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On curvature measures

L. L. STACHO

1. Introduction

It is well-known that Steiner’s famous polynomial formula for the volume
function of convex parallel sets is based on the following heuristical idea:

If A is a convex open subset of R” (the Euclidean n-space) whose boundary
04 is a C? submanifold of (n—1)-dimensions of R” and ¢=>0 then for its parallel
set (of radius @) A,={ccR": dist (x, A)<¢} we have that 3(Aa) is also an (n—1)-
dimensional C®-submanifold of R", and denoting its infinitesimal surface piece
by dF one can find the following relation between the (n— 1)-dimensional
Hausdorff measures of dF and its projection on A (the closure of A): 1)

vol,_ydF = (14+ 9%y ... (1+0x,-,) vol,_,dF° with dF°= przdF

where %, ..., %,_, denote the values of the main curvatures of dA4 at the place dF°.

Hence one easily deduces that for all bounded Borel sets QcR” the n-dimen-
sional Hausdorff measure (which, by definition, coincides with Lebesgue measure
on R") of the figures' T(Q, 0)=AN{tcR": pr;tcQ} is a polynomial of degree
n in the variable g, of the form

6] vol, T(Q, ¢) = Z(') a;(Q)¢’
=
where for the coefficients we have

ay(Q) = vol,@N4, a,(Q) = vol,_,0N a4,
and

1
a;@= [+ 3  [xu@dol,_,p)
Qna4 J ICS,&;'!TI) iel
T =]
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1) For any closed subset B of R" and for x €R" we define prpx={b€B: dist (x, b)=dist (x, B)}.
For GCR™ we define prpG= %JG prpx.
: x
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for j=2,...,n (card=cardinality); s,(p), ..., #,_,(p) are the main curvatures of
04 at the point p€dA.

This result was considerably generalized by FeDERER [1): If a closed set
ACR" is such that

reach A = sup {6 = 0: Vx€4,, card pryx =1} =0 (with 4, = 4),

then there exist (uniquely determined) signed Borel measures ay, ..., a, over R"
such that (1) holds for all bounded Borel subsets Q of R" and for all ¢ with
O<p=<reach 4.

Our purpose in the present article is to prove a result analogous to this
theorem which applies to every 4cR” and ¢=>0 and which allows us to extend
the concept of curvature measure to the boundary of every 4 cR” in a reasonable
manner.

2. Summary and alternative formulation of some of Federer’s arguments

Theorem A. Let A be a non-empty closed subset of R" and f denote the func-
tion x—dist (x, A) on R™\A. The function f is totally derivable exactly at those
points of R™\A which admit a unique projection on A, and for such a point x,
grad f (x) coincides with the unit vector (x—pr ,x)/dist (x, A). The function f satisfies
a Lipschitz condition of order one with (exact) Lipschitz constant 1, and the set
of the singular points Z={xcR"™\A: card pr ,x=>1} has vol,-measure 0. Removing
Z from R™A, the remaining set Q=R™\(AUZ)={xcR"™\4: card pr,x=1} can
de uniquely decomposed into a family Q of pairwise disjoint straight line segments so -
that for any member L of Q there exists a (unique) point p in 0A such that
{p}=pr,L=LNJA4.

Proof. See [2] p- 93, [3] pp. 271 and 216.

Definition. We shall call the members of the family Q described in Theorem
A the prenormals of the set 4. Le. L(CR") is a prenormal of A if there exist a point
pEdA and a unit vector k(€R") such that L={xER"\A: pryx={p} and
(x—p)/lx~pli=k}.

Definition. A mapping f will be called C'*-smooth if it is defined on some
open subset Q of some space R® with f€CX(Q) (i.e. if f has a continuous gradient
on Q) and its gradient locally satisfies a Lipschitz condition (i.e. for all compact
subsets K of ‘Q, Lip (grad f|z)< ).

Since the composition of C'*-mappings is-also a C1*-mapping, it makes sense
to speak of k(=n)-dimensional C'*-submanifolds of the space R". In particular,
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F is an (n—1)-dimensional C**-submanifold of R” if, for any y€F, one can find
an open neighborhood G of the point y so that for some C'*-smooth function
/: G—~R with nonvanishing gradient and a suitable constant y we have
GNF={x: f(x)=v}.

Theorem B. If ACR” is a closed set with 0A=0 such that g,=reach A=0
then the function f(.)=dist(.,4d) is Cl*-smooth on the domain G=
= {xcR": O<dist (x, A)<go}. The figures d(d)={x:dist(x, d)=0} (O<o<gy)
are (n—1)-dimensional C*-submanifolds of R". By setting B= 4, , we have
reach B=¢; and 3(AQ)=3(B2_‘,1) whenever 0<g-=9,=g9,, that is, also introducing
parallle sets of negative radius®) we have 3(A0)=8[(Ael)e_ol] for all 0<g<o. The
main curvatures %,(p), ..., %,_.(p) of the hypersurface ((n—1)-dimensional C*-
submanifold) M 53(‘491) of R" oriented by its normal grad f exist at vol,_;-almost
every point pEM and their elementary symmetrical polynomials, i.e. the functions
()4 F, (s ooy 23(). . %, _4(), are vol,_,-measurable. Further, we have
—1/(gg—0)=x;=1/g, (i=1, ...,n—=1). If T is any subset of R" formed by the
union of some prenormals of the set A such that TN Ag, is vol,-measurable then, for
0<g<reach 4,

()] vol, ., TNd4, = [ [1+(e—e)xi] ... [1+(e—0)x,—ild vol,_,
TNnM
and
e
) vol, N4, = [ [ [1+G—e)wl... 1+ —e)x,-1]d vol,_, dr.
0 TNM

Proof. See sections “Sets with positive reach’ and “Curvature measures” in [1].

