $f_{i}(j, 0)$ is the \sim-class containing $\left(j, 0, p_{i}, q_{i}\right)$ and $f_{i}(j, 1)$ is the \sim-class containing $\left(j, 1, p_{i}, q_{i}\right)$. Further, there exist i_{0}, i_{1} with $p_{i_{0}}+q_{i_{0}} \neq p_{1}+q_{i_{1}}$. Let $k=$ $=\varphi\left(p_{i_{0}}, q_{i_{0}}, p_{i_{1}}, q_{i_{1}}\right)$. Then $f_{i_{0}}(k ; 1)=f_{i_{1}}(k, 1)$ and therefore $f_{i_{0}}$ and $f_{i_{1}}$ are not disjoint. If we set $A=(X, R), B=(Y, S)$, then the proof of Theorem 2.4 is concluded.

Let K be a circle with the usual topology. Choose two distinct points $a, b \in K$. Let $\dot{S}=\{\{x, y\}:(x, y) \in R\}$ be equipped with the discrete topology where $R \subset X \times X$ is the relation defined above. Let P_{1} be the one-point compactification of $K \times S / \sim$ with \sim standing for the smallest equivalence relation such that:
$(a,\{x, y\}) \sim(a,\{x, z\}) \quad$ for every $\quad\{x, y\},\{x, z\} \in S$ with $\quad x \in\{(i, j): i+j$ is even $\}$;
$(b,\{x, y\}) \sim(b,\{x, z\})$ for every $\{x, y\},\{x, z\} \in S$ with $x \in\{(i, j): i+j$ is odd $\}$.
Clearly, P_{1} is a subcontinuum of the plane. We shall assume that \mathbf{N} has the discrete topology. Let P_{2} be the one-point compactification of $P_{1} \times \mathbf{N} \times \mathbf{N} / \approx$ where \approx is the smallest equivalence relation such that if $\varphi(x, y, z, v)=k$ then

$$
\begin{aligned}
& ((a,\{(k, 0),(k, 1)\}], x, y) \approx([a,\{(k, 0),(k, 1)\}], z, v) \quad \text { if } k \text { is odd, } \\
& ([b,\{(k, 0),(k, 1)\}], x, y) \approx([b,\{(k, 0),(k, 1)\}], z, v) \text { if } k \text { is even, }
\end{aligned}
$$

where $[x]$ denotes the \sim-class containing x. Clearly, P_{2} is a subcontinuum of the cube. The proof that $\left(P_{1}, P_{2}\right)$ has the property $\left(S_{\mathfrak{m}}\right)$ is analogous to that of the similar statement for (X, R) and (Y, S). It suffices to realize that if $f: K \rightarrow K$ is one-to-one then f is a homeomorphism.

Theorem 2.6. There exists a pair (A, B) of 0 -dimensional compact Hausdorff spaces on sets of power \aleph_{1}, which has the property $\left(S_{\mathfrak{M}}\right)$ where \mathfrak{M} is the class of all summands.

Proof. Define topological spaces S_{n} by induction as follows: S_{1} is the onepoint compactification of a countable discrete set; S_{n} is the one-point compactification of $S_{n-1} \times N$ where N has the discrete topology. Put R_{n} to be the one-point compactification of κ_{1} copies of S_{n}. Let T_{1} be the one-point compactification of the disjoint union of R_{1}, R_{2}, \ldots Clearly, T_{1} is a 0 -dimensional compact Hausdorff space on a set of power \aleph_{1}.

Let U be a countable set and let $\left\{U_{i, j}: i, j \in \mathbf{N}\right\}$ be a cover of U such that every $U_{i, j}$ is infinite and $U_{i, j} \cap U_{m, n}=\emptyset$ if $i+j=m+n, U_{i, j} \cap U_{m, n}$ is infinite if $i+j \neq m+n$. Choose a mapping $\psi: U \rightarrow\{1,2,3, \ldots\}$ such that $\psi \mid U_{i, j}$ is a bijection from $U_{i, j}$ onto $\{1,2,3, \ldots\}$ for every $i, j \in \mathbf{N}$.

Let T_{2} be the one-point compactification of $T_{1} \times \mathbf{N} \times \mathbf{N} / \approx(\mathbf{N} \times \mathbf{N}$ has the discrete topology) where \approx is the smallest equivalence relation such that $(x, i, j) \approx(x, m, n)$ if $x \in R_{p}$ and $p \in \psi\left(U_{i, j} \cap U_{m, n}\right)$. Clearly, T_{2} is a 0 -dimensional compact Hausdorff space on a set of power \aleph_{1}.

Let k be a natural number, $i=0,1, \ldots, k$. Define $f_{i}^{k}: T_{1} \rightarrow T_{2}$, by $f_{i}^{k}(x)$ being the \approx-class containing $(x, k, k-i)$. It is easy to verify that f_{i}^{k} is a summand and that f_{i}^{k} and f_{j}^{k} are disjoint whenever $i \neq j$.

Let $\left\{f_{i}: T_{1} \rightarrow T_{2}\right\}$ be a sequence of summands. Then for every i, there exist $j_{i}, k_{i} \in \mathbf{N}$ and $i_{1}, i_{2}, \ldots, i_{n} \in \mathbf{N}$ such that $f_{i}\left(T_{1}-\bigcup_{m=1}^{n} R_{i_{m}}\right) \subset T_{1} \times\left\{\left(j_{i}, k_{i}\right)\right\} / \approx$, therefore if $j_{i_{0}}+k_{i_{0}} \neq j_{i_{1}}+k_{i_{1}}$, we get that $\operatorname{Im} f_{i_{0}} \cap \operatorname{Im} f_{i_{1}} \neq \emptyset$ and thus $f_{i_{0}}$ and $f_{i_{1}}$ are not disjoint. On the other hand, there exist i_{0}, i_{1} such that either $j_{i_{0}}+k_{i_{0}} \neq$ $\neq j_{i_{1}}+k_{i_{1}}$ or $\left(j_{i_{0}}, k_{i_{0}}\right)=\left(j_{i_{1}}, k_{i_{1}}\right)$. Hence if we set $A=T_{1}, B=T_{2}$, the proof of the theorem is complete.

[^0]
[^0]: FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY
 MALOSTRANSKE NAMESTI 25
 11800 PRAHA 1, CZECHOSI,OVAKIA

