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On structural properties of functions arising from strong 
approximation of Fourier series 

V. TOTIK 

Introduction 

Let f(x) be an integrable and 27t-periodic function, and let 

(1) 2 (an c o s n x + b„ sin nx) 2 n = i 

be its Fourier series. Denote by s„(x)=s„(f ; x) and co(f;ó) the n-th partial sum 
of (1) and the modulus of continuity of / , respectively; || • || always stays for the 
supremum norm. 

FREUD [1] proved that 

2 \sk-f\p 
i 

: °° for some p > 1 implies / 6 Lip . 

An analogous problem with p = 1 was investigated by LEINDLER and NIKISIN 

[6], and this result was generalized by LEINDLER [4 ] as follows: If r is a nonnegative 
integer and 

I 
then 

t=i 

|/w(*+fc)-/M(*)| S K'h'logj ( X € [ 0 , 2IT]) 

for all x, and this estimation is best possible. 
From this result it follows that 

2 I W I 
k=l 

• «> does not imply / P Lip 1. 
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228 V. Totik. 

LEINDLER raised the question whether the condition 

2 K - / I " with some p (0 < p < 1) implies / € Lip 1. 

The answer was given in the affirmative by OSKOLKOV [7] and SZABADOS [8]. 
They also proved 

T h e o r e m A. For an arbitrary modulus of continuity Q. 

(2) 

and 

(3) 
imply / 6 Lip 1. 

ZGQh-fD 

/ dx 

Under a certain restriction on £2 they also proved the necessity of condition 
(3). In [10] we proved the necessity of (3) without any further assumption, and 
more generally, we proved Theorem B (below). 

In order to simplify our assertions, Q(x) will always denote an increasing convex 
or concave function on [0, with the properties 

(4) Î2(x) > 0(x > 0) ^limo i2(x) = 0 (0 ) = 0, 

and we suppose that the inverse of i2(x) (denoted by £2(x)) exists in the interval [0; 1]. 
With these notations we proved 

T h e o r e m B. If f satisfies (2), then 

(5) co(f-,5) = o{5 f ^ d x ) , 
d 

but no estimate better than this can be given. Moreover, if Q is concave, then we 
can replace 

¡ m d x by f * 
!i(g) i2(x) 

The following theorem answers the analogous problem for the conjugate 
function. 

T h e o r e m 1. (i) If Q is concave, then (2) implies / 6 Lip 1. (ii) Let Q be convex. 
From (2) the continuity of / follows if and only if 

(6) 
B(x) f i l l 

J x 
dx 
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If (6) is fulfilled, then (2) implies that 

(7) <D(fiS) = o [ f 2 ® d x } . 
vo x ' 

Furthermore, there exists a function f0 for which (2) is true, but 

(8) w(f0; S)è£c f dx (c > OJ. 
» * 

We note that part (i) is a known result of LEINDLER [4]. 

Recently KROTOV and LEINDLER [2] investigated the problem to give a necessary 
and sufficient condition for a monotonie sequence {/lk} such that 

(9) • 2h\sk-f l" 
k = 0 

with some p (0 < p <«>) 

should imply co( f , 5) = 0(co(S)), where OJ(S) is a fixed modulus of continuity. 
They proved 

T h e o r e m C. Let {AjJ be a positive nondecreasing sequence, co(<5) be a modulus 
of continuity and Then (9) implies co(f; 8) — 0(CQ(S)) if and only if 

(10) = 

As a common generalization of Theorem B and G we shall prove 

T h e o r e m 2. Let Q be a convex or concave function with properties (4), and let 
Uk}o°> {Vkio be positive nondecreasing sequences. If 

(11) llk = 0 M 
then . 

• ( ^ M ^ f c y ) - -
Furthermore, there exists a function /0 satisfying (11), for which 

(13) ©( /<>; - ) i — ^ i r V ) 1 
n) n k±i wt \k-Xk) 

C o r o l l a r y 1. Condition (11) implies / £ L i p 1 if and only i f , 

k t fik \k-AkJ 
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C o r o l l a r y 2. Let yèO. Then 

ZkW(\sk-f\) 
k=0 

implies 

« ( / ; * > = 4 / « 4 

It is easy to see that (12) reduces to (5) and (10) if ).k=nk = \ and nk = l, 
Q(x)=x", respectively. Thus Theorem B and C, and hence all of the above results 
are consequences of Theorem 2. 