We remark that the connection between (2) and (27) is established by the
following more general observation:

Lemma 1. If 0=#ACR" and T is a vol,-measurable subset of R™\A then
3) vol,,T=f (vol,—y TN d(A4,))de.
0
Proof. See e.g. {3] p. 271.

) For 6<0 and ACR”, 4s={x€R": dist(x, R"\4)> —4}.

13
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3. A separability argument

Definition. We shall call a subset S8 of the product space R*XR" a
generalized oriented surface (GOS) if for all (y, k)€S we have ||k[|=1 and one can
find an >0 (depending on (y, k)) so that

dist (y, y+ok) = ¢ = dist(y', y+pok) forany (y,k')ES and O0=p=¢

If 4 is a non-empty proper subset of R” then let d+ A4 denote the figure in
R"XR" defined by

d*A ={(y,k): y€04, |kl =1 and 3L prenormal of 4 L>y+(0, length L) - k}.
It is clear from Theorem A that all the sets d* 4 are GOS-s.

Lemma 2. Suppose that A is a subset of non-empty compact boundary in R"
with go=reach 4=>0. Then

a) the figure d* A is compact (with respect to the topology of R*XR")

b) the mapping @:(d*A)X(O, g)~R", D((y.k), 0)=y+e¢-k is a homeo-
morphism between the sets (d* A)X(0, g,) and AQO\Z, and ®(d*AX{e}) =04,
whenever 0<g<g,.

Proof. a) The GOF d*4 is bounded in R"XR" because it is contained in
the product of the compact figures 94 and dB"={k€R":[k|=1}. On the other
‘hand, it is also closed since in case of any sequence {(y,k;): i€cl}cd* A with
(y;» k) ~(y, k) we necessarily have y€dA4 and |k|=1, and for O<g<g, the
equalities  o=dist (y;+0-k;, y;)=dist (y;+¢-k;, 04)=dist (y;+¢-k;, A) imply
(by continuity of the function dist (., 4)) e=dist (y+¢-k, y)=dist y+o-k, A)
i.e, y€pr (y+ok). This shows that {y}=pr,(y+¢k) (since g<reach 4). There-
fore, by taking L={y+¢-k: 0<g<o and {y}=pr,(y+gk)}, we obtain from
Theorem A that L is a prenormal of 4 and L=y+(0, length L)k i.e. (y, k)€d* A.

b) By Theorem A and the definition of d* A4, the condition reach 4=g,>=0
means that the mapping ¢ is one-to-one. By fixing an arbitrary pair g,, ¢, such
that 0<g,<g@,<gy, we see that the figure D(g;, 0)=(d* 4A)X[g,, 0] is a com-
pact subset of dom @ (since the GOS d* 4 is compact). Since ¢ is obviously con-
tinnous, @{D(g,, ¢,) is a homeomorphism (because the inverse of any continuous
function with compact domain between Hausdorff spaces is coontinuous). But
then the inverse of & is necessarily continuous over the open set A ez\A—«,l con-
tained in  &(D(g;, ¢2)). Thus the relation range ¢=4,\A= U (4, \4,)
immediately implies continuity of &~1. d<er<ez<eo

Lemma 3. Let A, 0y, @ be defined as in the previous lemma with the same
assumptions. Then there exists a Borel measure pu and there are u-measurable func-
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tions ag, ...,a,_, over dt A such that for each O<gp<g, and vol _,-measurable
Fco(A4,), we have
@) vol, yF= [1g(y+a-k) 2 a;(y, K)o’ du(y, k).

a‘a
(Here 1.(.) stays for the characteristic function of F.)

Proof. Fix (arbitrarily) a value O=<g,<g,. Consider the mapping ¥ ()=
=(.,@). Observe that ¥:d*A4«d(4,) and that &S(¥71(), 0): 9(4,)~9(4,)
for 0<p<g, are homeomorphisms. Therefore the measure

4) du = dvol,_j0y 3)

is a Borel measure on d*A. Further, if %,, ..., %, , denote the main curvatures
of the hypersurface M=0d(4,) oriented by its normal directed outward from

A, then the functions 4y, ...,a,_, defined implicitly by

-1

) I+G—e) - (y+0i0)] ... [1+(t—0) - #p-1(¥+ 1 K)] Ej=20 a;(y, k)7l
(for 0 <t < g, (y, k)€ d* 4)

are pu measurable (cf. Theorem B). Now let T(F) denote the union of those pre-
normals of 4 which intersect F (the surface piece of d(4,) occurring in (4)). Then
we have T(F)NA, =®(¥(F)(0, g)). This shows that for any Borel measur-
able F, the figure T(F)ﬁAQo is also Borel measurable. Then performing the sub-
stitutions (5”) and (5”) in the right hand side of (4), we obtain from Theorem B
(cf. also (2)) that (4) holds for any Borel subset F of 0(4,). Hence we derive (4)
for any vol, , measurable F from the Borel regularity of the measures vol,_,
and p, respectively.

