A characterization of .3

GERNOT STROTH

The objective of this paper is the proof of the following theorem.

Theorem. Let G be a finite simple group and H a 2-local subgroup of G. Assume that H/O(H) is an extension of $Z_4 * Q_8 * D_8$ by Σ_6 . Assume further that Z(H/O(H)) is of order two. Then G is isomorphic to .3, the Conway simple group.

Lemma 1. Put $H_1 = H/O(H)$. Then $H_1/Z(H_1)$ splits over $O_2(H_1/Z(H_1))$.

Proof. Put $H_2 = H_1/\mathbb{Z}(\mathbb{O}_2(H_1))$. Then $\mathbb{O}_2(H_2)$ is a symplectic space of dimension four. Thus $H_2/\mathbb{O}_2(H_2)$ is isomorphic to a subgroup of $Z_2 \times \Sigma_6$. In this group there are exactly two subgroups isomorphic to Σ_6 . Since $\mathbb{Z}(H_1)$ is of order two we get that H_2 is uniquely determined. Thus we get in H_2 a subgroup isomorphic to Σ_6 . Since $\mathbb{Z}(H_1)$ is of order two we get in $H_1/\mathbb{Z}(H_1)$ a subgroup isomorphic to Σ_6 . This proves the lemma.

Lemma 2. Let z be the involution in $\mathbb{Z}(H)$. Then $H \neq \mathbb{C}_G(z)$.

Proof. By way of contradiction we assume $H = C_G(z)$.

Assume first that z is conjugate to an involution x contained in $O_2(H) - \langle z \rangle$. Then there is an element ϱ centralizing x such that $\varrho^3 \in O(H)$. Thus $\langle \varrho, O(H) \rangle$ is contained in $C_G(x)$. Let π be an element of O(H). Then $C_G(\pi)$ contains $O_2(H)$. Let v be an element in $\varrho O(H)$. Then a Sylow 2-subgroup of $C_H(v)$ is isomorphic to $(Z_4 * Q_8) \langle a \rangle$ where $a^2 \in (Z_4 * Q_8)$. Thus 64 does not divide the order of $C_G(v)$. Let ω be an element in H - O(H) such that $\omega^3 \in O(H)$ and $\omega O(H)$ is not conjugate to $\varrho O(H)$ in H/O(H). Let μ be an element of $\omega O(H)$. Then $C_H(\mu)$ possesses a Sylow 2-subgroup S such that S is of order at least 8 and $\Phi(S)$ is equal to $\langle z \rangle$. Thus 16 does not divide the order of $C_G(\mu)$. Let g be an element of G such that $x^g = z$. Then ϱ^g is contained in H. Since 16 divides the order of $C_G(\varrho)$ but 64 does not divide the order of $C_G(\varrho)$. Let T be a Sylow 2-subgroup of $C_H(\varrho) \cap C_G(x)$.

Received March 18, 1975.

Then it is easy to see that T' is equal to $\langle z \rangle$. Thus x is not conjugate to z in $N_G(\langle \varrho \rangle)$. We have proved that $\langle z \rangle$ is strongly closed in $O_2(H)$ with respect to G.

Assume now that z is conjugate to an involution y in $H' - \langle z \rangle$. Then $C_{O_2(H)}(y)$ is isomorphic to $Z_4 \times Z_2$. Thus there is an involution s in $O_2(H) - \langle z \rangle$ such that y is conjugate to sy in G. Let U be a Sylow 2-subgroup of H. Then every involution a of $U - \langle z \rangle$ is conjugate to za in U. Thus s is conjugate to sy in G. But then s is conjugate to z in G, which is a contradiction. Thus we have proved that $\langle z \rangle$ is strongly closed in H' with respect to G.

Assume now that z is conjugate to an involution u of H-H'. Then z is a nonsquare in $C_H(u)$. Thus $C_{O_2(H)}(u)$ is elementary abelian of order eight. But then there is an involution b in $O_2(H) - \langle z \rangle$ such that u is conjugate to bu in G. As above we get a contradiction.

Thus we have proved that $\langle z \rangle$ is strongly closed in a Sylow 2-subgroup of G. Hence [2; Corollary 1, p. 404] yields the assertion.

Lemma 3. Let M be a finite simple group which possesses a 2-local subgroup L such that L/O(L) is isomorphic to a faithful extension of E_{16} by A_6 . Then M is isomorphic to $L_4(q)$, $q \equiv 5(8)$; $U_4(q)$, $q \equiv 3(8)$; M_{22} , M_{23} or M^c .

Proof. By [6; Theorem 3], L contains a Sylow 2-subgroup of M. Now [4] yields the assertion.