We remark that for Q(x)=xp LEINDLER [5] proved some general statements 
of similar type. 

It is a very interesting problem to find the analogue of Theorem 2 for the 
conjugate function. 

We shall now generalize Theorem B in another direction. Let /8 be a nonnegative 
number and consider the condition 

(14) 2k<>Q(\sk-f\) 

instead of (2). We ask for the differentiability properties of / and / . We prove 

T h e o r e m 3. Let Q be a concave function with properties (4), and let /?S0, 
r=[p] *). (14) implies that / , / are r times differentiate, and if r is odd then 

(15) 

(16) 

/ ( r ) 6 Lip 1 

while if r is even then the role of f andf in (15) and (1*6) must be inverted. Furthermore, 
there are functions fp satisfying (14) with 

(17) 8) or a)(f</>; <5) s cd j ^ ^ ^ dx (c > 0), 

according as r is odd or even. 

-L ~ j 
The example Q(x)=e x, f(x)= 2 s ' n nx shows that for certain convex 

n = l n 
S2 condition (14) — with arbitrary large FI — does not guarantee the differentiability 

*) [/?] denotes the integral part of fi. 



Structural properties of functions 231 

of / . On this account for convex Q we shall investigate the condition 

k = 0 

(18) 

rather than (14). 

Before we state our result concerning (18), we need the following 

D e f i n i t i o n . If co is a modulus of continuity for which 1 , N k=0 \2K) or equivalently J dx<°°, let 
o x 

= sup 2 ! ® > 
lek) k=0 V 2 / 

where the supremum is taken over the sequences {efc} which satisfy the conditions : 

(fc = 0, 1, ...), ¿ M l . 
k = 0 

It is easy to verify that cu*(<5) is again a modulus of continuity, and that 

' o)(x) m(S) ^ ffl*(5) ^ / ^ d x . 
o x 

With these notations we prove 

T h e o r e m 4. *) Let Q be convex with properties (4), and [P]=r. 

(i) If jM[/?] then (18) implies 

(19) A>(F";5) = 0(Q(5)). 

(ii) Let /?=[)S]>0. From (18) it follows that 

(20) ; 8) = O (5 / dx} 

and this estimation cannot be improved. Thus i /(18) implies the existence o / / ( r ) then 

(21) f ^ d x ^ co. 
S x 

In each of the above statements we can put / in place of f . 

*) We mention, that KROTOV proved for a subclass of convex functions much more general 
results. His proofs are totally different from ours. 
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(iii) Let us 'uppose that (21) is satisfied and r > 0 . Then (18) implies 

(22) a>(f"-,S) = o [ f ^ d x ) , 

(23) <oUm-,S) = o[B*{S)+6 f ^ d x ^ , 
5 

if r is even, and the roles of f and f must be intervened in the odd case. Furthermore 
there are functions fr satisfying (18), for which 

(24) ft>(/r
w; <5) or co(fr

M;S) ^c f dx (c > 0) 
o x 

according as r is even or odd. 

R e m a r k . Estimation (23) is best possible also in the following sense: If 

(25) n*(,5)+5 / 
» x 

where oj(5) is an arbitrary modulus of continuity, then there is an f satisfying (18), but 

(26) <«(/(r);<5) or a j ( / ( r ) ; 5) * O{co{8)) 

according as r is even or not. 

We mention that from the proof of (i) the stronger estimation 

o>(f"-,5) = o{5 J ^ d x ) 
d 

~ 1 - ( n 
also follows and with the aid of the function fn{x) = y „ Q — sin nx one 

u w
 n t l 8 n1+i) I n J 

can prove that this is the best possible if r is even, but we do not know what is 
the best estimation if r is odd. 

I am grateful to Professor L . LEINDLER, who called my attention to these 
problems, and whose permanent interest and advises helped me very much in 
my work. 