Remark. a) It is clear that the system p, ay, ..., a,_, is not uniquely determined.
However, it is discovered from the proof that the measures dv=a,dy, ..., dv,_,=
=a,_,dp depend only on the GOS d*A4 (in the sence that if A and A® are
sets in R" of positive reach and (u®, a®, ..., a® ) are systems satisfying (4) for
A=A9 (i=1,2), respectively, then for the measures dV=aPdu® (i=1,2,;
j=0,...,n—1) we have

v(l)l(d+A(D)ﬂ (d+A(2)) = dv(2)|(d+A(1))ﬂ (d+A(2)) (G=0,..,8=0.
b) For any (y, k)€d™* A4, the roots of the polynomial 2 a;(y, k)¢’ are real

(cf. (57) and lie outside of the open interval (0, o) (cf w1th the relations
—1/(0o— Q) =%, ..., ®,_y=1/g, in Theorem B).

®) The measure vol,_;o ¥ is defined on the family of subsets of d* 4 F ={¥~1(E): ECd(4,),
E is vol,_,-measurable} by (vol,_,o ¥)(D)=vol,_,(¥(D)) for any DEZ.

13*
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Corollary (with the notations and assumptions of Lemma 2). Formula (4)
implies that for all vol,-measurable subsets T of AQO\Z(z(D((d * 4)X(0, g)))
we have

n—1
) vol, 7= [ [l:(v+e-k) 3 a;0, k)¢’ dedu(y, b).
dt4 0 J= .

Proof. Consider the family of surface pieces F(g)=TNd(4,). For o=g,
we have F(g)=0 and for almost every O<g<g,, F(p) is a vol,_,-measurable
subset of 0(4,). Thus we can apply Lemma 2 for almost every 0<g<g, whence
we obtain that

n—1 .

VOIu-lTna(Aq) = VOln—lF(Q) = f lTﬁB(Ae)(y+Qk) Z; aj(y’ k)de(y: k) =

=

d+ 4

n—1
= [l+ed) > a0, 0 du(y, k).
) d+A J=

Hence, by Lemma 1,
2o

n-1 i
vol.,T= [ [1r(r+ek) 3 a;0, K)o’ duu(y, k) de.
0 dtA =

Observe that in the above formula, y+gk=¢((y, k), ¢) stays in the argument
of the function 15(.). Since @ is a homeomorphism between (d* A4)X (0, ¢,) and
AQO\Z and since the measures du, d vol, and do are Borel regular measures, re-
spectively, this means that the product measure dr=duXdp (i.e. =duXdvoly)
satisfies

n—1

vol, T= [ 1r(y+ek) 3 a;(y, kel dz(y, k o).
j=

(d+A4)x(0, 20}

This immediately yields (4") by Fubini’s theorem.’

Notation. If ACR" is closed with 940, then for any (3, k)€d* A let
LA(y, k) denote in the sequel the prenormal of A issued from the point y(€04)
in the direction of the vector k, and let A4(y, k) denote the length of the line
segment L4(y, k).

Remark. It is easy to see that the value reach 4 is not other than the greatest
lower bound of the function 44 (i.e. reach 4 =inf h*(=inf {h*(y, k): (p, k)€d + 4})).

Lemma 4. Let A be closed and 0A=9.

a) For any £>0, the GOS {(y,k)€d* A: h'(y, k)=¢} is closed (in R"XR")

b) d* A is Borel measurable (moreover it is an 7).

) For almost every @=>0, the set 0(4,) is of o-finite vol,_,-measure.

d) For the set Z*={y+h*(y,k)k: (y,k)€d* A with h(y, k)<o}, we have
vol,,_IZ*ﬂa(Ao)=0 except for countably many values of ¢=0.
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Proof. a) From Theorem A we know that
© d*4 ={(y, k): Ix€R™4, y€pryx and k = (x—y)/l|lx—yl}-

Now if {(y;, k;): i€I}cd* A4 is a convergent sequence such that A4(y;, k)=e
@iel) and (y;, k)~ (. k), then for x=y+eck we have x;—~x and y;€pr x; with
k;=(x;—y)/lx;—y;|l (for all i€I). Since, in general, the condition y €pr, x’ is
equivalent to dist (x’, 4)=dist (x’, y"), we infer from the continuity of the func-
tions |l and dist (., A) that dist(x, y)=dist (x, A)=¢ ie. y€pr,x and
k=(x—»)/lx—yll. This shows by (6) that (y,k)ed*+A.

b) Since d*A= U {(, k): K'(y, k)=1/m}.
¢) Applying Lemma 1 we obtain
s> vol, [IB"NR™\A)] = [ vol,_,[FB"N(4)]de

