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A characterization of .3

GERNOT STROTH

.

"~ The objective of this paper is the proof of the following theorem.

Theorem. Let G be a finite simple group and H a 2-local subgroup of G.
Assume that HIO(H) is an extension of Z,x Qg+ D by Z. Assume further that
Z(H/O(H)) is of order two. Then G is isomorphic to .3, the Conway simple group.

Lemma 1. Put H,=H|O(H). Then H,/Z(H,) splits over Oy(H,/Z(H,)).

Proof. Put H,=H,/Z(0,(H,)). Then O,(H,) is a symplectic space of dimen-
sion four. Thus H,/O,(H,) is isomorphic to a subgroup of Z,XZ,. In this group
there are exactly two subgroups isomorphic to Z,. Since Z(H,) is of order two
we get that H, is uniquely determined. Thus we get in H, a subgroup isomorphic
to X,. Since Z(H,) is of order two we get in H,/Z(H,) a subgroup isomorphic
to %,. This proves the lemma.

Lemma 2. Let z be the involution in Z(H). Then H3=Cg;(z).

Proof. By way of contradiction we assume H=Cg;(z).

Assume first that z is conjugate to an involution x contained in O,(H)—(z).
Then there is an element g centralizing x such that ¢*¢O(H). Thus (¢, O(H))
is contained in C;(x). Let n be an element of O(H). Then Cg(r) contains O, (H).
Let v be an element in ¢O(H). Then a Sylow 2-subgroup of Cg(v) is isomorphic
to (Z,* Qg){a) where a?€(Z,*Q,). Thus 64 does not divide the order of Cg(v).
Let @ be an element in H—O(H) such that «w?*c¢O(H) and wO(H) is not con-
jugate to ¢O(H) in H/O(H). Let u be an element of wO(H). Then Cy(u) possesses
a Sylow 2-subgroup S such that S is of order at least 8 and P(S) is equal to (z).
Thus 16 does not divide the order of Cs;(u). Let g be an element of G such that
x9=z. Then ¢ is contained in H. Since 16 divides the order of Cg;(g) but 64 does
not divide the order of Cg;(g) we may assume o?€gO(H). Thus we may assume
that g is contained in Ng({g)). Let T be a Sylow 2-subgroup of Cg(e)NCgq(x).
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Then it is easy to see that 7’ is equal to (z). Thus x is not conjugate to z in Ng ({@)).
We have proved that (z) is strongly closed in O,(H) with respect to G.

Assume now that z is conjugate to an involution y in A’ —(z). Then Co.en(¥)
is isomorphic to Z,XZ,. Thus there is an involution s in O,(H)—{z) such that
y is conjugate to sy in G. Let U be a Sylow 2-subgroup of H. Then every involution
a of U—{z) is conjugate to za in U. Thus s is conjugate to sy in G. But then s
is conjugate to z in G, which is a contradiction. Thus we have proved that (z) is
strongly closed in H’ with respect to G.

Assume now that z is conjugate to an involution u of H—H’. Then z is a non-
square in Cg(u). Thus Co,un(®) is elementary abelian of order eight. But then
there is an involution b in O,(H)—(z) such that u is conjugate to bu in G. As above
we get a contradiction.

Thus we have proved that (z) is strongly closed in a Sylow 2- subgroup of G.
Hence [2; Corollary 1, p. 404] yields the assertion.

Lemma 3. Let M be a finite simple group which possesses a 2-local subémup
L such that L{O(L) is isomorphic to a faithful extension of E,, by A,. Then M is
isomorphic to L,(q), q=5(8); U,(q), g=3(8); My, My or M<,

Proof. By [6; Theorem 3], L contains a Sylow 2-subgroup of M. Now [4]
yields the assertion.

Lemma 4. Let M be a [finite group. which possessés an involution z su_c_lz that
Cy(2)/O(Cyy(2)) is isomorphic to one of the following groups:

(i) SLy(q), g =5(8);

(i) SU,(g), ¢=3(8).
Then z€Z*(M).

Proof. In CM(z) there are only two classes of involutions. Let » be an in-
volutlon of C,,(2) not equal to z.