§ 1. Lemmas > 

L e m m a 1 ([10], Lemma 2). Let {g„} be.a decreasing sequence of positive numbers 
and let 

e(x) - 2en — sinnx. 
n = l n 

Then 
( 71 V 1 1 m 



Structural properties of functions 233 

L e m m a 2. Let OJ(X) be a modulus of continuity, P=0, and suppose that 

En(f ) = 0 • The following statements are true: 

(i) if ft > 0 then En(f) = o\±co ( i - ) j , 

(ii) if ¿9 = 0, and f Z M d x * - then E n ( f ) = O { f " ^ dx), 
0 x vQ x ) 

(iii) if fi > W = r, then En(f(r)) - O [-^7 ® ( 7 ) ) , 

(iv) if /? = [/?]> 0, then - 0 ^ ( 1 ) ) , 

(v) if p = [p], and then En(fm) = o { f " ^ d x ) . 
0 x \ x ' 

These statements can be easily proved using the estimations below (see [9], 
pages 321 and 304): 

£„( / ) =§ c k ( / ) + 2 , En(fir)) S cr [nrEn(f)+ 2 V - ^ v i / ) ) • 
V v=n+l V / V v=n+l / 

To prove (ii) and (v) use the inequality 

v=„ v i v ; j x 
We omit the details. 

L e m m a 3. If Q is concave, and are nondecreasingpositive sequences 
then 

(1.1) 2 K ^ k W ( x ) - f ( x ) \ ) ^ K 
k = 0 

implies that 

(1.2) £4n = o [ l o g n ( n ^ „ Q ( i ^ - ) ) _ 1 j . 

P roo f . Using the known Lebesgue estimation 

\sn(x)~m\k3En(f)\ogn 
and the inequality 

flfcyi) „ n(ayi) „ G(ay2) , n , n , \ = a ^ a — > 0 0 < y, < v2) 
J>i ayi : • «y2 y2 ,•• y v 
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coming from the concavity of Q, we get from (1.1) 

K i 
in 

t=n + l 
1 ^ « f e i t f f i 

*=n+l I s * - / ! 

Q(jinEn\ogn) 
3En log 2n 

Ln 

2n 
Z h - f \ *=n+l 

n 
QfaEJogn) 

6E„ log n 
LnE. n n 

i.e. 

(1.3) Ein = 0(E2n log «(«;.„i2(/i2n£2n log n))-\ 

Now it follows from (1.1) that 

Zlknk\sk(x)-f(x)\ ^ K', 
*=o 

and from this that E2n=0((nXnfi„)~1). If we write this estimation in (1.3) wc ob-
tain (1.2) 

L e m m a 4. If Q(x) is convex, {A*}, {/x*} are nondecreasing positive sequences, 
and 

then 
f ( x ) = Z Q i—i—lsin nx 

n=i8np„ \nkn) 

2 4 * 2 0 ^ - / 1 ) 
4 = 0 I 

P r o o f . We introduce the notation 

sin nx. 

7T 7C Since fix) is odd, it is enough to consider the case x > 0 . Let 
N N-1' where N is an integer. With these notations we have 

(1.4) z M f a = f z V Z ) W f a M x ) - f ( x ) \ ) = B^+B^X). 
k—0 o k=N' 

Using the well-known estimation 

LZ ai s i Q 

l /=P 

— ap ( a p S a p + 1 S . . . ) , 
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we get 

(1.5) 

( k + l f 

From the convexity of Q it follows that 

^ 1. 

(1.6) B^x) S N2 XkQ L I *2 An(x) I +nk 2 S 
fc=0 V In—fc+1 I n = N 1/ 

^ " Z T W M a»(x)\) + 4,(*)|) = Bn(x)+B12(x). *=0 V ln=k + l * =0 2 V l„ = jv M 

Similarly to (1.5) we get 

(1.7) W s ^ ^ ^ ) ) S i l o ^ ^ K ^ ) ) = T 

Finally, using the inequality sin x^x (x^O), we obtain 

JV-l ( N-l 1 / 1 \ ^ N- 2 ( 2 Q | - H 

N-2 2 ß i2l , I N _ 2 N N _ x "V 3 n=fc+l I. _ 1 -V V 1 1 V „ 1 
= Z ^ Tr—\ ^ "77—r Z Z — = v t 2> n — = 

t=o TV—1 TV— 1 t = 0 n=k+\ n N—l„=i n 

and this — together with (1.4)—(1.7) — verifies our Lemma. 