- co

for all r=0%. Thus for any r=0, there exists a set 4,C(0, <) such that
ol,_, [rB"Md(A4,)]< e whenever ¢€(0, <)\ 4,. Thus if ¢¢ U 4,, then the vol,_
measure of d(4,) (= U [mB"Md(4,)]) is o-finite.

d) Fix (an arbltrary) 6>0 such that d(A4,) has o-finite vol,_,-measure, and
for all ¢=é let A, denote the binary relation A,={(x,z): z€d(4,), prrZ6z}(=
={(y+dk,y+ok): (y,k)€d* A and h*(y, k)=g}. Now we know (see [4] p 254}
that for distinct z,z, (€R") there cannot be found any x(€R™) with (x,z,),
(x, z)€ 4, and that the mapping 4, defined by ,(x)=z g (x, z)€ A, is Lipschitzian
with dom Ae=pr3, 0(4,) and range/l =0(4,) for any @=96. So for each ¢=0, .
we have vol,l 1 Z*NaA ) =0 whenever the set A7 (Z*Nd(4,)) = {y+8k:h"(y, k)=0}
has vol,_,-measure 0. But the sets {y+6k: h*(y, k)=0¢} (¢>9) are all pairwise
disjoint subsets of d(4;). From a) we infer that they are Borel measurable. There-
fore the o-finiteness of vol,_, d(4,) implies that there exist at most countably
many ¢=>d such that vol,_,{y+6k: h*(y, k)=¢}=0. This suffices for d) since
the value of 6=0 -can be chosen arbitrarily small.

Theorem 1. Let ACR" be closed and 0A#Q. If one can find a sequence
A, A% ...(CR™) of sets with non empty compact boundary such that

a) d+Ac ) d+ 4.,
i=1

b) h,=reach4'=0 for i=1,2,..,

%) B” is the standard notation for the open unit ball of R".
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c) for all (y,k)ed+tA we have h*(y, k)=sup {h;: (y,k)€d* A"}, then there
exists a Borel measure p on d* A and there are u-measurable functions ay, ..., a,_,
(over d* A) such that

B4,k n-1 .
@) vol,7= [ [ 1rv+ek) 3 a;(y, ke’ dedp(y, k)
Jj=

a+a 0
Jor all vol,-measurable TCR"™\ A.

Proof. Set Slz(d'*A)ﬂ(d*Al),..., —[(d+A)ﬂ(d+A’)]\U , ... and

for i=1,2,... let (4, d},...,a_,) be a fixed system satisfying (7) (puttmg A in
the place of A, y' instead of u etc. in Lemma 3). Now S,, S,, ... is a sequence of
Borel-measurable GOS-s forming a partition of d*A. We also have S,cd*A4’
(i=1,2,...). So we can define the system (u, ay, ..., a,_,) in the following way:

(®) p(E)= SE(ENS) for ECd*A (e dulS, = duilS; for i=1,2, ...)
. i=1 . .

(in the sense that a set E is y-measurable if and only if for all indices i, the sets
ENS; are p'-measurable), and

®") a;(y,k)=di(y,k) for (y,k)€S; (j=0,..,n—land i=12,..).

Consider now a simple Borel function f:d*+A4-[0, ] such that f<h* and
range f= {c1, ¢y ...}, and set G={y+ok:(y,k)ed* 4, 0<o<f(y,k)}. Then it
easily follows from Lemma 3 that

: G,k a1 .
©) vlL,TNG = [ [ 1:(y+ek) 3 a0, e’ dedu(y, )
d+tA 0 J=
for each vol,-measurable TcR™ 4.
To prove (9), take the following Borel-measurable partition {S;,:i, m=1,2, ...}
of d¥ A defined by

Sim = {(y, kyef1({c,p: i is the smallest index with (y, k)€ d* 4’ and h; > c,,,}.

Then consider the partition {B,,:i,m=1,2,...} of G, defned by B, =
={y+0k:(y, k)ES,,, 0<@<c,}. Then fix an arbitrary pair of indices i, m. Apply-
ing Lemma 2b) to A, we see that the domain B, is Borel measurable.
Since for any (y,k)€S,, and O<g<h4(y,k) we have Iz, (y+eok)=
=1p(y+ek)-1s (3, k)1, (¢), using Lemma 3 (with 4’ instead ‘of A4 and
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with ¢,=#h,), we have

vol, TN By = [ f 1r(y+ek)- 15, (v, ) 1q,c, (@) Z a;(y, K)o’ dodu(y, k) =

d+t4 0

ff 17(y+¢k) 2 a;(y, k)o/ dedu(y, k) =

sim
fG.k) n—1
= f [ 1Lzy+ek) 15, B, (@) 2 a0, ke’ dedu(y, k).
d+4 0 =
Summing this for i, m=1,2, ..., we obtain (9).

