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A characterization of .3 
GERNOT STROTH 

The objective of this paper is the proof of the following theorem. 

T h e o r e m . Let G be a finite simple group and H a 2-local subgroup of G. 
Assume that H/0(H) is an extension of Z4*QS*DS by Assume further that 
Z ( / / / 0 ( / / ) ) is of order two. Then G is isomorphic to . 3, the Conway simple group. 

L e m m a 1. Put H^HjOiH). Then HJZiHj) splits over 0 2 ( / / 1 /Z( / / 1 ) ) . 

P r o o f . Put H2=HJZ^O^Hj)). Then 02(H2) is a symplectic space of dimen-
sion four. Thus H2j02(H2) is isomorphic to a subgroup of Z 2 X Z 6 . In this group 
there are exactly two subgroups isomorphic to Z6. Since Z( / / , ) is of order two 
we get that H2 is uniquely determined. Thus we get in H2 a subgroup isomorphic 
to I 6 . Since Z (Ht) is of order two we get in HJZ(//1) a subgroup isomorphic 
to I 6 . This proves the lemma. 

L e m m a 2. Let z be the involution in Z ( H ) . Then / / V C c ( z ) . 

P r o o f . By way of contradiction we assume H=Cc(z). 
Assume first that z is conjugate to an involution x contained in O 2 ( H ) — ( z ) . 

Then there is an element Q centralizing x such that Q3CO(H). Thus (g,0{H)) 
is contained in CG(x). Let n be an element of O(H). Then CG{n) contains 02{H). 
Let v be an element in QO(H). Then a Sylow 2-subgroup of CH(v) is isomorphic 
to (Zt*Qa)(d) where a2£(Zi*Qa). Thus 64 does not divide the order of C c(v) . 
Let to be an element in H—0(H) such that co3£0(H) and a>0(H) is not con-
jugate to QO(H) in H/0(H). Let ¡x be an element of (OO(H). Then CH(p.) possesses 
a Sylow 2-subgroup S such that S is of order at least 8 and <P(S) is equal to (z). 
Thus 16 does not divide the order of CG(JJ.). Let g be an element of G such that 
xg=z. Then eg is contained in H. Since 16 divides the order of Cc((?) but 64 does 
not divide the order of CG(g) we may assume Q9£QQ(H). Thus we may assume 
that g is contained in Nc(<@>). Let J be a Sylow 2-subgroup of C H (g)f lC G (x) . 
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Then it is easy to see that T' is equal to (z). Thus x is not conjugate to z in NG((o)). 
We have proved that (z) is strongly closed in p2 (H) with respect to G. 

Assume now that z is conjugate to an involution y in H'—{£). Then CQ>( i / ) ( j ) 
is isomorphic to Z 4 X Z 2 . Thus there is an involution s in Oa (H)—(z) such that 
y is conjugate to s j in G. Let U be a Sylow 2-subgroup of H. Then every involution 
a of U—(z) is conjugate to za in U. Thus s is conjugate to sy in G. But then s 
is conjugate to z in G, which is a contradiction. Thus we have proved that (z) is 
strongly closed in H' with respect to G. 

Assume now that z is conjugate to an involution u of H—H'. Then z is a non-
square in CH(u). Thus CO a ( i 0(«) is elementary abelian of order eight. But then 
there is an involution b in O¡¡ (H)—(z) such that u is conjugate to bu in G. As above 
we get a contradiction. 

Thus we have proved that (z) is strongly closed in a Sylow 2-subgroup of G. 
Hence [2; Corollary 1, p. 404] yields the assertion. 

L e m m a 3. Let M be a finite simple group which possesses a 2-local subgroup 
L such that L/O(L) is isomorphic to a faithful extension of Eia by A6. Then M is 
isomorphic to Lt(q), ¿/ = 5(8); U4(q), q=3(8); M22, M23 or Mc. 

P r o o f . By [6; Theorem 3], L contains a Sylow 2-subgroup of M. Now [4] 
yields the assertion. " 1 

L e m m a 4. Let M be a finite group which possesses an involution z such that 
CM (z) /0(CM (z)) is isomorphic to one of the following groups: 

(i) SLt(q), 9 = 5(8); 
( I I ) S U 4 ( ? ) , q= 3 ( 8 ) . 

Then zGZ*(M). 

P r o o f . In CM(z) there are only two classes of involutions. Let v be an in-
volution of CM(z) not equal to z. 