L e m m a 5. If Q(x) is concave, {At}, {/!*} are positive nondecreasing sequences and 

then 

/ « = S i n n x ' „=1 fl„i \ n'A„a ) 

2 kkQ(nk\sk-f\) k = 0 



236 V. Totik. 

P r o o f . Let AJx) = — Ql }. \ sin nx and rr—r- From the conca-
vity of Q we obtain ^ { n X " J N N ~ 1 

(1.8) 2 ¿Mnk\sk(x)-f(x)\) = + ¿Ui2(^M*)-/(x)|) = B ^ + B.Jx). 
k=0 V»=o k = N> 

(1.9) 

B*(X) = 2 haUk\ 2 An(x) k = N V \n=k+l 

= 2 h k=N 

J , 4 N 1 
k=N 71 (k+iy 71 ' 

(1.10) N2 An(x)\ + N2 2 An(x)] - Bu(x) + Bl2(x). 
k =o v n=fc + l / fc=0 v >n=N ' 

Similarly to (1.9), we get 

o n ) ^ V ^ s ^ y ) - ^ ^ ( o ^ ) s i . 
2 

In order to estimate Bu(x) let 1 <2 m and wk=[Iog (/c + 1)]. Using 
these notations we have 

nxt 
N- 2 f itf-1 1 / 1 

(i . i2) 2 - f l b r 
k=0 I. n=k +1 ^ni 

2m_1 r 2m—1 / J \ j 1 2--1 fm-1 2' + l - l / 1 \ „ ) 

2m —1 m-1 r2I + 1 —1 ( 1 \ „ ) 

pi —1 m —1 
~T~ m-1 2 • ( - ( 1 l) 

= 2 7 r 2 + 2 7 r 2 ^ 2TT 2 fi U - + 
/=0 , m + l 1=0 l / g« ' / 

2 

(1.8)—(1.12) verify the assertion. 
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L e m m a 6. Let e s 1 and ß concave. If 

(1.13) 

then 

(1.14) 

2 k r Q ( M f ) - f \ ) 
k=0 

2 k - ' Q i M D - f l ) 
k=0 

P r o o f . Let 2 ¿ k ( x ) - Taking into account the concavity of Q and 
k=0 

r ^ 1, (1.13) gives that 

2k\Ak(x)I ^ 2 H k _ 1 ( x ) - / M J + M * ) - / M I ) = o[2krQ(\sk{x)-f(x)\)], 
* =0 fc = 0 vt=0 ' 

i.e. 2kAk(x) is absolutely convergent. From this it follows that f'(x) — 2 kAk(x), 
k=0 (c = 0 

and hence 

2 kr~1Q(\sk(f'; x)-f'(x)\) = 2 kr^Q fl 2 nAn(x) ) = 

k=0 fc=0 Mn=* + 1 ' 

= 2 k'-1Q{\k(sk(x)-f(xj)+ 2 (sn(x)-f(x))\) ^ 2 kr-1Q{k}sk(x)-f(x)}) + 
*=0 

+ 2 k'-' 2 n(\s*(.*)-f(*)\) ^ 2 k'Q(\sk(x)-f(x)\)+ 2 Q(\sn(x)-f(x)\) 2 k'~\ 
(1 = 0 n=k k=0 n=0 k=0 

from which, using (1.13), we obtain (1.14). 

L e m m a 7. Let R„(r, f)=Rn(r, f ; x)= 2 f l - i - T r ) 1 where f(x)~ 

~ 2 4 W . If rs 1, iAen 
*=o 

where Cr depends only on r. 
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P r o o f . Denote Dk(t) and Kk(t) the fc-th Dirichlet and Fejér kernel, respectively. 
Using the nonnegativity of Kk(t) we get by an Abel rearrangement 

I Rm(r,f;x)\= 1 
(n + iy 

1 
(n + iy 

1 1 

i s ^ X i f c + i x - f c ' j U »=0 i 

/ f ( x + u)Í2\k + l)Kk(u)(2(k+iy-k'-(k+2y) 
-Í ч = о 

+ (n + i y n 

+ (« + l ) i„( t t ) ((n + l ) ' - n ' ) } d « | s 

- IsTW n Ц 1 ( k + 1 ) ( k r H k + 2 ) r ~ 2 { k + 1 ) r ) + ( ( и + i y ~ " r ) ( n + 1 } } = 

= ° (( iTIf Ш ( k + l ) k " 2 + ( и + = ° ( S ) -

and this proves our lemma. 

L e m m a 8. For 

*n(r>j) = rn(r>J> X) y—i ( r = l ) 

we have 
| t „ ( r , / ) - / | ^ c'rE„U). 