In possession of (9) we can conclude as follows: Lemma 4a) shows that the
function A4: d+A-(0, =] is Borel-measurable (moreover that it is upper semi-
continuous). Therefore there exists a sequence 0=f;=f,=... of simple Borel-
functions such that f; ”h* (pointwise). For any such a sequence {f;}i°, we

have ) G,={y+ok: (3, k)ed* 4, 0=<o<h*(y, }=R™\(A4UZ*) where Z*=
. i=1
={y+hi(y, k) -k: P (y,k)<=}. So, for i—oo, it follows from (9) that

hAG, k) n—1
(7) vLTNZ" = [ [ 1L:0+ek) 3 a;(v, ke’ dedu(y, k).

d+*4 o
But now the relation Z*=(R"\A)\U Gf shows that Z* is a Borel-set. Thus

we may apply Lemma 1 to Z* (in place of T there) which unphes (by Lemma 4d))
that vol, Z*=0.

4. Some convexity properties of parallel sets
Our aim in this section will be to prove that there always exist sots A, 42, ...
satisfying the conditions of Theorem 1.
Lemma 5. Let x,€R" and ¢,=0. Then the function g(.})=dist (., x,)— % i.42
(4]

is concave on the domain G={x:dist (x, xg)>0,}. (A function f is said to be
concave on a domain H if it is concave in the usual sence when restricted to any
convex subset of H.)

Proof. Evaluate the eigenvalues of the second derivative tensor’) of the
function f at a point x;€G. It is convenient to use a Cartesian coordinate system

%) The second derivative tensor of a function f: H(CR™)—+R at a point x€ H is considered
here as the bilinear form D, f(x): R*XR*—+R, (v, 0,) (=3, 3., f(x) where the symbol 9, means
the directional derivation in the direction v(€R™ ie. 3, f(¥)=lim A~ [f(y+ o) —FO)].

A0
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. .. . X, ~—

with origin x, and first unit veclor e,= —ul—xu Then, independently of the
X, —

choice of the further basic vectors e,,...,e,, the function f()=dist(.,x) is

represented by the form (&, ..., E)=f(xo+Eer+...+Ee)=VE+ ... +& in

this coordinate system. Since x,=xo+|x,—xlle;, the eigenvalues of D,f(x,)
32 n

aé 361 (Nxy—x,ll, 0, ,0))1 j=1

easy to see that M is of diagonal form with O, [x,—x,]™2, ..., [X,— Xl ! in its

main diagonal. On the other hand, D,| .| is represented in any Cartesian system

by the matrix I=(2-9;)); ;, (J;; denotes the “Kronecker §’). Therefore the eigen-

coincide with those of the matrix M= ( But it is

values of D, f(x;) are —Qi and [[x; —x,l _l_gi (with multiplicity n—1), all negat-
1} 0

ive numbers. This completes the proof by recalling that any function of negative
definite second derivative tensor is concave on any open convex subset of its domain.

Theorem 2. Let ACR” be such that A0 and fix 9,=>0. Then the function
g()=dist(., A) —2—;— .12 is concave on the domain G={x€cR":dist (x, A)=g,}-
0

Proof. fis the infimum of the function family F= {dist G, A)~5;—II 2 xed}.
. (i

By Lemma 5, all members of F are concave functions on G. But the infimum of
any family of concave functions in concave.

Corollary. All directional derivatives of the function f(.)=dist(., A) exist
in R"™\A4. For a fixed x,€ R"™\4, the function t—0,f(x,) is continuous and super-
linear (i.e. positive homogeneous and concave).

Proof. Apply Theorem 2 with QOE%diSt (xy, A). This shows that the func-

1
tion g(.)=f(. )———II |2 is concave on some neighborhood of the pomt Xq-
Therefore 9, f(x,) ex1sts for all t€R" and satisfies 0, f(xo)= (9,g(xo)+ (t Xo)-

Thus #—0,f(x,) is the sum of a continuous superlinear and a linear form of ¢
(since the directional derivatives at a fixed point of any concave R"—R function
are continuous and superlinear.)

Theorem 3. Let ACR® be closed-and f(.)=dist (., A). Then for any x,¢ A4
and for any t€R" we have

. - X
0, f(xo) = mln{<t, ﬁ : yEprAxo}.
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Proof. Consider an arbitrary y,€pr, x,. Now we have f(x,+A1)—f(xp)=
= dist (x+ A2, A)—dist (xg, A) = dist (xo+Af, A)—dist (xq, yo) = dist (xo+4t, yo)—
—dist (x,, yp). Thus, by writing A(.)=dist (., y,), we obtain 9, f(x)=9,h(xe)=

=t grad k(o= (6 o= )= min (1 =200} yepra).

The proof of the inequality in the converse direction: Let us associate with
any x€R™\ 4 a point y(x) from the set pr x and then let ¢, denote the function
¢, (.)=dist (., y(x)). Now we have f= Eilgl{A ¢, and for all x¢ A4, f(x)=¢, (x).

- Thus, by writing Y (.)=¢, (), we obtai:n
L Gt A0) ) = 5 L e 2) Gl = - Gt A)— )] = 0,0 (x0)

for any arbitrarily fixed 1€R” and A>0. (The last inequality is a consequence of
Xo—y(Xo+41)

the convexity of y.) Hence from the relation grad 'P(xo)=—“x y(Xo+ AN’
o —¥{Xo

deduce that

Xo— y(xg+ A1)

_ whenever 1= 0.
Iixo—y(Xo+/1t)lI> -

1
10 Sifeotin—fea= (s
Since for any bounded GCR™\ A4 the set {y(x): x€G} is also bounded, there can
be found a sequence A,\\0 such that the sequence {y(x,+4;7)}; be convergent.
Fix such a sequence {2,};° and set y*Eliim y(xo+4;2). Now by (10) we have

’ - Xo—y*
49 s = (o )

On the other hand from the equivalence of the relations dist (xo+4;2, A)=
=dist (xo+ 41, y(xo+4;2)) and y(xo+A;1)Epr (xo+A;2) we infer for i—oco that
y*€pr x,. Thus for some y*€pr ,x,, (10") holds.

