A characterization of . 3

GERNOT STROTH

The objective of this paper is the proof of the following theorem.
Theorem. Let G be a finite simple group and H a 2-local subgroup of G. Assume that $H / \mathbf{O}(H)$ is an extension of $Z_{4} * Q_{8} * D_{8}$ by Σ_{6}. Assume further that $\mathrm{Z}(H / \mathbf{O}(H))$ is of order two. Then G is isomorphic to .3, the Conway simple group.

Lemma 1. Put $H_{1}=H / \mathbf{O}(H)$. Then $H_{1} / \mathbf{Z}\left(H_{1}\right)$ splits over $\mathbf{O}_{2}\left(H_{1} / \mathbf{Z}\left(H_{1}\right)\right)$.
Proof. Put $H_{2}=H_{1} / \mathbf{Z}\left(\mathbf{O}_{2}\left(H_{1}\right)\right)$. Then $\mathbf{O}_{2}\left(H_{2}\right)$ is a symplectic space of dimension four. Thus $H_{2} / \mathbf{O}_{2}\left(H_{2}\right)$ is isomorphic to a subgroup of $Z_{2} \times \Sigma_{6}$. In this group there are exactly two subgroups isomorphic to Σ_{6}. Since $\mathbf{Z}\left(H_{1}\right)$ is of order two we get that H_{2} is uniquely determined. Thus we get in \dot{H}_{2} a subgroup isomorphic to Σ_{6}. Since $\mathbf{Z}\left(H_{1}\right)$ is of order two we get in $H_{1} / \mathbf{Z}\left(H_{1}\right)$ a subgroup isomorphic to Σ_{6}. This proves the lemma.

Lemma 2. Let z be the involution in $\mathrm{Z}(H)$. Then $H \neq \mathbf{C}_{G}(z)$.
Proof. By way of contradiction we assume $H=\mathrm{C}_{G}(z)$.
Assume first that z is conjugate to an involution x contained in $\mathbf{O}_{2}(H)-\langle z\rangle$. Then there is an element ϱ centralizing x such that $\varrho^{3} \in \mathbf{O}(H)$. Thus $\langle\varrho, \mathbf{O}(H)\rangle$ is contained in $\mathbf{C}_{G}(x)$. Let π be an element of $\mathbf{O}(H)$. Then $\mathbf{C}_{G}(\pi)$ contains $\mathbf{O}_{2}(H)$. Let v be an element in $\varrho \mathbf{O}(H)$. Then a Sylow 2-subgroup of $\mathbf{C}_{H}(v)$ is isomorphic to $\left(Z_{4} * Q_{8}\right)\langle a\rangle$ where $a^{2} \in\left(Z_{4} * Q_{8}\right)$. Thus 64 does not divide the order of $\mathrm{C}_{6}(v)$. Let ω be an element in $H-\mathbf{O}(H)$ such that $\omega^{3} \in \mathbf{O}(H)$ and $\omega \mathbf{O}(H)$ is not conjugate to $\varrho \mathbf{O}(H)$ in $H / \mathbf{O}(H)$. Let μ be an element of $\omega \mathbf{O}(H)$. Then $\mathbf{C}_{H}(\mu)$ possesses a Sylow 2-subgroup S such that S is of order at least 8 and $\Phi(S)$ is equal to $\langle z\rangle$. Thus 16 does not divide the order of $\mathbf{C}_{G}(\mu)$. Let g be an element of G such that $x^{g}=z$. Then ϱ^{g} is contained in H. Since 16 divides the order of $C_{G}(\varrho)$ but 64 does not divide the order of $\mathbf{C}_{G}(\varrho)$ we may assume $\varrho^{g} \in \varrho \mathbf{O}(H)$. Thus we may assume that g is contained in $\mathbf{N}_{G}(\langle\varrho\rangle)$. Let T be a Sylow 2-subgroup of $\mathbf{C}_{H}(\varrho) \cap \mathbf{C}_{G}(x)$.

[^0]Then it is easy to see that T^{\prime} is equal to $\langle z\rangle$. Thus x is not conjugate to z in $\mathbf{N}_{G}(\langle\varrho\rangle)$. We have proved that $\langle z\rangle$ is strongly closed in $\mathbf{O}_{2}(H)$ with respect to G.