Lemma 4. Let M be a finite group which possesses an involution z such that $C_M(z)/O(C_M(z))$ is isomorphic to one of the following groups:

(i) $SL_4(q), q \equiv 5(8);$

(ii) $SU_4(q)$, $q \equiv 3(8)$.

Then $z \in \mathbb{Z}^*(M)$.

Proof. In $C_M(z)$ there are only two classes of involutions. Let v be an involution of $C_M(z)$ not equal to z.

Put $C = C_M(z)$. Then $C_C(v)$ contains a subgroup $E = S_1 \times S_2$ where S_1 and S_2 are isomorphic to $SL_2(q)$. Now we get $Z(S_1) = \langle v \rangle$ and $Z(S_2) = \langle zv \rangle$, implying that $C_C(v)/O(C_C(v))$ is equal to $Z(C/O(C)) * (E\langle a \rangle)$ where *a* induces the diagonal automorphism on S_1 and S_2 . Let *R* be a Sylow 2-subgroup of $C_C(v)$. Then *R'* is isomorphic to $Z_4 \times Z_4$ and $C_R(R')$ is isomorphic to $Z_2 \times Z_4 \times Z_8$. Since $\mathcal{O}^2(C_R(R'))$ is equal to $\langle z \rangle$ we get that *z* is not conjugate to *v* in *G*. Hence [2; Corollary 1] yields the assertion.

Lemma 5. Let M be a finite group. Assume that z is an involution in M such that $C_M(z)/O(C_M(z))$ is isomorphic to one of the following groups:

(i) $SL_4(q)\langle x \rangle$, $q \equiv 5(8)$, x induces the graph-automorphism on $SL_4(q)$ and $x^2 \in \mathbb{Z}(SL_4(q))$;

(ii) $SU_4(q)\langle x \rangle$, $q \equiv 3(8)$, x induces the field-automorphism of order 2 on $SU_4(q)$ and $x^2 \in \mathbb{Z}(SU_4(q))$. Then $z \in \mathbb{Z}^*(M)$.

Proof. Put $C = C_M(z)$. Then $C_C(x)/O(C_C(x))$ is isomorphic to $Sp_4(q)\langle x \rangle$. Let T be a Sylow 2-subgroup of $C_C(x)$. Then $\langle z \rangle = \mathbb{Z}(T) \cap T'$. Thus $C_C(x)$ contains a Sylow 2-subgroup of $C_G(x)$.

Assume that x is an element of order two. Then 2^9 does not divide the order of $C_G(x)$. Thus x is not conjugate to an involution of $SL_4(q)$ or $SU_4(q)$. Thus [12; Lemma (5.38)] yields that M possesses a subgroup M_1 of index two. Consequently, $C_{M_1}(z)/O(C_{M_1}(z))$ is isomorphic to $SL_4(q)$, $q \equiv 5(8)$ or $SU_4(q)$, $q \equiv 3(8)$ whence by Lemma 4 the assertion follows.

Put $\langle u \rangle = \mathbb{Z}(SL_4(q))$, resp. $\mathbb{Z}(SU_4(q))$. Then we may assume that $\langle u, x \rangle$ is isomorphic to Q_8 .

We shall prove that $\langle z \rangle$ is strongly closed in C' with respect to M. Let v be an involution of $C' - \langle z \rangle$. Then $C_C(v)/O(C_C(v))$ contains a subgroup $E = S_1 \times S_2$ where S_1 and S_2 are isomorphic to $SL_2(q)$. We may assume $Z(S_1) = \langle v \rangle$ and $Z(S_2) = \langle zv \rangle$. Now $C_C(v)$ contains a subgroup Q isomorphic to Q_8 such that Q' is equal to $\langle z \rangle$. Then $C_C(v)/O(C_C(v))$ is equal to an extension of order 2 of Q * E. Assume that z is conjugate to v in M. Then there is a Sylow 2-subgroup B of Q * Esuch that z is conjugate to v in N_M(B). Now B is isomorphic to $Q_8 * (Q_8 \times Q_8)$. Thus $N_M(Z(B))/C_M(Z(B))$ is isomorphic to Σ_3 . However, since $C_B(O_3(C_M(Z(B))/B))$ is isomorphic to Q_8 , we get a contradiction. Thus $\langle z \rangle$ is strongly closed in C' with respect to M.

Now we know that $C_c(x)$ contains an element s such that sx is an involution and sx is centralized by s. Thus z is a square in $C_M(xs)$. This implies that xs is not conjugate to an element of C'. Hence by [12; Lemma (5.38)] M possesses a subgroup M_1 of index two. Thus $C_{M_1}(z)/O(C_{M_1}(z))$ is isomorphic to $SL_4(q)$, $q \equiv 5(8)$ or $SU_4(q)$, $q \equiv 3(8)$, which by Lemma 4 yields the assertion.

