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Type sets and nilpotent multiplications

A. E. STRATTON and M. C. WEBB

Introduction. The nilstufe, v(G), of a torsion-free abelian group was defined
by SzeLE [7] to be the largest positive integer n such that there is an associative
ring (G, o) on G having a non-zero product of n elements. If no such integer
exists then v(G) is set equal to . FEIGELSTOCK [2] defines the strong nilstufe,
N(G), in a similar manner but allows non-associative ring structures on G. In §2
we define the solvable degree ¢(G) in an analogous way.

Several authors [1, 4, 5,6, 7,9, 10] have studied related problems of mlpotency
in torsion-free rings. They have mainly restricted their attention to associative
ring structures and have often demanded that the group G be completely decom-
posable. In [8] WEBB showed that if G is torsion-free with finite rank r then either
v(G)=o or v(G)=r, and either N(G)=o or N(G)=2""". R

In this note we obtain improved bounds on both v(G) and N(G) under certain
conditions on the type set, T(G), of G. Here the type set of G means the partially
ordered set of types t(g) of non-zero elements g in G. Our new bounds are ex-
pressed in terms of the length I(G) of G by which we mean the length of the longest
chain in T(G). If no longest chain exists we put I(G)=oco, and observe the usual
conventions about the ordering on ZU {«}. We observe that if G has finite rank
r then I=r (cf. Fucns [3], page 112, Ex. 10).

We require the following notions. If «, 8 are types we say that o absorbs f if
af=g. If in particular « is self-absorbing then we say that « is idempotent,; (many
authors have used the term non-nil for this last notion, we prefer the word idem-
potent, for the existence of idempotent types in the type set of the additive group
of a ring is closely related to the existence of idempotent elements in the ring itself).

~. Throughout .the remainder -of this note G denotes a torsion-free group of
rank r and length / (both of which may be o). With these conventions we have:

Proposition 1.1. If T(G) contains no absorbing elements, then -
i) NG =271 i) v(G) =1, iii) o(G) =L
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Proposition 1.2. If T(G) contains no idempotent elements, then
v(G) =min 2'-1,r}, 0(G) =1L

Proposition 1.3. If T(G) contains no absorbing elements and G has length 2,
then every ring on G is associative, and nilpotent of degree at most two.

Basic ideas.

Lemma 2.1 Suppose that (G, %) is a non-associative ring on G, and that
g€G (i=1,2) are such that g,%g,0.
() If neither t(g;) absorbs the other then

t(gixg) > t(g) (i=1,2).
(i) If neither t(g;) is idempotent then either
t(g1%gy) > t(g) or t(g*g,) > t(gy).
Proof. Clearly t(g,* g.,)=t(g)t(g.)=t(g) (i=1,2). If t(g,*g.)=t(g;), then
(A) t(g) = t(g)t(g2) = t(go)

and t(g,) absorbs t(g.). This proves (i).
If t(g,) is not idempotent then (A) implies that t(g;)=>t(g,) and (ii) follows.
For each positive integer k, let ¥, ={x€G]| there is a chain t(x)>T,>...>71,
of types in T(G)} and let G, be the subgroup of G generated by ¥V,. We clearly
have a descending chain G=G;D>G,2>G;>... of subgroups of G.

Corollary 2.2. Under the same hypothesis on G as.in Lemma 2.1 we have:
(i) If T(G) has no absorbing elements then

G+G,CG;., and G*GCG;,, for all positive integers i.
(ii) If T(G) has no idempotents then

G;*G,CG,,, for all positive integers i.
Remark. In both cases (G;, *) is a subring of (G, ) and in case (i) (G;, *)
is an ideal in (G, *). o
Let R be a non-associative ring. For each positive integer k we may define
four ‘powers’ of R as follows.
(i) R® is the subring of R generated by all products of k elements in R, how-
ever the products are associated. :

(i) R =R, RM = RE-NRH-1 forall k= 1.
(i) R*=R, R:*=R:-'R forall k= 1.
(iv) R'=R, R‘=RR*! for all k= 1.
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We observe that each of these ‘k-th powers’ is contained in R®. A simple
induction shows that
(2.3) RKIc REY  for all integers k > 1.