Assume now that z is conjugate to an involution y in $H^{\prime}-\langle z\rangle$. Then $\mathbf{C}_{\mathbf{O}_{\mathbf{a}}(H)}(y)$ is isomorphic to $Z_{4} \times Z_{2}$. Thus there is an involution s in $\mathbf{O}_{2}(H)-\langle z\rangle$ such that y is conjugate to $s y$ in G. Let U be a Sylow 2-subgroup of H. Then every involution a of $U-\langle z\rangle$ is conjugate to $z a$ in U. Thus s is conjugate to $s y$ in G. But then s is conjugate to z in G, which is a contradiction. Thus we have proved that $\langle z\rangle$ is strongly closed in H^{\prime} with respect to G.

Assume now that z is conjugate to an involution u of $H-H^{\prime}$. Then z is a nonsquare in $\mathbf{C}_{\boldsymbol{H}}(u)$. Thus $\mathbf{C}_{\mathbf{O}_{\mathbf{2}}(H)}(u)$ is elementary abelian of order eight. But then there is an involution b in $\mathbf{O}_{2}(H)-\langle z\rangle$ such that u is conjugate to $b u$ in G. As above we get a contradiction.

Thus we have proved that $\langle z\rangle$ is strongly closed in a Sylow 2-subgroup of G. Hence [2; Corollary 1, p. 404] yields the assertion.

Lemma 3. Let M be a finite simple group which possesses a 2-local subgroup L such that $L / \mathbf{O}(L)$ is isomorphic to a faithful extension of E_{18} by A_{6}. Then M is isomorphic to $L_{4}(q), q \equiv 5(8) ; U_{4}(q), q \equiv 3(8) ; M_{22}, M_{23}$ or M^{c}.

Proof. By [6; Theorem 3], L contains a Sylow 2-subgroup of M. Now [4] yields the assertion.

Lemma 4. Let M be a finite group. which possesses an involution z such that $\mathrm{C}_{M}(z) / \mathbf{O}\left(\mathrm{C}_{M}(z)\right)$ is isomorphic to one of the following groups:
(i) $\mathrm{SL}_{4}(q), \quad q \equiv 5(8)$;
(ii) $\mathrm{SU}_{4}(q), \quad q \equiv 3(8)$.

Then $z \in \mathbf{Z}^{*}(M)$.
Proof. In $C_{M}(z)$ there are only two classes of involutions. Let v be an involution of $\mathrm{C}_{M}(z)$ not equal to z.

Put $C=\mathbf{C}_{M}(z)$. Then $\mathbf{C}_{C}(v)$ contains a subgroup $E=S_{1} \times S_{2}$ where ' $S_{1}^{\prime \prime}$ and S_{2} are isomorphic to $S L_{2}(q)$. Now we get $\mathbf{Z}\left(S_{1}\right)=\langle v\rangle$ and $\mathbf{Z}\left(S_{2}\right)=\langle z v\rangle$, implying that $\mathbf{C}_{C}(v) / \mathbf{O}\left(\mathbf{C}_{C}(v)\right)$ is equal to $\mathbf{Z}(C / \mathbf{O}(C)) *(E\langle a\rangle)$ where a induces the diagonal automorphism on S_{1} and S_{2}. Let R be a Sylow 2-subgroup of $\mathrm{C}_{\mathrm{C}}(v)$. Then R^{\prime} is isomorphic to $Z_{4} \times Z_{4}$ and $\mathrm{C}_{R}\left(R^{\prime}\right)$ is isomorphic to $Z_{2} \times Z_{4} \times Z_{8}$. Since $\sigma^{2}\left(\mathrm{C}_{R}\left(R^{\prime}\right)\right)$ is equal to $\langle z\rangle$ we get that z is not conjugate to v in G. Hence [2; Corollary 1] yields the assertion.

Lemma 5. Let M be a finite group. Assume that z is an involution in M such that $\mathrm{C}_{M}(\mathrm{z}) / \mathrm{O}\left(\mathrm{C}_{M}(\mathrm{z})\right)$ is isomorphic to one of the following groups:
(i) $S L_{4}(q)\langle x\rangle, q \equiv 5(8), x$ induces the graph-automorphism on $S L_{4}(q)$ and $x^{2} \in \mathbf{Z}\left(S L_{4}(q)\right) ;$
(ii) $S U_{4}(q)\langle x\rangle, q \equiv 3(8), x$ induces the field-automorphism of order 2 on $S U_{4}(q)$ and $x^{2} \in \mathbf{Z}\left(S U_{4}(q)\right)$.
Then $z \in \mathbf{Z}^{*}(M)$.
Proof. Put $C=\mathbf{C}_{M}(z)$. Then $\mathrm{C}_{C}(x) / \mathbf{O}\left(\mathrm{C}_{C}(x)\right)$ is isomorphic to $S p_{4}(q)\langle x\rangle$. Let T be a Sylow 2-subgroup of $\mathbf{C}_{C}(x)$. Then $\langle z\rangle=\mathbf{Z}(T) \cap T^{\prime}$. Thus $\mathbf{C}_{C}(x)$ contains a Sylow 2-subgroup of $\mathbf{C}_{G}(x)$.