Put C=Cy(2). Then C.(v) contains a subgroup E=S;X S, where’ Sl and
S, are isomorphic to SL,(g). Now we get Z(S,)=(v) and Z(S,)=(zv), 1mply1ng
that Cc(v)/O(Cc(v)) is equal to Z(C/O(C))* (E{ay) where a induces the dlagonal
automorphism on S, and S,. Let R be a Sylow 2-subgroup of C.(v). Then R’ is
isomorphic to Z,XZ, and Cg(R’) is isomorphic to Z,XZ, ><Z Since UQ(CR(R ))
is equal to (z) we get that z is not conjugate to v in G. Hence [2; Corollary 1} ylelds
the assertion.

Lemma 5. Let M be a finite group. Assume that z is an involution in M such
that Cy(2)/O(Cyy(2)) is isomorphic to one of the following groups: :

(1) SL,(q){x), g=5(8), x induces the graph-automorphism on SL (q) and
x*€Z(SLy(9));
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(i) SU,(g){x), ¢=3(8), x induces the field-automorphism of order 2 on SU,(q)
and x*€Z(SU,(q)).
Then z€Z*(M).

Proof. Put C=Cy(z). Then C¢(x)/O(Cc(x)) is isomorphic to Sp,(g){x).
Let T be a Sylow 2-subgroup of C¢(x). Then (z)=Z(T)NT’. Thus Cc(x) contains
a Sylow 2-subgroup of Cg(x).

Assume that x is an element of order two. Then 2° does not divide the order
of Cg(x). Thus x is not conjugate to an involution of SL,(q) or SU,(q). Thus
[12; Lemma (5.38)] yields that M possesses a subgroup M, of index two. Con-
sequently, C,, (2)/O(C,y,(2)) is isomorphic to SL,(q), g=5(8) or SU,(q), 4= 3(8)
whence by Lemma 4 the assertion follows.

Put (u)=Z(SL,(q)), resp. Z(SU,(g)). Then we may assume that (u x) is
isomorphic to Q.

We shall prove that (z) is strongly closed in C’ with respect to M. Let v be an
involution of C’—{z). Then Cc(v)/O(Cc(v)) contains a subgroup E=S5 XS,
where S; and S, are isomorphic to SL,(g). We may assume Z(S;)=(v) and
Z(Sy)=(zv). Now C.(v) contains a subgroup Q isomorphic to Q, such that Q’
is equal to (z). Then C¢(v)/O(Cc(v)) is equal.to an extension of order 2 of O E.
Assume that z is conjugate to v in M. Then there is a Sylow 2-subgroup B of Q% E
such that z is conjugate to v in Ny, (B). Now B is isomorphic to Qg% (04X Q). Thus
NM(Z(B))/CM(Z(B)) is isomorphic to X,. However, since CB(O3(CM(Z(B))/B))
is isomorphic to s, we get a contradiction. Thus (z) is strongly closed in C’ with
respect to M.

Now we know that C¢(x) contains an element s such that sx is an involution
and sx is centralized by s. Thus z is a square in C,;(xs). This implies that xs is nct
conjugate to an element of C’. Hence by [12; Lemma (5.38)] M possesses a sub-
‘group M, of index two. Thus C);,(2)/O(Cyy,(2) is isomorphic to SL,(g), q= 5(8)
or SU,(q), ¢=3(8), which by Lemma 4 ylelds the assertion.

Lemma 6. Let M be a finite group and z a 2-central involution in M such hatt

Cu(2)/O(Cy(2)) is isomorphic to a split extension of an elementary abelian group
E of order 32 by Ay where A, acts undecomposable on E. Then z¢ Z*(M ).

.. Proof. Assume first that z is conjugate in M to an involution u of CM(A)—
~(EO(Cu(2))). Put C=Cy(z). Then there are only two classes of involutions in
C—=0, ,(C): Thus Cc(u)/O(Cc(u)) is.isomorphic-to a split extension of Eg by Dj.
Hence C/O(C) involves a subgroup A4, such that E4; is equal to (z)X(E;4;)
where A, acts intransitively on E;. Thus we may assume that there is an involu-
tion r in Z(CC(u)/O(Cc(u))) such that u is conjugate to ru and r is contained in
(Cc(u)/O(Cc(u))) Let S be a Sylow 2-subgroup of C,(4).containing a -Sylow
2-subgroup of C.(u). Assume that z is conjugate neither to » nor to zr. Then Z(S)
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is equal to {r, u). But this is a contradiction. Thus we have proved that (z) is not
strongly closed in E with respect to M if z is conjugate to an involution of C—0,, ,(C).