P r o o f . 
2л-1 2n-l 

| T n ( r , / ) - / | = 
2 ( s * - / ) ( ( f c + l ) ' - f c O 

k=n 

nr(2r—1) 

2 | s » - / | ( ( k + i y - f c O *=я 
n r(2 r — 1) 

s - 2 I * - / I = o(£„</)). " t=n 

In the last step we used one of the results of LEINDLER [3]. 

L e m m a 9. Lei Q be a convex function, for which 

0 x 

and let a.^0 such that 

2 Q(kak) S К for some К ^ 1. 
*=i 
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Then 

(Q*(d) was defined in the Definition). 

P r o o f . It is enough to prove Lemma 9 for K=l, namely if K>1 we can 

apply the case K— 1 to the sequence using the inequality Q — 

For K= 1 the proof is very simple: 

2s + 1n—1 2s + 1n-l 
2 kak, 2 /«. + 1.-1 \ ( Z, ««t\ ^ £s 

2s n 
i.e. 

2« + l n - i + 1«-i ( o 1 
2 ft=2»o \Z nj 

and if we sum these inequalities for s=0,1,... we get the required inequality. 

L e m m a 10. If co is concave and E„(f) = C>|ct>*^—jj, then 

(1.15) a>(/; S) = o[d J ^ dx+uf(S)\. 
\ t x ) 

P r o o f . It is enough to prove (1.15) for <5=^-. We shall use the following 
inequality (see [9], page 333). 

n 

/ n t 2 E k t f ) \ 

From the definition of to* it follows that there are sequences {e^KLo 
( r=0 , 1, . . . , m—1), for which 

« . ( / ; - o [ i - S » - ( i ) ) = 0 ( 2 - £ r « ' ( i ) ) -

~ ° { 2 ~ I X l H ^ ) ) " 0 ( 2 - " I 2 ' f . l " ( ? ) } ) " 

and this proves (1.15). 
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§ 2. Proof of the theorems 

P r o o f of T h e o r e m 1. It is enough to prove the theorem for convex Q, 
namely if Q is concave, then (2) implies 

2 h - f \ * = 0 

and if we apply the second part of Theorem 1 to the convex function i 3 ( x ) = x 
we get that 

(2-1) 

o>(f;d) = o { f - d x ) = 0(S) 
\ x 

i.e. / 6 Lip 1. 
Let thus Q be convex. First we prove (7). Let us denote by ff„(/)=ff„(/; x) 

the n-th (C, l)-mean of the Fourier series of / , and let 

2/1-1 .. 
2 sk(x) 

T„(/) = T„(/; X) = 2<r2/i-i(/; x)-on~iif-, X) = . 

From (2), using the convexity of Q we get 
n 

( , 2 
K G 0 - / I - Q(Q(K(f)-f\)) ^ n J j ^ 

With the notation 
f - ° n ( f ) = gn(f) 

° n ( f ) - f = [°n CO) - CO) + (<T„ (g„ ( / ) ) - g„ ( / ) ) . 

We can write (2.1) in the form gn{/)=0 | i2 , from which a„(gn(f)) = 

= and so (2.2) implies 

(2-3) ^ ( T n ( / ) ) - < r n ( / ) = o [ i 2 ( - i ) j . 

If we keep in view the expression of a„{f), it is easy to see that 

we have 

(2.2) 
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so (2.3) implies d'n(f) = 0 |wi2 ^ - j j , and together with this 

(2-4) (?„(/))' = (*,( / ) ) ' = O (nfl ( { ) ] . 

Now (2.1) gives E n ( f ) = 0 l ^ i — ) | , from which by Lemma 2 (ii) it follows 

U V" Q(x) \ 

" —^-t-dxy It is known (see e.g. Lemma 8) that |T„ (g ) -g | ^ 

^KEn(g); and hence, also using the previous estimation, we get (2-5) |T„ ( / ) —f \ = o\ f" ~ ~ dx\. 
vo x ' 

Now we are ready to prove (7). If \h\s—, then (2.4) and (2.5) give 
• n 

|f(x)~f(x + h)\ =§ |/(x)-Tn(/; *)|+ |t„(/; x)-r„(/; x + h)\ + |t„(/; x + h)-f(x + h)\ = 

= o { f n ~^dx+\hT'„(f;x + $h)\) = 

and this is equivalent to (7). 
By Lemma 4, (2) is satisfied by the function 

fo(x) = 2 TT n i~) sin nx-

Then, • 
°° 1 - ( 1) fo(x) = ~ 2 n J COS nx, 

and here the right hand side is the Fourier series of a continuous function only if 

nfx n \n) 

(for the (C, 1) means of this series must then be bounded), and this is the same 
as (6). The statement, that in case (6) / is continuous is a direct consequence of 
(7), proved above. 