Put C=CM(z). Then Cc(i;) contains a subgroup E=S1XS2 where S1, and 
5*2 are isomorphic to SL2(q). Now we get Z ( S ,

1 ) = <D) and Z(S2) = {zv), implying 
that Cc(i0/O(Cc(i;)) is equal to Z(C/0(C))*(E(a)) where a induces the diagonal 
automorphism on St and S2. Let R be a Sylow 2-subgroup of Cc(t>). Then /?' is 
isomorphic to Z 4 X Z 4 and CR(R') is isomorphic to Z 2 X Z 4 X Z 8 . Since &2(CR(FI')) 
is equal to (z) we get that z is not conjugate to v in G. Hence [2; Corollary 1] yields 
the assertion. 

L e m m a 5. Let M be a finite group. Assume that z is an involution in M such 
that CM (z) /0(CM (z)) is isomorphic to one of the following groups: 

(i) SL4(q)(x), g=5(8) , jc induces the graph-automorphism on SL4(q) and 
x^Z(SLM)l :: 
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(ii) SU4(q)(x), <7 = 3(8), x induces the field-automorphism of order 2 on SU4(q) 
and x2<EZ(SU4(q)). 
Then z£Z*(M). 

P r o o f . Put C = CM(z). Then C c (x ) /0 (C c (x ) ) is isomorphic to Spi(q)(x). 
Let T b e a Sylow 2-subgroup of C c(x). Then (z)=Z{T)V\T'. Thus C c (x) contains 
a Sylow 2-subgroup of Cc(x). 

Assume that x is an element of order two. Then 29 does not divide the order 
of CG(x). Thus x is not conjugate to an involution of SL4(q) or SU^q). Thus 
[12; Lemma (5.38)] yields that M possesses a subgroup M1 of index two. Con-
sequently, CMi{z)/0(CMi{z)) is isomorphic to SLJq), q = 5(8) or SU4(q), <7 = 3(8) 
whence by Lemma 4 the assertion follows. 

Put (u) — Z(SL4(q)), resp. Z(SU4(q)). Then we may assume that (u, x) is 
isomorphic to Qs. 

We shall prove that (z) is strongly closed in C' with respect to M. Let v be an 
involution of C'—(z). Then Cc(v)/0(Cc(v)) contains a subgroup £ = 5 1 X 5 2 

where 5j and S2 are isomorphic to SL2(q). We may assume Z(Sr)=(o) and 
Z(S2) = (zv). Now Cc(v) contains a subgroup Q isomorphic to Qs such that O' 
is equal to (z). Then Cc(v)/0(Cc(v)) is equal .to an extension of order 2 of Q * E . 
Assume that z.is conjugate to v in M. Then there is a Sylow 2-subgroup B of Q*E 
such that z is conjugate to v in NM(B). Now B is isomorphic to QS*(QSXQS)- Thus 
NM(Z(B))/CM(Z(B)) is isomorphic to i 3 . However, since C B ( 0 3 ( C M ( Z ( B ) ) / B ) ) 
is isomorphic to Qs, we get a contradiction. Thus (z) is strongly closed in C' with 
respect to M. 

Now we know that C c(x) contains an element s such that sx is an involution 
and sx is centralized by s. Thus z is a square in CM(xs). This implies that xs is net 
conjugate to an element of C'. Hence by [12; Lemma (5.38)] M possesses a sub-
group Mx of index two. Thus C M i (z ) /0(C M i (z ) ) is isomorphic to SL4(q), q= 5(8) 
or SU4(q), q = 3(8), which by Lemma 4 yields the assertion. 

L e m m a 6. Let M be a finite group and z a 2-central involution in M such halt 
CM (z) /0(CM (z)) is isomorphic to a split extension of an elementary abelian group 
E of order 32 by AB where Ag acts undecomposable on E. Then z£Z*(M). 

P r o o f . Assume first that z is conjugate in M to an involution u of CM(z) — 
— (EO (CM(z))). Put C=CM(z). Then there .are only two classes of involutions in 
C—0 2 , 2 (C) . Thus C c (u) /0(C c (u) ) is.isomorphic to a split extension of E8 by DB. 
Hence C / 0 ( C ) involves a subgroup A5 such that EA5 is equal to ( z ) X ( E l s A 5 ) 
where Ab acts intransitively on E16. Thus we may assume that there is an involu-
tion r in Z (CC (u)/0 (Cc (u))) such that u is conjugate to ru and r is contained in 
(CC(M)/0(CC(M)))'. Let S be a Sylow 2-subgroup of CM(W). containing a Sylow 
2-subgroup of Cc(u). Assume that z is conjugate neither to r nor to zr. Then Z ( 5 ) 
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is equal to (г, и). But this is a contradiction. Thus we have proved that (z) is not 
strongly closed in £ with respect to M i f z i s c o n j u g a t e to an involution of C—Or2(C). 