Assume that x is an element of order two. Then 2^{9} does not divide the order of $\mathbf{C}_{G}(x)$. Thus x is not conjugate to an involution of $S L_{4}(q)$ or $S U_{4}(q)$. Thus [12; Lemma (5.38)] yields that M possesses a subgroup M_{1} of index two. Consequently, $\mathbf{C}_{M_{1}}(z) / \mathbf{O}\left(\mathbf{C}_{M_{1}}(z)\right)$ is isomorphic to $S L_{4}(q), q \equiv 5(8)$ or $S U_{4}(q), q \equiv 3$ (8) whence by Lemma 4 the assertion follows.

Put $\langle u\rangle=\mathbf{Z}\left(S L_{4}(q)\right)$, resp. $\mathbf{Z}\left(S U_{4}(q)\right)$. Then we may assume that $\langle u, x\rangle$ is isomorphic to Q_{8}.

We shall prove that $\langle z\rangle$ is strongly closed in C^{\prime} with respect to M. Let v be an involution of $C^{\prime}-\langle z\rangle$. Then $\mathbf{C}_{C}(v) / \mathbf{O}\left(\mathbf{C}_{C}(v)\right)$ contains a subgroup $E=S_{1} \times S_{2}$ where S_{1} and S_{2} are isomorphic to $S L_{2}(q)$. We may assume $\mathbf{Z}\left(S_{1}\right)=\langle v\rangle$ and $\mathbf{Z}\left(S_{2}\right)=\langle z v\rangle$. Now $\mathbf{C}_{c}(v)$ contains a subgroup Q isomorphic to Q_{8} such that Q^{\prime} is equal to $\langle z\rangle$. Then $\mathbf{C}_{C}(v) / \mathbf{O}\left(\mathbf{C}_{\mathbf{C}}(v)\right)$ is equal to an extension of order 2 of $Q * E$. Assume that z is conjugate to v in M. Then there is a Sylow 2-subgroup B of $Q * E$ such that z is conjugate to v in $\mathbf{N}_{M}(B)$. Now B is isomorphic to $Q_{8} *\left(Q_{8} \times Q_{8}\right)$. Thus $\mathbf{N}_{M}(\mathbf{Z}(B)) / \mathbf{C}_{M}(\mathbf{Z}(B))$ is isomorphic to Σ_{3}. However, since $\mathbf{C}_{B}\left(\mathbf{O}_{3}\left(\mathbf{C}_{M}(\mathbf{Z}(B)) / B\right)\right)$ is isomorphic to Q_{8}, we get a contradiction. Thus $\langle z\rangle$ is strongly closed in C^{\prime} with respect to M.

Now we know that $\mathbf{C}_{C}(x)$ contains an element s such that $s x$ is an involution and $s x$ is centralized by s. Thus z is a square in $\mathrm{C}_{M}(x s)$. This implies that $x s$ is nct conjugate to an element of C^{\prime}. Hence by [12; Lemma (5.38)] M possesses à subgroup M_{1} of index two. Thus $\mathbf{C}_{M_{1}}(z) / \mathbf{O}\left(\mathbf{C}_{M_{1}}(z)\right)$ is isomorphic to $S L_{4}(q), q \equiv 5(8)$ or $S U_{4}(q), q \equiv 3(8)$, which by Lemma 4 yields the assertion.

Lemma 6. Let M be a finite group and z a 2 -central involution in M such hatt $\mathbf{C}_{M}(z) / \mathbf{O}\left(\mathbf{C}_{M}(z)\right)$ is isomorphic to a split extension of an elementary abelian group E of order 32 by A_{6} where A_{6} acts undecomposable on E. Then $z \in \mathbf{Z}^{*}(M)$.