Assume now that (z) is not strongly closed in E with respect to M. Let T be
a Sylow 2-subgroup of C. Since all involutions of E are conjugate to involutions .
of Z(T) in C we get that all involutions of E are conjugate in M. If z is not con-
jugate to an involution of C—0,, ,(C) in M we get that E is strongly closed in T
with respect to M. Then it follows from [3] that EQO(M) is normal in M. Thus
|M/O(M):CO(M)/O(M)| is equal to 31, which is impossible.

Thus we have proved there are only two possibilities for the fusion of involu-
tions in M. The first is that {z) is strongly closed in T with respect to M. Then [2]
yields the assertion. The second is that all involutions of M are conjugate in M.
Thus all 2-local subgroups of M/O(M) are 2-constrained, so that applying [1]
we get a contradiction. Thus the lemma is proved.

Lemma 7. Put {uy=Z(0,(H)). Then Ng({u))/O(Ng({u))) is isomorphic to
one of the following groups:

() H/O(H);

(i) SL,(g){(x), 4=5(8), x*€Z(SL,(q)) and x induces the graph-automorphism
on SL,(q);

(i) SU,(q)(x), g=3(8), x*€Z(SU,(q)) and x induces the feld-automorphism
on SU,(q).

Proof. Put N=Ng;({(u)). Assume that N is not equal to H. Let M be a minimal
normal subgroup of N/(O(N)(u)). Then M is simple. Further, M possesses a 2-local
subgroup isomorphic to a split extension of E,; by 4;. Then, by Lemma 3, M is
isomorphic to L,(q); g=5@8), U,(q); q=3(8), M,,, M,3 or M*. Applying [5] we
get that M is isomorphic to L,(g); ¢g=5(8) or U,(g); g=3(8). Thus NJO(N) con-
tains a subgroup of index 2 isomorphic to SL,(q) or SU,(g). Now the structure

of Aut(SL,(¢)) and Aut(SU,(q)) yields the assertion.
P
Lemma 8. The group Cg(2)/O(Cq(2)) is isomorphic to Spy(2).

Proof. Put C=C4(2)/(0(Cs(2)){z)). Assume first that N=Ng({¥)) is not
equal to H. Let F be a minimal normal subgroup of C. Assume that F is not
simple. Then F is contained in N/(O(Cs(2)){z)). Then Cg;(z) is equal to N, which
by Lemmas 7 and 4 leads to a contradiction. Thus F is simple. Let T be a Sylow
2-subgroup of N. Since u(z) is not a square in T/{z) but all other involutions in
Z.(T/{z)) are squares in T/{z) we get that T is a Sylow 2-subgroup of G. Thus C
(possesses a Sylow 2-subgroup of type 4,,. Since all involutions of (N/(O(Cg¢(2)){z))
are conjugate to involutions of Z(7/(z)) we get that F possesses a Sylow 2-subgroup

of type A,,. Then by [9], F is isomorphic to 4,5, A3, PSpg(2) or has the involution-
fusion-pattern of Q.(3).
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Assume now that N is equal to H. Let F be a minimal normal subgroup of C.
Lemma 2 implies that F is simple and Lemma 6 yields that N/(O(Cs(2))(z)) is
contained. in F since a Sylow 2-subgroup of N is a Sylow 2-subgroup of Cg;(z).
Hence, by [9], F is isomorphic to A5, Ay5, PSpe(2) or has the involution-fusion-
pattern of Q,(3).

Thus in both cases we have proved that a minimal normal subgroup of C is
isomorphic to A, 413, PSpg(2) or has the involution-fusion-pattern of €,(3).

Assume first that a minimal normal subgroup of C has the involution-fusion-
pattern of ©,(3). Applying [10] and [7] we get that C;(2)/O(Cg(2)) is an odd ex-
tension of Spin, (g), ¢=3, 5(8). Now [11; Theorem (3.4)] yields a contradiction.

Assume now that a minimal normal subgroup of C is isomorphic to A;, or A4;5.
Then Cg(2)/O(Cg(2)) is isomorphic to 4y, or 4,5, so that G possesses only one
class of involutions. Now [8; Corollary] yields a contradiction.

Thus we have proved that a minimal normal subgroup of C is isomorphic
to PSps(2). The structure of Aut (PSpe(2)) shows now that C is isomorphic to
PSpe(2). Thus the lemma is proved.

Lemma 9. The group G is isomorphic to .3, the Conway simple group.

Proof. By Lemma 8, a Sylow 2-subgroup of G is of type .3, which by [11]
implies the assertion.
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