Assume now that (z) is not strongly closed in E with respect to M. Let T be 
a Sylow 2-subgroup of C. Since all involutions of E are conjugate to involutions 
of Z (Г) in С we get that all involutions of E are conjugate in M. If z is not con-
jugate to an involution of C — 0 2 , 2 ( C ) in M we get that E is strongly closed in T 
with respect to M. Then it follows from [3] that EO(M) is normal in M. Thus 
| M / 0 ( M ) :C0(M)/0(M)\ is equal to 31, which is impossible. 

Thus we have proved there are only two possibilities for the fusion of involu-
tions in M. The first is that (z) is strongly closed in T with respect to M. Then [2] 
yields the assertion. The second is that all involutions of M are conjugate in M. 
Thus all 2-local subgroups of M / 0 ( M ) are 2-constrained, so that applying [1] 
we get a contradiction. Thus the lemma is proved. 

L e m m a 7. Put <W) = Z ( 0 2 ( t f ) ) . Then N C «M» /0 (N C «K») is isomorphic to 
one of the following groups: 

(i) H/0(H); 
(ii) SLa (q)(x), gr = 5(8), x2dZ(SL4(<jr)) and X induces the graph-automorphism 

on SLt(q)\ 
(iii) SC/4(<7)(x), q = 3(8), ; c 2 £ Z ( S U ^ q ) ) and x induces the f.eld-automorphism 

on SUt(q). 

P r o o f . Put IV=NG((W)). Assume that N is not equal to H. Let M be a minimal 
normal subgroup of N/(0(N)(u)). Then M is simple. Further, M possesses a 2-local 
subgroup isomorphic to a split extension of E16 by Ae. Then, by Lemma 3, M is 
isomorphic to Lt(q); ¿7= 5(8), UJq); # = 3(8), M22, M.,3 or Mc. Applying [5] we 
get that M is isomorphic to Li(q)\ <7 = 5(8) or Ut(_q); <7 = 3(8). Thus N/0(N) con-
tains a subgroup of index 2 isomorphic to SL^q) or SUt(q). Now the structure 
of Aut (SX4(<7)) and Aut (SU^qj) yields the assertion. 

L e m m a 8. The group C c ( z ) / 0 (C c ( z ) ) is isomorphic to Spe(2). 

P r o o f . Put С=Cc(z)/(0(Cc(z))(z)). Assume first that N=NG((u)) is not 
equal to H. Let F be a minimal normal subgroup of C. Assume that F is not 
simple. Then F is contained in N/(0 (CG(z))(z)). Then CG(z) is equal to N, which 
by Lemmas 7 and 4 leads to a contradiction. Thus F is simple. Let Г be a Sylow 
2-subgroup of N. Since u(z) is not a square in T\(z) but all other involutions in 
Z ( T l ( z ) ) are squares in T/(z) we get that T is a Sylow 2-subgroup of G. Thus С 
(possesses a Sylow 2-subgroup of type A12. Since all involutions of (N/(O(C0(z))(z)) 
are conjugate to involutions of Z(T/(z)) we get that F possesses a Sylow 2-subgroup 
of type A12. Then by [9], F i s isomorphic to A12, A13, PSpe(2) or has the involution-
fusion-pattern of i27(3). 
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Assume now that N is equal to H. Let F be a minimal normal subgroup of C. 
Lemma 2 implies that F is simple and Lemma 6 yields that N/(0(CG(z))(z)) is 
contained in F since a Sylow 2-subgroup of N is a Sylow 2-subgroup of C G ( z ) . 
Hence, by [9], F is isomorphic to A12, A13, PSp6(2) or has the involution-fusion-
pattern of i27(3). 

Thus in both cases we have proved that a minimal normal subgroup of C is 
isomorphic to A12, A13, PSpe(2) or has the involution-fusion-pattern of i37(3). 

Assume first that a minimal normal subgroup of C has the involution-fusion-
pattern of Q7(3). Applying [10] and [7] we get that CG(z)/0(CG(z)) is an odd ex-
tension of Spin7 (g), q~3, 5(8). Now [11; Theorem (3.4)] yields a contradiction. 

Assume now that a minimal normal subgroup of C is isomorphic to A12 or A13. 
Then C c(z)/0(CG(z)) is isomorphic to Ä,2 or A13, so that G possesses only one 
class of involutions. Now [8; Corollary] yields a contradiction. 

Thus we have proved that a minimal normal subgroup of C is isomorphic 
to PSp6(2). The structure of Aut (PSpe(2j) shows now that C is isomorphic to 
PSp6(2). Thus the lemma is proved. 

L e m m a 9. The group G is isomorphic to .3, the Conway simple group. 

P r o o f . By Lemma 8, a Sylow 2-subgroup of G is of type .3, which by [11] 
implies the assertion. 
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