Proof. Assume first that z is conjugate in M to an involution u of $\mathrm{C}_{M}(z)-$ $-\left(E \mathbf{O}\left(\mathrm{C}_{M}(z)\right)\right)$. Put $C=\mathbf{C}_{M}(z)$. Then there are only two classes of involutions in $C-\mathbf{O}_{2^{\prime}, 2}(C)$: Thus $\mathbf{C}_{C}(u) / \mathbf{O}\left(\mathbf{C}_{C}(u)\right)$ is. isomorphic to a split extension of E_{8} by D_{8}. Hence $C / \mathbf{O}(C)$ involves a subgroup A_{5} such that $E A_{5}$ is equal to $\langle z\rangle \times\left(E_{16} A_{5}\right)$ where A_{5} acts intransitively on E_{16}. Thus we may assume that there is an involution r in $\mathbf{Z}\left(\mathbf{C}_{C}(u) / \mathbf{O}\left(\mathbf{C}_{C}(u)\right)\right)$ such that u is conjugate to $r u$ and r is contained in $\left(\mathbf{C}_{C}(u) / \mathbf{O}\left(\mathbf{C}_{C}(u)\right)\right)^{\prime}$. Let S be a Sylow 2 -subgroup of $\mathbf{C}_{M}(u)$, containing a Sylow 2-subgroup of $\mathrm{C}_{C}(u)$. Assume that z is conjugate neither to r nor to $z r$. Then $\mathbf{Z}(S)$
is equal to $\langle r, u\rangle$. But this is a contradiction. Thus we have proved that $\langle z\rangle$ is not strongly closed in E with respect to M if z is conjugate to an involution of $C-\mathbf{O}_{z^{\prime}, 2}(C)$.

Assume now that $\langle z\rangle$ is not strongly closed in E with respect to M. Let T be a Sylow 2-subgroup of C. Since all involutions of E are conjugate to involutions of $\mathbf{Z}(T)$ in C we get that all involutions of E are conjugate in M. If z is not conjugate to an involution of $C-\mathbf{O}_{2^{\prime}, 2}(C)$ in M we get that E is strongly closed in T with respect to M. Then it follows from [3] that $E \mathbf{O}(M)$ is normal in M. Thus $|M / \mathbf{O}(M): C \mathbf{O}(M) / \mathbf{O}(M)|$ is equal to 31 , which is impossible.

Thus we have proved there are only two possibilities for the fusion of involutions in M. The first is that $\langle z\rangle$ is strongly closed in T with respect to M. Then [2] yields the assertion. The second is that all involutions of M are conjugate in M. Thus all 2-local subgroups of $M / \mathbf{O}(M)$ are 2-constrained, so that applying [1] we get a contradiction. Thus the lemma is proved.

Lemma 7. Put $\langle u\rangle=\mathbf{Z}\left(\mathbf{O}_{2}(H)\right)$. Then $\mathbf{N}_{G}(\langle u\rangle) / \mathbf{O}\left(\mathbf{N}_{\mathbf{G}}(\langle u\rangle)\right)$ is isomorphic to one of the following groups:
(i) $H / \mathbf{O}(H)$;
(ii) $S L_{4}(q)\langle x\rangle, q \equiv 5(8), x^{2} \in \mathbf{Z}\left(S L_{4}(q)\right)$ and x induces the graph-automorphism on $S L_{4}(q)$;
(iii) $S U_{4}(q)\langle x\rangle, q \equiv 3(8), x^{2} \in \mathbf{Z}\left(S U_{4}(q)\right)$ and x induces the, feld-automorphism on $S U_{4}(q)$.

Proof. Put $N=\mathbf{N}_{G}(\langle u\rangle)$. Assume that N is not equal to H. Let M be a minimal normal subgroup of $N /(\mathbf{O}(N)\langle u\rangle)$. Then M is simple. Further, M possesses a 2-local subgroup isomorphic to a split extension of E_{16} by A_{6}. Then, by Lemma 3, M is isomorphic to $L_{4}(q) ; q \equiv 5(8), U_{4}(q) ; q \equiv 3(8), M_{22}, M_{23}$ or M^{c}. Applying [5] we get that M is isomorphic to $L_{4}(q) ; q \equiv 5(8)$ or $U_{4}(q) ; q \equiv 3(8)$. Thus $N / \mathbf{O}(N)$ contains a subgroup of index 2 isomorphic to $S L_{4}(q)$ or $S U_{4}(q)$. Now the structure of $\operatorname{Aut}\left(S L_{4}(q)\right)$ and $\operatorname{Aut}\left(S U_{4}(q)\right)$ yields the assertion.

