
Acta Sci. Math., 41 (1979), 209—213 

Type sets and nilpotent multiplications 
A. E. S T R A T T O N and M. C. WEBB 

Introduction. The nilstufe, v(G), of a torsion-free abelian group was defined 
by SZELE [7] to be the largest positive integer n such that there is an associative 
ring (G, o) on G having a non-zero product of n elements. If no such integer 
exists then v(G) is set equal to FEIGELSTOCK [2] defines the strong nilstufe, 
N(G), in a similar manner but allows non-associative ring structures on G. In §2 
we define the solvable degree Q(G) in an analogous way. 

Several authors [1,4, 5, 6, 7, 9, 10] have studied related problems of nilpotency 
in torsion-free rings. They have mainly restricted their attention to associative 
ring structures and have often demanded that the group G be completely decom-
posable. In [8] WEBB showed that if G is torsion-free with finite rank r then either 
v(G)=<oo or v ( 6 ) S f , and either N{G)=°° or N(G)^2(r~1). 

In this note we obtain improved bounds on both v(G) and N(G) under certain1 

conditions on the type set, T(G), of G. Here the type set of G means the partially 
ordered set of types t(g) of non-zero elements g in G. Our new bounds are ex-
pressed in terms of the length 1(G) of G by which we mean the length of the longest 
cj^iin in T(G). If no longest chain exists we put / (G)=°° , and observe the usual 
conventions about the ordering on ZU{°°}. We observe that if G. has finite, rank 
r then IrSr (cf. FUCHS [3] , page 112 , Ex. 10) . 

We require the following notions. If a, P are types we say that a absorbs ft if 
a/?—a. If in particular a is self-absorbing then we say that a is idempotent; (many 
authors have used the term non-nil for this last notion, we prefer the word idem-
potent, for the existence of idempotent types in the type set of the additive group 
of a ring is closely related to the existence of idempotent elements in the ring itself). 

¡Throughout the remainder of this note G denotes a torsion-free group of 
rank r and length / (both of which may be With these conventions we have: 

P r o p o s i t i o n 1.1. If T(G) contains no absorbing elements, then 

i) N(G) 2'~\ ii) v(G) S /, iii) Q(G) =S I. 
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P r o p o s i t i o n 1.2. If T(G) contains no idempotent elements, then 

v ( G ) ^ m i n { 2 ' - l , r } , e(.G)^l. 

P r o p o s i t i o n 1.3. If 1(G) contains no absorbing elements and G has length 2, 
then every ring on G is associative, and nilpotent of degree at most two. 

Basic ideas. 

L e m m a 2.1 Suppose that (G, * ) is a non-associative ring on G, and that 
g,^G (i—1,2) are such that g^xg^O. 

(i) If neither t(g ;) absorbs the other then 

t ( g i * g 2 ) > t ( g ; ) (i = 1,2). 

(ii) If neither t(g ;) is idempotent then either 

t ( g i * g2) > t (g0 or t ( g l * g2) > t (g 2 ) . 

P r o o f . Clearly t ( g l * g 2 )=£t ( g l ) t ( g 2 )^t ( g i ) ( i = 1, 2). If t ( g l * g 2 ) = t ( g l ) , then 

(A) t ( g l ) = t( g l)t(g 2) t (g 2) 

and t ( g l ) absorbs t(g2). This proves (i). 
If t ( g l ) is not idempotent then (A) implies that t ( g l ) > t ( g 2 ) and (ii) follows. 
For each positive integer k, let Vk = {x£G| there is a chain t ( x ) > t 2 > . . . > t k 

of types in T(G)} and let Gk be the subgroup of G generated by Vk. We clearly 
have a descending chain G = G 1 d G 2 3 G 3 d . . . of subgroups of G. 

C o r o l l a r y 2.2. Under the same hypothesis on G as in Lemma 2.1 we have: 

(i) If T(G) has no absorbing elements then 

G * G J C G I + 1 and G ; * G C G I + 1 for all positive integers i. ^ 

(ii) If T(G) has no idempotents then 

G, * GicGi + 1 for all positive integers i. 
R e m a r k . In both cases (G,, * ) is a subring of (G, * ) and in case (i) (G,, * ) 

is an ideal in (G, *) . 
Let R be a non-associative ring. For each positive integer k we may define 

four 'powers' of R as follows. 
(i) R(k) is the subring of R generated by all products of k elements in R, how-

ever the products are associated. 

(ii)y?™ = /?, RW = for all k> 1. 

(iii) R1 = R, Rk = Rk~1R for all k > 1. 

(iv) R1 = R, Rk = RR"-1 for all k > 1. 
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We observe that each of these 'A:-th powers' is contained in R(k>. A simple 
induction shows that 
(2.3) f o r a u integers k > 1. 