Let T< t h e n 

m - m =J+i J + 1 1 n ({)cos + 1 i ! D ( I ) 2 sin2» t • 

i6 
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It is easy to see that 

and so 

and hence (8) follows by a standard argument. 
We have completed our proof. 

P r o o f of T h e o r e m 2. We have to consider two cases separately 

Case I: Q is convex. L e t 

2 XkQ{iik\sk(x)-f(x)\) ^ K. 

We have 

Q(jinEJ ^ Q\nn 

2/1 

k=n +1 
n 

Q 
2 Vkfo-f\ 

k=n+l 

Q 

2 n 

( 2 Hk\h~f\\ 
— 

2 
k=n + l 

2 XkQ(fik\sk-f\)n 
k=n +1 ^ A 

_ nX„ ' 
i.e. 

nX„ 

E2n(f) = 0 

and hence, using the inequality (1.16), 

¿ ¿ M (2E2I 

and this is (12). 
Let 
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By Lemma 4, / 0 satisfies (11). Now applying Lemma 1 to f0 we get 

and this proves (13). 

Case II: Q is concave. By Lemma 3 we have 

(2.6) Ein(f) = O (log n [nnin„Q ( - ^ j ) . 

Let mk resp. nk the least and the greatest n (if any), for which 

(171 1 Q ilog n) ^ _L 
. (fc+l)A4 + i " \nXn)-kAk' 

£2 is concave, so there is a c > 0 for which 

logic 1 
k ' kXk kXk 

if k is large enough. From this and (2.7) it follows at once for k^k0 that 

(2-8) mk^k+l, Xmk^Xk + 1, nmk^pk 

(2.9) J S & s f l L L ) , l e ^ ^ o f — i ) . v } mkXmk U A J ' nkXnk {(k+l)Xk+1) 

We shall show that for k ^ k 0 

(2.10) 

First we consider the case nk=mk=n. Using the inequalities 

{(k + l)Xk+1) -"{(k+\)Xk) = k+l"{kxk)' X 

coming from the concavity of Q, we obtain for k ^ k 0 

log n 

1 \fik pk + 1 \(k+l)Xk+1))) 

16* 



2 4 4 V . T o t i k . 

If, however, nk>mk and k ^ k 0 , then 

n=mk V. V ',An ' ) v Amkt*mk " = r"k 

= 0 f ( f e + 0 r* '°g 1 ¿ J ^ 0 f ( f c + l) r l o g l o g > 1 . 1 1 _ 
\ mk nk )) 

I № m J ] nk r U J " l ( f e + i ) A f c + 1 J J J 

Thus we have proved (2.10) for k ^ k 0 . 

Let now m ^ m ^ n , . Using (2.6) and (2.10) we get 

» ( ' 4 ) = 0 , 1 E « O T ) = 0 , 1 - = 

- » ( ¿ ¿ i - i - M W n - i i ^ i ) ) -

_ 0 ( . L ¿ ± s ( • )] = 0 | _ L | _ L n ( ' ) ) , 

(m kti fik K kAk )) (m fik I k/.k )) 

which proves (12). Let 
/ o W = 2 — ® I 2 \ 1 s i n n x -

By Lemma 5, /„ satisfies (11). Applying again Lemma 1 (it is easy to see that it is 
applicable), we obtain 

/ o ( £ ) ^ . ( 0 ) £ i l Z ^ A - i k ) s - S T i ^ + D j L l l ^ ) ^ 

6 n k f i Hk v kXk) 6 n kti Hk \ k/.k) 

and this is (13). — The proof of Theorem 2 is thus completed. 

P r o o f of T h e o r e m 3. We shall consider only the case when r is odd, the 
other case could be treated similarly. 
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If we apply Lemma 6 Mimes, we gett hat (14) implies 

2 ^ - Q { \ s k ( f ( r ) ) - f ( r ) \ ) 
k=0 

and hence, using the assertion (i) of Theorem 1, we get fr°=f(r>£ Lip 1, while 
using Corollary 2 of Theorem 2 we obtain 

c o ( f " ; ö ) = o(öfQ(xl
xlß'~r)dx) 

as it was proposed in (16). 
Let 

fß(x)= ¿ ß ( - i j ) s i sm nx. 