Recall that R is nilpotent if there is an index k such that R**P=0 and R
is solvable if R¥+*1=0. If G is a group we say that the solvable degree, o(G), of
Gis k if [G, x**U=0 for all multiplications * on G and there is a multiplication
o with [G, o]5<0.

The following inclusions are an easy consequence of Corollary 2.2.

Proposition 2.4.
(1) If T(G) has no absorbing types then

(6,_*)" € G, and (G, ¥)'S G, for all positive integers n.
(ii) If T(G) has no idempotents then
(G, )M S G, for all positive integers n.

In order to obtain information about (G, *)® we need a further notion. Denote
by F(R) the subring of the (associative) ring E(R) of endomorphisms of the additive
group of R, generated by the left and right multiplications L,, R,, a€ R where

xL,=ax; xR,=xa forall x¢€R.

Lemma 2.5. Let R be a torsion-free ring. Let n and k be positive integers
satisfying k=2""1. Then '
RM™ < R{F(R)Y".

¥ Proof. We proceed by induction on n the result being clear when n=1.
Suppose that the result holds for n=m=1 and that k>2". Let x be the product
of k elements in R. Then x=uv where at least one of u or v, u say, is the product
of at least 2"~! elements of R. Thus by hypothesis u belongs to R[F(R)]" and
u€ R[(F(R)]™+.

Corollary 2.6. Let G be a torsion-free group whose type set contains no
absorbing elements. Let (G, %) be a (non-associative) ring on G. Let n and k be
positive integers satisfying k=2""'. Then

(G, ¥)PcG,,,.

Proof. In fact we show that G[F(G, %) cG,, for all positive integers n.
We may assume without loss of generality that G[F(G, *)]™ is non null. In particular
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there exists non-zero monomials in G[F(G, *)]®. Recalling that F(G, =) is associat-
ive we see that such a monomial may be written in the form

E= (. (BXDXD... X;) % 0

where g€G and, for each i, X, denotes * multiplication on the left or right by an
element of G. It follows from Lemma 2.1 (i) that

t(g) <t(gXx) < t((gxl)X2) <.=t)

is a strictly ascending chain in T(G) of length #n+1 and so ¢(cV,, ,. However,
the monomials generate G[F(G, )] and the corollary follows.

Proof of Propositions 1.1, 1.2 and 1.3. Suppose that G has finite length /. .
Then, by definition, G,,,=0. If T(G) has no absorbing types Proposition 2.4 gives

(2) (G, )" = (G, x)!** =0
whilst Corollary 2.6 yields
(b) : R

Since * is an arbitrary multiplidation on G we conclude from (a) that v(G)=I
and from (b) that N(G)=2'"'. Furthermore putting k=/+1 in equation 2.3
gives

(G, #)X11C(G, 1) (G, #)#+D =0

and we deduce that ¢(G)=/. This proves Proposition 1.1 (if / is infinite the result
is trivial!). Substitution of /=2 in (b) gives (G, *)®=0, and we deduce that
in this case (G, %) is always associative thus proving Proposition 1.3. '
If all we knc')w:about T(G) is that it contains no idempotents then Proposition
2.4 (ii) gives (G, *)'*7=0 and we have ¢(G)=I. If * is an associative multiplica-
tion then ' ' ' ’
0= (G: *)Uﬂl = (Gs *)21

whence v(G)§2’ —1. WeBB [8] has shown that v(G)=r and we have proved
Proposition 1.2. ' ‘

Finally we construct a group G which has

(i) finite type set, (i) no idempotent types, (iii) N(G)=-o.
Let R;C R, be subgroups of the rationals containing 1. Suppose that neither R,
nor R, is a subring of Q, but that R, R,=R,, the multiplication being the usual
one on Q. Put .G=Rx® Ry, then G satisfies conditions (i) and (ii) above. We put
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two multiplications % and o on G as follows

ak—lxy olxy
x|0 y x|y O
yly 0 yl0 0

If n is a positive integer then
xx(x(xx(xxy)..)=y =0,

x appearing n times. It follows that N(G)=-<-, and reference to Proposition 1.2
shows that (G, %) is nonassociative, :
It is easily checked that

0 (G, *»)BICR,y, (G, %) =0

so that 0(G)=2=I(G). Lastly we see that (G, o) is associative, indeed (G, 0)®=0,
so v(G)=2.
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