Lemma 6. Let M be a finite group and z a 2-central involution in M such hatt $C_M(z)/O(C_M(z))$ is isomorphic to a split extension of an elementary abelian group E of order 32 by A_6 where A_6 acts undecomposable on E. Then $z \in \mathbb{Z}^*(M)$.

Proof. Assume first that z is conjugate in M to an involution u of $C_M(z) - (EO(C_M(z)))$. Put $C = C_M(z)$. Then there are only two classes of involutions in $C - O_{2',2}(C)$. Thus $C_C(u)/O(C_C(u))$ is isomorphic to a split extension of E_8 by D_8 . Hence C/O(C) involves a subgroup A_5 such that EA_5 is equal to $\langle z \rangle \times (E_{16}A_5)$ where A_5 acts intransitively on E_{16} . Thus we may assume that there is an involution r in $Z(C_C(u)/O(C_C(u)))$ such that u is conjugate to ru and r is contained in $(C_C(u)/O(C_C(u)))'$. Let S be a Sylow 2-subgroup of $C_M(u)$ containing a Sylow 2-subgroup of $C_C(u)$. Assume that z is conjugate neither to r nor to zr. Then Z(S) is equal to $\langle r, u \rangle$. But this is a contradiction. Thus we have proved that $\langle z \rangle$ is not strongly closed in *E* with respect to *M* if *z* is conjugate to an involution of $C - \mathbf{O}_{z',2}(C)$.

Assume now that $\langle z \rangle$ is not strongly closed in *E* with respect to *M*. Let *T* be a Sylow 2-subgroup of *C*. Since all involutions of *E* are conjugate to involutions of $\mathbf{Z}(T)$ in *C* we get that all involutions of *E* are conjugate in *M*. If *z* is not conjugate to an involution of $C - \mathbf{O}_{2',2}(C)$ in *M* we get that *E* is strongly closed in *T* with respect to *M*. Then it follows from [3] that $E\mathbf{O}(M)$ is normal in *M*. Thus $|M/\mathbf{O}(M):C\mathbf{O}(M)/\mathbf{O}(M)|$ is equal to 31, which is impossible.

Thus we have proved there are only two possibilities for the fusion of involutions in M. The first is that $\langle z \rangle$ is strongly closed in T with respect to M. Then [2] yields the assertion. The second is that all involutions of M are conjugate in M. Thus all 2-local subgroups of M/O(M) are 2-constrained, so that applying [1] we get a contradiction. Thus the lemma is proved.

Lemma 7. Put $\langle u \rangle = \mathbb{Z}(\mathbb{O}_2(H))$. Then $\mathbb{N}_G(\langle u \rangle)/\mathbb{O}(\mathbb{N}_G(\langle u \rangle))$ is isomorphic to one of the following groups:

(i) H/O(H);

(ii) $SL_4(q)\langle x \rangle$, $q \equiv 5(8)$, $x^2 \in \mathbb{Z}(SL_4(q))$ and x induces the graph-automorphism on $SL_4(q)$;

(iii) $SU_4(q)\langle x\rangle$, $q\equiv 3(8)$, $x^2\in \mathbb{Z}(SU_4(q))$ and x induces the field-automorphism on $SU_4(q)$.

Proof. Put $N=N_G(\langle u \rangle)$. Assume that N is not equal to H. Let M be a minimal normal subgroup of $N/(\mathbf{O}(N)\langle u \rangle)$. Then M is simple. Further, M possesses a 2-local subgroup isomorphic to a split extension of E_{16} by A_6 . Then, by Lemma 3, M is isomorphic to $L_4(q)$; $q \equiv 5(8)$, $U_4(q)$; $q \equiv 3(8)$, M_{22} , M_{23} or M^c . Applying [5] we get that M is isomorphic to $L_4(q)$; $q \equiv 5(8)$ or $U_4(q)$; $q \equiv 3(8)$. Thus $N/\mathbf{O}(N)$ contains a subgroup of index 2 isomorphic to $SL_4(q)$ or $SU_4(q)$. Now the structure of Aut $(SL_4(q))$ and Aut $(SU_4(q))$ yields the assertion.

Lemma 8. The group $C_G(z)/O(C_G(z))$ is isomorphic to $Sp_6(2)$.