If we run through the proof of Lemma 5 we can see that its proof equally works 
for f f , so fp satisfies (14). Keeping in mind that Q is convex, we have 

and this implies that 

so we can apply Lemma 1 to f j j r \ and this gives 

f n lit 
n 

1+J8-r 

where 

Q(u1+ß~r) 
du, 

y =• 2+ß 

Also 2 + ß 
1 + ß - r 

so we get from (2.11) that 

l / r ^ J - Z r c o ) = C ~ d X> n J xi 
1/n 

which was to be proved. 
Thus we have completed our proof. 
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P r o o f of T h e o r e m 4. Let f(x)~ 2 Ak(x) and 
k = 0 

Using an Abel rearrangement we get from (18) 

= f l ( . < » + 1 > ' 

k — 0 

(M + 1)^ 

Zih-Wk+n^'-k^1). * = 0 
W + l ) 

Q(\s0-f\)+ 2a{k*\Sk-f\) 
k=1 __ A 

s Q 
\s0~f\+2 k"\sk-f\ * = 1 

f l+1 

which implies 

(2.12) 

n + 1 n+1' 

Now Rn(P +1 , / ) is a trigonometric polinomial of order at most n, so (2.12) implies 

(2-13) En{f) = 0 ( ^ ( 7 ) ) -

We shall treat after that the cases (i)—(iii) separately. 

Case (i). By Lemma 2 (iii) from (2.13) it follows that £„ ( / w ) = O [ Q i—] | , 
and this, connecting with inequality (1.16) gives n n ' 

From the concavity of Q it follows that Q ^ - j s Q j (n ̂  k) and so 

and this proves (19). 

Case (ii) According to Lemma 2 (iv), (2.13) implies 
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and so 

from which (20) already follows. 
Let r e.g. even, and 

; nx 

(if r is odd then we must take sin x in place of cos x). /„ satisfies (18): 

k = 0 I n=k + l n vn / 
cos nx 

t = 0 ^ 2 
1 

k=0 (fe+1)2 

fc(r-1}(x) = ( - l)r/2 1 - 4 ( -4 ) sin nx, /1=1 n \n / 
and so using Lemma 1 we get 

/ r " ( i ) - / r » ( 0 ) | S - ^ ¿ ^ " M F ) s 

, ' I S ' ' „ ( ' ) , « 1 
6 n =i k \k) n J x 

and , this proves that (20) is best possible in general. 
1 Lemma 2 (i) and the above proofs show that all of the above statements are 

true for the conjugate function, too. 

Case (iii). We shall consider the case when r is even. Let 

f=Rn{r+\,f)+gn(f). 
With this notation 

(2.14) 

Rn(r+l,f)-f = (Rn(r+\,R„(r+l,f))-R„(r+l,/)) + (Rn(r +1 , g„( / ) ) -g„( / ) ) • 

By (2.12) g „ ( / ) = 0 ^ ¿2 ̂ j j , and this implies by Lemma 7 that 

and so from (2.14) it.follows that 

(2.15) ' (r +1 , (r + 1, / ) ) - 1, / ) = O [-¿r i2 ( i - ) j . 

Let 

K . 0 - + 1 , / ) ~ 
k = 0 

\ 
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Then 

*.(»•+1, R„(r+l,f))-R„(r+l,f) = J fl ) AW - 2 M x ) = 
k=o ( +1/ J »=o 

1 n C _ i y / 2 + l 

= - o J + I y T T J ? = 1. / ) ) ( ' + 1 ) -

This equality together with (2.15) gives 

from which 

(2.16) ?<r+1>(r+1, / ) = T<'+1>(r+ 1, / ) = < ( r + l , / ( '> ) = O [«fl ( - i ) j 

follows at once (T„ (r, f ) was defined in Lemma 8). 
(2.13) implies by Lemma 2 (i) and (v) and by Lemma 8 that 

(2.17) | T n ( r + i , /C '> )_ /C> | 
vo x ' 

Now we get (22) from (2.16) and (2.17) as we got (7) in Theorem 1 from (2.4) 
and (2.5). 