Lemma 8. The group $\mathrm{C}_{G}(z) / \mathrm{O}\left(\mathrm{C}_{G}(z)\right)$ is isomorphic to $\widehat{S p_{6}(2)}$.
Proof. Put $C=\mathbf{C}_{G}(z) /\left(\mathbf{O}\left(\mathbf{C}_{G}(z)\right)\langle z\rangle\right)$. Assume first that $N=\mathbf{N}_{G}(\langle u\rangle)$ is not equal to H. Let F be a minimal normal subgroup of C. Assume that F is not simple. Then F is contained in $N /\left(\mathbf{O}\left(\mathbf{C}_{G}(z)\right)\langle z\rangle\right)$. Then $\mathbf{C}_{G}(z)$ is equal to N, which by Lemmas 7 and 4 leads to a contradiction. Thus F is simple. Let T be a Sylow 2-subgroup of N. Since $u\langle z\rangle$ is not a square in $T /\langle z\rangle$ but all other involutions in $\mathbf{Z}(T /\langle z\rangle)$ are squares in $T /\langle z\rangle$ we get that T is a Sylow 2-subgroup of G. Thus C (possesses a Sylow 2-subgroup of type A_{12}. Since all involutions of $\left(N /\left(\mathbf{O}\left(\mathbf{C}_{G}(z)\right)\langle z\rangle\right)\right.$ are conjugate to involutions of $\mathbf{Z}(T /\langle z\rangle)$ we get that F possesses a Sylow 2-subgroup of type A_{12}. Then by [9], F is isomorphic to $A_{12}, A_{13}, P S p_{6}(2)$ or has the involution-fusion-pattern of $\Omega_{7}(3)$.

Assume now that N is equal to H. Let F be a minimal normal subgroup of C. Lemma 2 implies that F is simple and Lemma 6 yields that $N /\left(\mathbf{O}\left(\mathbf{C}_{G}(z)\right)\langle z\rangle\right)$ is contained in F since a Sylow 2-subgroup of N is a Sylow 2-subgroup of $\mathbf{C}_{G}(z)$. Hence, by [9], F is isomorphic to $A_{12}, A_{13}, P S p_{6}(2)$ or has the involution-fusionpattern of $\Omega_{7}(3)$.

Thus in both cases we have proved that a minimal normal subgroup of C is isomorphic to $A_{12}, A_{13}, P S p_{6}(2)$ or has the involution-fusion-pattern of $\Omega_{7}(3)$.

Assume first that a minimal normal subgroup of C has the involution-fusionpattern of $\Omega_{7}(3)$. Applying [10] and [7] we get that $\mathbf{C}_{G}(z) / \mathbf{O}\left(\mathbf{C}_{G}(z)\right)$ is an odd extension of $\operatorname{Spin}_{7}(q), q \equiv 3,5(8)$. Now [11; Theorem (3.4)] yields a contradiction.

Assume now that a minimal normal subgroup of C is isomorphic to A_{12} or A_{13}. Then $\mathbf{C}_{G}(z) / \mathbf{O}\left(\mathbf{C}_{G}(z)\right)$ is isomorphic to \hat{A}_{12} or \hat{A}_{13}, so that G possesses only one class of involutions. Now [8; Corollary] yields a contradiction.

Thus we have proved that a minimal normal subgroup of C is isomorphic to $P S p_{6}(2)$. The structure of $\operatorname{Aut}\left(P S p_{6}(2)\right)$ shows now that C is isomorphic to $P S p_{6}(2)$. Thus the lemma is proved.

Lemma 9. The group G is isomorphic to .3, the Conway simple group.
Proof. By Lemma 8, a Sylow 2-subgroup of G is of type .3, which by [11] implies the assertion.

References

[1] B. Beisiegel, Über endliche einfache Gruppen mit Sylow 2-Untergruppe der Ordnung höchstens 2^{10}, Comm. Algebra, 5 (1977), 113-170.
[2] G. Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403-421.
[3] D. M. Goldschmidt, 2-fusion in finite groups, Ann. of Math., 99 (1974), 70-117.
[4] D. Gorenstein and K. Harada, Finite groups whose 2 -subgroups are generated by at most 4 elements, Mem. Amer. Math. Soc., 147 (1974).
[5] R. Griess, Schur multipliers of the known.finite simple groups, Thesis, University of Chicago (1971).
[6] K. Harada, On finite groups having self-centralizing 2-subgroups of small order, J. Algebra, 33 (1975), 144-160.
[7] J. B. OLsson, Odd-order extensions of some orthogonal groups, J. Algebra, 28 (1974), 573-596.
[8] R. Solomon, Finite groups with components of alternating type, Notices Amer. Math. Soc., 21 (1974), A-103.
[9] R. Solomon, Finite groups with Sylow 2-subgroups of type A_{12}, J. Algebra, 24 (1973), 346-378.
[10] R. Solomon, Finite groups with Sylow 2-subgroups of type $\Omega(7, q), q \equiv \pm 3(\bmod 8)$, J. Algebra. 28 (1974), 174-181.
[11] R. Solomon, Finite groups with Sylow 2-subgroups of type .3, J. Algebra, 28 (1974), 182-198.
[12] J. G. Thompson, Nonsolvable groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., 74 (1968), 383-437.

[^0]: Received March 18, 1975.