Proof. Put $C=C_G(z)/(O(C_G(z))\langle z\rangle)$. Assume first that $N=N_G(\langle u\rangle)$ is not equal to *H*. Let *F* be a minimal normal subgroup of *C*. Assume that *F* is not simple. Then *F* is contained in $N/(O(C_G(z))\langle z\rangle)$. Then $C_G(z)$ is equal to *N*, which by Lemmas 7 and 4 leads to a contradiction. Thus *F* is simple. Let *T* be a Sylow 2-subgroup of *N*. Since $u\langle z\rangle$ is not a square in $T/\langle z\rangle$ but all other involutions in $\mathbb{Z}(T/\langle z\rangle)$ are squares in $T/\langle z\rangle$ we get that *T* is a Sylow 2-subgroup of *G*. Thus *C* (possesses a Sylow 2-subgroup of type A_{12} . Since all involutions of $(N/(O(C_G(z))\langle z\rangle))$ are conjugate to involutions of $\mathbb{Z}(T/\langle z\rangle)$ we get that *F* possesses a Sylow 2-subgroup of type A_{12} . Then by [9], *F* is isomorphic to A_{12} , A_{13} , $PSp_6(2)$ or has the involutionfusion-pattern of $\Omega_7(3)$. Assume now that N is equal to H. Let F be a minimal normal subgroup of C. Lemma 2 implies that F is simple and Lemma 6 yields that $N/(O(C_G(z))\langle z \rangle)$ is contained in F since a Sylow 2-subgroup of N is a Sylow 2-subgroup of $C_G(z)$. Hence, by [9], F is isomorphic to $A_{12}, A_{13}, PSp_6(2)$ or has the involution-fusion-pattern of $\Omega_7(3)$.

Thus in both cases we have proved that a minimal normal subgroup of C is isomorphic to A_{12} , A_{13} , $PSp_8(2)$ or has the involution-fusion-pattern of $\Omega_7(3)$.

Assume first that a minimal normal subgroup of C has the involution-fusionpattern of $\Omega_7(3)$. Applying [10] and [7] we get that $C_G(z)/O(C_G(z))$ is an odd extension of $\text{Spin}_7(q)$, $q \equiv 3, 5(8)$. Now [11; Theorem (3.4)] yields a contradiction.

Assume now that a minimal normal subgroup of C is isomorphic to A_{12} or A_{13} . Then $C_G(z)/O(C_G(z))$ is isomorphic to \hat{A}_{12} or \hat{A}_{13} , so that G possesses only one class of involutions. Now [8; Corollary] yields a contradiction.

Thus we have proved that a minimal normal subgroup of C is isomorphic to $PSp_6(2)$. The structure of Aut $(PSp_6(2))$ shows now that C is isomorphic to $PSp_6(2)$. Thus the lemma is proved.

Lemma 9. The group G is isomorphic to .3, the Conway simple group.

Proof. By Lemma 8, a Sylow 2-subgroup of G is of type .3, which by [11] implies the assertion.

References

- B. BEISIEGEL, Über endliche einfache Gruppen mit Sylow 2-Untergruppe der Ordnung höchstens 2¹⁰, Comm. Algebra, 5 (1977), 113–170.
- [2] G. GLAUBERMAN, Central elements in core-free groups, J. Algebra, 4 (1966), 403-421.
- [3] D. M. GOLDSCHMIDT, 2-fusion in finite groups, Ann. of Math., 99 (1974), 70-117.
- [4] D. GORENSTEIN and K. HARADA, Finite groups whose 2-subgroups are generated by at most 4 elements, *Mem. Amer. Math. Soc.*, 147 (1974).
- [5] R. GRIESS, Schur multipliers of the known finite simple groups, Thesis, University of Chicago (1971).
- [6] K. HARADA, On finite groups having self-centralizing 2-subgroups of small order, J. Algebra, 33 (1975), 144-160.
- [7] J. B. OLSSON, Odd-order extensions of some orthogonal groups, J. Algebra, 28 (1974), 573-596.
- [8] R. SOLOMON, Finite groups with components of alternating type, Notices Amer. Math. Soc., 21 (1974), A-103.
- [9] R. SOLOMON, Finite groups with Sylow 2-subgroups of type A₁₂, J. Algebra, 24 (1973), 346-378.
- [10] R. SOLOMON, Finite groups with Sylow 2-subgroups of type $\Omega(7, q)$, $q \equiv \pm 3 \pmod{8}$, J. Algebra. 28 (1974), 174–181.
- [11] R. SOLOMON, Finite groups with Sylow 2-subgroups of type .3, J. Algebra, 28 (1974), 182-198.
- [12] J. G. THOMPSON, Nonsolvable groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., 74 (1968), 383-437.

UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT 6900 HEIDELBERG, BRD