Before proving (23) we show that / ( r ) is the sum of its Fourier series. Because 
of the continuity of / ( r ) it is enough to prove that its Fourier series everywhere 
convergent. With the usual notations 

/">(*) ~ ( - l ) " 2 2kTAk(x), 
k = 0 

(2.18) J kTAk(x) = 2 (kr~(k+ l ) r ) s k ( x ) - m ' s m ^ ( x ) + n'sn(x) = 
k=m k—m 

= o["2 fe'-1 \sk(x)-f(x)| + m ' | s m _ ! ( x ) - f ( x ) \ + nr|s„(x)~f(x)\). 
Nfc = m / 

Lemma 9 shows by (18) that 

n — 1 . 
2 |s*(*)—f(x)l — 0 as n, m— 

k = m 

moreover i2 (w r | jn(;t)-/(*))—0 (« — and this implies nr|5„(x)—/(x)|—0 as 
OO 

n — T h u s (2.18) gives the convergence of 2^rAk(x), and so 
k = 0 

/<'>(*) = (-l)'/2 2krAk(x). 
k = 0 
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On this account the following transformations are legitimate, and (2.12), as 
well as Lemma 9 give 

( - 1 ) r / 2 M / ( r > ) - / ( r ) ) = 2 f l - 4 A k ' A k ~ Z VAk = (n + \ y (R n ( r+ 1, / ) - / ) -*=0 V n + l j Ic = 0 

- 2 (k'-(n+iy)Ak=(n + iy(Rn(r+l, / ) - / ) + 2 (sk-1-f)(k'-(k-iy) = 
t = n + l fc = fl + 2 

= o [ ( n + i y ± n { ^ ) + J j ^ - m - i y - i ) = o[n(±)+n* (1)) = 

= from which £„( / ( r ) ) = 0 (¿2* ^ j j follows at once. Now we can 

apply Lemma 10, and we get (23). 
To prove (24) let 

By Lemma 4, fr satisfies (18). Now 

/ « ( * ) = ( - i r 2 + 1 ¿ ¿ ß ( I ) cos nx 

and in the proof of Theorem 1 we have already seen that for this function (24) is true. 
The proof of Theorem 4 is thus completed. 

P r o o f of R e m a r k . Let r be, for example, an odd number. 
We separate the proof into two cases. 

1. 5 f co(S)). In this case by the aid of the above defined 
i x 

function 

the proof can be easily carried out. 

1 Q(x) 
2. If 5 f — ^ d x = 0 ( o j ( 5 ) ) , then there is a sequence of natural numbers 

s x 

{«„}, for whicl. 
( 71 ^ 1 7T 1 
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Let n be a fixed natural number, and EO^C^. . . ; ^ Let cm = Q l - ^ - \ 
if 2kn^m^2k+1n, and 4 - 0 K 

r - 1 = 1 
/(*) = fM,„(x) = ( - 1 ) 2 2 5 ^ 7 + T Cm COS mx. 

m=n 

With the aid of (21) we get that / ( r ) exists, and less than a bound independent 
from and n. We show that / satisfies (18). 

(2.20, J ^ h M - Z M I ) 

+ 2 F * ) s i l * Q № ) ) + 

Now 

/ ( r ) ( 0 ) - / « i ^ ] = ¿ - i C m c o s m ^ , 
\2n) m=n m m=„ m 2n 

and from the monotonicity of {cm} it follows that 

and so 

Consequently, by a suitable choice of {et} one can attain that the above defined 
function /{£|<), „(*)=/«(*) satisfies 

(2-2» 

for in the definition of Q* we could have supposed that {e*} is monotone. 
Let now 

/(*) = 2 i/»_(*)• m = 1 z 

y. — cos m ^ 0, 
„=„ m 2)1 

2 J Q (2* n ) mS*n m ~ 4 M Q { A ) ' 
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This function / satisfies (18); indeed, using the convexity of Q, we get from 
(2.20) 

ZQ(k'\sk(J; x)-f(x)\) S zqU' S - i h i f n j *)- /„m (*) l ) ^ 
= 0 k = 0 V m = l > 

Z ^ ( k r \ s k ( f „ m ; x ) - f n J x ) \ ) = 
fc = 0 m = 1 

= ¿ 4 r 2^(kr\sk<J„m; * ) - / „ » | ) = 1. 
m = l z fc=0 m=l Z. 

From the remark made after the definition of the functions /{£ },„(*), it follows 
that f(r) exists; and using (2.19), (2.21) we obtain 

so 
a>(/(r); 8) ^ 0(cd(8)), 

which proves our Remark. 
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