From now on, throughout the remaining part of this section, let 4 denote
a fixed closed subset of R”, let x,€ R"™\ 4 (also fixed), r=rad pr x, ), o=dist (x,, A)
and f(.)=dist (., A). '

Lemma 6. max (9, f(xo)/lt])=V1—(r/e)* if r<e and max(d,f(x)/]) O
if and only if r=g. (Since pr x,c{y: ||ly—xol=0}, the possibility r=0 is
excluded).

%) For any set HCR", rad H=inf {6=0: 3p€R" Hcp+6§‘}.
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Proof. Since the function 70, f(x,) is superlinear and continuous, a simple
compactness argument shows that r?;lg(a, S(x)/ltll is always attained for some

1,€R" with [[ffl=1. Now if 3, f(x)>0, then the set pr,x, is contained in the
spherical cap

K={yeR" |ly—x|l = o, (tg, y— X0y = 00y, f(x0)}-

But then, by writing p=x—(¢-9, f(x)))t,, we have Kc{y:ly-pl=
= Vo*—(¢-9,,f(x0))?}. Thus 0, f(x)=0 implies that r=Y1—(d,,f(x0))* and
therefore 9, f(xo)=V1- (r/o). .

On the other hand, if r<g then, because of the compactness of the set pr  x,,
there exists a unique closed ball B(CR" of radius r such that pr, x,cB. Con-
sider the spherical cap K’={y€B:||y—xol=¢}. It is not hard to prove that the
closed ball B’(cR") of minimal radius containing the set K’ is that whose center
and radius coincide with those of the (n—1)-dimensional sphere S’'=
={y€0B:|y—x,| =g}, respectively. Since pr, ,x,CK’'CB’, we necessarily have
B’=B. Let g denote the center of B and set t;=x,—¢q. Since the point g is the
center of §’, we have angle(4,y—¢q)=n/2 for all y€S’. Hence we deduce
Hll2=Vlxo—yIZ— |y —ql* =Ve®—r® (with arbitrary y€S’). Observe now that

K'={y:lly—xl = ¢ and angle(t;,y—¢q) =n/2} ={y: ly—xoll = 0, &1,y —g)=0}.

Therefore, by Theorem 5 we obtain

9t = min{(1, 222 ): b=t = =0 = 0f = (. 2 70) = 1

So r<e implies that maxd, f(x))/litl=ltll/e=V1- (/o).

Definition. We call a vector 1(€R") a tangent vector of a set S(CR") at the
point x¢ S if #=0 if there is a sequence x#=x;, X3, ...€S such that x,~x and
angle (¢, x,—x)—0 (for i—-eo). (For 4, ,€R", angle (tl,tz)sarccos<ﬁ, ﬁ ]

1 2
The set of the tangent vectors of S of x will be denoted by Tan (x, S).

Lemma 7. If r<p then for any t€R" we have

a) t€Tan (x,,8(4,)) if and only if 9, f(xg)=0,

b) t€Tan (x5, R™\4,) if and only if 9,f(x)=0.
(Le. Tan (x5, R"™\4,) is a closed convex cone with non-empty interior and bound-
ary and its boundary coincides with Tan (x,, 0(4,)).)



On curvature measures . 203

Proof. Since R™4,={x:f(x)=¢} and f(x)=¢, we can immediately
establish that 0, f(x,)>0 implies 7€Tan (x,, R™\\4,) and that in case of
t€Tan (x, R™\4,) we have 0,f(x,)=0. Therefore it suffices to prove just the
statement a).

Since 8(4,)={x: f(x)=g}, it is clear that 9,(x,)=0 for all z&Tan (x, d(4,)).
To prove 8,f(xp)=0=tcTan(x,,d(4,)) we can proceed as follows. Let
C={t: 3,f(xy)=0} and F(r)=9,f(x,). From the continuity and superlinearity
of the functional F it follows that C is a closed convex cone. Lemma 6 ensures
that, for some #,€ C, we have F(t;)=0. Since there also exists a vector ¢; such that
F(1,)<0 (e.g. the vector 1,=y—x, with an arbitrary y€pr,x,), from the super-
linearity and continuity of F we easily deduce that

F(f)>0<t€C (the interior of C), F(t)=0<«1¢dC, and F(f) <0« 1§ C(VIER").

Therefore we have to show that for any 0#¢€0C and &=0 there exists a point
x€0(4,) such that O<|x—x,|<e and angle (s, x—x,)<e. But it is a directe
corollary from continuity of F.

Lemma 8. If S is any subset of R", x€S and L denotes the smallest cone con-
taining the unit vectors k(cR") satisfying (x,k)€d*S then Tan(x, S)cdual L")
(or which is the same Lcdual Tan (s, S)).