Recall that R is nilpotent if there is an index k such that Rik+r>=Q and R 
is solvable if /? [k+1]=0. If G is a group we say that the solvable degree, Q{G), of 
G is k if [G, *] l f c + 1 ,=0 for all multiplications * on G and there is a multiplication 
o with [G, o f M O . 

The following inclusions are an easy consequence of Corollary 2.2. 

P r o p o s i t i o n 2.4. 

(i) If T(G) has no absorbing types then 

(G, *)" Q G„ and (G, *)" £ G„ for all positive integers n. 

(ii) If T(G) has no idempotents then 

(G, *) [ n ] £ G„ for all positive integers n. 
In order to obtain information about (G, *)№) we need a further notion. Denote 

by F(R) the subring of the (associative) ring E(R) of endomorphisms of the additive 
group of R, generated by the left and right multiplications La, Ra, a£R where 

xLa = ax; xRa = xa for all x£R. 

L e m m a 2.5. Let R be a torsion-free ring. Let n and k be positive integers 
satisfying k>2"~1. Then 

R(k) ^ R[F(R)}". 
& 

P r o o f . We proceed by induction on n the result being clear when n = 1. 
Suppose that the result holds for n=m^l and that k>2m. Let x be the product 
of k elements in R. Then x — uv where at least one of u or v, u say, is the product 
of at least 2 m _ 1 elements of R. Thus by hypothesis u belongs to R[F(R)]m and 
uv£R[(F(R)]m+1. 

C o r o l l a r y 2.6. Let G be a torsion-free group whose type set contains no 
absorbing elements. Let (G, * ) be a (non-associative) ring on G. Let n and k be 
positive integers satisfying A:>2"-1. Then 

(G, * ) ( i ) c 6 „ + 1 . 

P r o o f . In fact we show that G[F(G, *)] ( n )cG„, for all positive integers n. 
We may assume without loss of generality that G[/r(G, *)](n) is non null. In particular 
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there exists non-zero monomials in G[F(G, *)](n). Recalling that F(G, * ) is associat-
ive we see that such a monomial may be written in the form 

where g£G and, for each i, Xi denotes * multiplication on the left or right by an 

element of G. It follows from Lemma 2.1 (i) that 

t(g) < t ( g ^ ) < t ( 0 

is a strictly ascending chain in T(G) of length n + 1 and so £c:Vn+1. However, 
the monomials generate G[F(G, *)](n) and the corollary follows. 

Proof of Propositions 1.1, 1.2 and 1.3. Suppose that G has finite length /. 
Then, by definition, G / + 1 = 0 . If T(G) has no absorbing types Proposition 2.4 gives 

(a) ( G T T ) ' + 1 = ( G T T ) ' + 1 = 0 

whilst Corollary 2.6 yields 

(b) (G, *)(2 '-1+1> = 0. 

Since * is an arbitrary multiplication on G we conclude from (a) that v ( G ) ^ / 
and from (b) that N(G)^2'~1. Furthermore putting k=l+1 in equation 2.3 
gives 

(G, * y , + 1 ] c ( G , * )(2'> c ( G , *)» '" 1 +" = 0 

and we deduce that e ( G ) ^ l . This proves Proposition 1.1 (if / is infinite the result 
is trivial!). Substitution of / = 2 in (b) gives (G, * ) ( 3 ) =0, and we deduce that 
in this case (G, * ) is always associative thus proving Proposition 1.3. 

If all we know about T(G) is that it contains no idempotents then Proposition 
2.4 (ii) gives (G, * ) [ , + 1 I = 0 and we have q(G)^1. If * is an associative multiplica-
tion then 

0 = (G, * ) [ , + l i = (G, *)2 ' 

whence v(G)s2 '—1. W E B B [8] has shown that v(G)Sr and we have proved 
Proposition 1.2. 

Finally we construct a group G which has 
(i) finite type set, (ii) no idempotent types, (iii) # (G) = <*>. 

Let Rx<ZR2 be subgroups of the rationals containing 1. Suppose that neither 
nor R, is a subring of Q, but that R2 = R2, the multiplication being the usual 
one on Q. Put G — Rx®Ry, then G satisfies conditions (i) and (ii) above. We put 
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two multiplications * and o on G as follows 

* X y o X y 

X 0 y X y 0 

y Y 0 y 0 0 

If n is a positive integer then 

x*( . . . *(x*-(x*.y)) ...) = y 0, 

x appearing n times. It follows that N(G) — °°, and reference to Proposition 1.2 
shows that (G, *) is nonassociative. 

It is easily checked that 

0 ^ (G, (G, * )m = 0 

so that g(G) = 2 = l(G). Lastly we see that (G, o ) is associative, indeed (G, o ) ( 3 ) = 0 , 
so v(G)=2. 
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