Proof. We must prove that in case of (x, k)ed* S, for any t€Tan (x, S) we
have (7, k)<0. Proceed by contradiction. Suppose that (x,k)€d*S and
tcTan (x, S) are such that (z,k)>0. Since the figure Tan (x, S) is a cone, we
may assume without loss of generality that |[z]|=1. Consider a sequence
x;ékl,xg, ...~x in S such that angle (s, x,—x)—-0 (i—~e) and set h,=|x,—x|

and tizzl-(x,.—x) (i=1,2,..). Observe now that ¢,—~¢ and that for any arbitrar-

ily fixed ¢’=0, the function W (.)=dist (., x+¢'k) satisfies
N T , , .1 :
lim — [dist (x,, ¥+ ¢'K) 0] = lim — [ (v + hy ;=¥ )] =

= lim 2 (e +h) 9 (] = 0,9 () = (&, Ky = 0.

This shows that dist (x;, x+¢"k)<g’ holds for some index i. Thus we necessarily
have (y, k) §d *S by the arbitrariness of ¢">0 and the definition of the GOS d*S.

) For any set HCR" we define its dual by dual H={fc¢R": Yu€ H{t, u)=0}.
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Remark. The converse inclusion L>dual Tan (x, S) fails in general. Example:
in n=2 dimensions for S={(&, n)€R2: n=|¢’*}, x=(0,0) and k=(0, 1) we have
Tan (x, S)={(1,, 72): 7,=0}={t€R%: (k, t)=0} while (y,k)¢d*S. However, one
can conjecture that if S=R™4, and x=x, then L=dual Tan (x,, R"\4))
always holds. It will suit our requirements the following simpler special case:

Theorem 4. Suppose r<g. Then
a) the figure D={y: xOEer,.\AQy} is convex and closed (this holds even

Jor r=p),

b) one can represent the set D°=conv ({x,}Upr  x,)®) as the union of straight
line segments issued from the point x, and of length Vo®—r®.

c) If L =0, «){k: (x,, k)€ d* (R™\A4,)} then we have
L =[0, «)(D—x,) = [0, )(D°—x) = dual Tan (xy, R™\4,)

d) BR"\e(x,, k) = V2—r® whenever (x,, k)€ d* (R™\A4,).

Proof. a) From the definition of prgm_ 4,y We infer that
D = {y: Vx€R™N4,, dist(y, x,) = dist(y, x)} = GRO\A {v: ly—xll = lly—xi}.

Thus D is the intersection of some family of closed half spaces (or D=R" if
{xa}=R™\A,).

b) For the sake of simplicity, we can assume (without loss of generality)
that x,=0.

It is well-known that, in general, the closed convex hull of any compact subset
of R* coincides with its algebraic convex hull. Hence

conv ({xo}U prxo) =
;
={a3Ay:0=a=14,..,4, =0, J4=1and y,, ..., y.€ praxo}.
1y )

Thus we can write D°=[0, 11-conv (prxo)={[0, 1]- c: c€conv (pr,x,)}. There-
fore it suffices to see that for any c€conv (pr x,) we have lell=VoP—r2 Let t,
be a unit vector such that 9, f (xo)=V1— (r/0)? (1ts existence is estabhshed
by Lemma 6)

8) For HcCR", conf H denotes the closed convex hull of H (i.e. the smallest closed convex
subset of R" containing H).
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From Theorem 5 we infer that for any finite convex linear combination
c=hn+...4+ 2y, of some points of pr, x, we have

m m v mﬁ m
(tos ) = 2 Alte, yip = =2 Xi{tos Xo—y) = = —lel <t07
1 1 . eembacdi.. . i1 " Xo Y;“

= —¢ ;liaxof(xo) = =00 f(x)) = —V@*—r%

whence |lcll=llt]l - ) = (o, )| =V —r%

c) The relation L=[0, «)(D—x,) directly follows from the definitions. From

"Lemma 7b) and Theorem 5 we also have that z€Tan (x,, R"™\4,)<9, f(x,) =0«

oV yepr xolt, xo—y) =0, e>tcdual [(pr x) — xo]e>t€dual (D° —xp)«t€dual [0, «)-
- (D°—x,). Thus Tan (x,, R"™\ 4,) =dual [0, ) (D°—x,). Since both Tan (xo, R"™\4,)
and [0, <)(D°—x,) are closed convex cones in R", respectively, from Farkas’s
well-known theorem we infer [0, «)(D°—x,)=dual Tan (x,, R™\4,). Then observe
that from the definition of the set D it follows x,€D and pr, x,CD. This implies
by a) that D°cD and therefore [0, «)(D®—x0)C[0, «2)(D—x,). At this point
the proof of ¢) is completed by Lemma 8 which shows (for S=R™\ 4, and x=x,)
that Lcdual Tan (x, R"™\4,), since we have proved here L=[0, «)(D—xg)D
5[0, =)(D°—xz)=dual Tan (x, R™\4,).

d) is immediate from b) and c).

Corollary. If >0, ACR" is closed and tad A<g then I \4ez=
= Vo —(rad A)>2.

Proof. Let (xo,k)€d*(R™\4,). Now we have x,€d(R"™\4,)=0(4,) and
r=rad pr x,=rad A<g. Thus Theorem 4d) can be applied.

5. Main Theorem

On the basis of the previous section we can construct the sets A, A2 ...
required by Theorem 1.

Lemma 9. For any closed subset A of the space R" with 0A#Q there exists
a countable family A={A*: a€I} of subsets of R™ with positive reach and compact
boundary such that |Jd*A>d*A* and h(y, k)=sup {reach A*: (y, k)ed*+ 4%}

acl
hold for any (y,k)€d*A.

Proof. Let oy, @3, ..- be an enumeration of the positive rational numbers
and for i=1,2, ... let the set B’ defined by B'=0(4,). Now we obtain from
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the definition of the function A*(:d*A4-(0, <)) that
(1) B =0(4,) ={y+ok: (y,k)€d*4 and K (y, k) =g} (=12, ..).

Then let each set B' be covered by a countable family K", K2, ... of closed balls
of radius g,/(2i) and define the sets A"° (i,s=1,2,...) as follows: set G"*=
=B'NK"* and let Ai”ER"\(G"")oi(={y: dist (¥, G*H=g}}). -

Observe that if (y, k)€d* A is such that A?(y, k)=p, and y+9,k€G"* then
(for the same pair of indices i,s) we have dist(y+g;k, A*)=p, and hence

(r, k)ed*t A" (i,s=1,2,..)). Since G G"*=B', this means by (11) that
. =1
(12) (0, DEd*4: A, k) = o) U d+dbs (i=1,2,..).
s=1

It follows from (12) that d+AcC O d+ A,
: i,s=1

Since the figure G"* is contained in the ball K** whose radius equals to ¢,/(2i),
we have from the Corollary of Theorem 4 that reach A»*=inf A" =inf AR™\GC"Je; =

=0, ¥V1-1/(4®»>0 (i,s=1,2,...). So from (12) we also infer that
sup {reach A"*: (y, k)ed * 4*} = h'(y, k)
for each (y,k)¢d* A. Finally, the inclusions 3A"’5=3[R"\(G"")qi]:3((Gi")ai]C

c(G"")g'c(K "")‘_,‘ immediately imply compactness of 04“° (i,s=1,2,...). Thus
the choice A={4"*:i,s=1,2,...} suits our requirements.

Theorem 5. For every closed ACR" of non-empty boundary there exists
a Borel measure yi over the generalized oriented surface d+ A and there can be found
u-measurable functions ay(.), ...,a,_,(.) such that for any Lebesgue integrable
function @:R™A—~R" we have

BAG,K). n-1 .
(13) [ edvol,= [ [ oG+ek) 3 a;(y, Ke?dedp(y, k) =
R™\4 d+4 0 j=0

n—-1
= [o(y+ek) 2 a0, 9e di(y, k,0)
D 1=

where D={(y, k, ¢):(y, k)ed* 4 and O<o<h*(y,k)} and dr denotes the product
measure duXdlength over (d* A). '
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Proof. From Lemma 9 and Theorem 1 we immediately obtain (13) for char-
acteristic functions of vol,-measurable subsets of R™\ 4. By taking linear com-
binations we can pass to simple R"™\4—~R functions and then a standard density
argument establishes (13) for arbitrary Lebesgue integrable R™\ 4—~R functions.

Corollary. For p-almost every (y,k)€d* A, the zeros of the polynomial

nZ’ a;(y, k)¢’ are real and lie outside (0, H*(y, k)).
=6

Proof. Recall the construction of the measure u and the functions g; in
Theorem 1 (8") and (8”). Applying the same notations (and definitions) as in The-
orem 1, we can proceed as follows: From Remark a) after Lemma 3 we infer that
for any fixed pair of indices i,,i, one can write a}du=da}du’ (j=0,...,n—1)
when restricted to the set (d*A4%)N(d* A"). This shows now that there exists
a subset Rz of (d+AMN(d*A") such that ph(Rv)=pk(R»%)=0 and
there is a function ¢ ;: [(d+ AN (d* A)NR?2—(0, <) such that ai(y,k)=

¢, a(y, k) (j= 0, ..., n— 1) for any (y, k)€ dom¢; , . This is equivalent

to the condition that the roots of the polynomials 2 ar(y, k)¢’ and 2’ ax(y, k)¢’

N

J=
are the same with the same multiplicity (for a11 (y, k)€dom ¢; ) Let then
(3, k)e(d* A\ U Riv be arbitrarily ﬁxed Now Remark b) after Lemma 3

i1,i2=1

implies that the zeros of the polynomial 2 a;(y, k)¢’ are real and lie outside the

interval (0, reach 4°) for any i, such that (y,kycd+ 4'. Therefore p(.) cannot
have any zero inside | J{(0, reach 4°): (y, k)ed + 4'}=(0, sup {reach A4': (y,k)ed*A'})>

(0, i*(y, k)). Since by (8’) we have pu((d*A)N U Riv=(, the previous

i1,i2=1

statement holds for p-almost every (y,k)ed*A.
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