On structural properties of functions arising from strong approximation of Fourier series

v. TOTIK

Introduction

Let $f(x)$ be an integrable and 2π-periodic function, and let

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1}
\end{equation*}
$$

be its Fourier series. Denote by $s_{n}(x)=s_{n}(f ; x)$ and $\omega(f ; \delta)$ the n-th partial sum of (1) and the modulus of continuity of f, respectively; $\|\cdot\|$ always stays for the supremum norm.

Freud [1] proved that

$$
\left\|\sum_{k=1}^{\infty}\left|s_{k}-f\right|^{p}\right\|<\infty \quad \text { for some } \quad p>1 \quad \text { implies } f \in \operatorname{Lip} \frac{1}{p} .
$$

An analogous problem with $p=1$ was investigated by Leindier and Nikišin [6], ànd this result was generalized by Leindler [4] as follows: If r is a nonnegative integer and

$$
\left\|\sum_{k=1}^{\infty} k^{r}\left|s_{k}-f\right|\right\|<\infty,
$$

then

$$
\left|f^{(r)}(x+h)-f^{(r)}(x)\right| \leqq K \cdot h \cdot \log \frac{1}{h} \quad(x \in[0,2 \pi])
$$

for all x, and this estimation is best possible.
From this result it follows that

$$
\left\|\sum_{k=1}^{\infty}\left|s_{k}-f\right|\right\|<\infty \quad \text { does not imply } f \in \operatorname{Lip} 1
$$

[^0]Lempler raised the question whether the condition

$$
\left\|\sum_{k=1}^{\infty}\left|s_{k}-f\right|^{p}\right\|<\infty \quad \text { with some } p \quad(0<p<1) \text { implies } f \in \operatorname{Lip} 1
$$

The answer was given in the affirmative by Oskolkov [7] and Szabados [8]. They also proved

Theorem A. For an arbitrary modulus of continuity Ω.
(2)

$$
\left\|\sum_{k=1}^{\infty} \Omega\left(\left|s_{k}-f\right|\right)\right\|<\infty
$$

and

$$
\begin{equation*}
\int_{0}^{1} \frac{d x}{\Omega(x)}<\infty \tag{3}
\end{equation*}
$$

imply $f \in \operatorname{Lip} 1$.
Under a certain restriction on Ω they also proved the necessity of condition (3). In [10] we proved the necessity of (3) without any further assumption, and more generally, we proved Theorem B (below).

In order to simplify our assertions, $\Omega(x)$ will always denote an increasing convex or concave function on $[0, \infty)$, with the properties

$$
\begin{equation*}
\Omega(x)>0(x>0) \quad \lim _{x \rightarrow 0+0} \Omega(x)=\Omega(0)=0 \tag{4}
\end{equation*}
$$

and we suppose that the inverse of $\Omega(x)$ (denoted by $\bar{\Omega}(x))$ exists in the interval $[0 ; 1]$. With these notations we proved

Theorem B. If f satisfies (2), then

$$
\begin{equation*}
\omega(f ; \delta)=O\left(\delta \int_{\delta}^{1} \frac{\bar{\Omega}(x)}{x^{2}} d x\right) \tag{5}
\end{equation*}
$$

but no estimate better than this can be given. Moreover, if Ω is concave, then we can replace

$$
\int_{\delta}^{1} \frac{\bar{\Omega}(x)}{x^{2}} d x \quad b y \quad \int_{\Omega(\delta)}^{1} \frac{d x}{\Omega(x)} .
$$

The following theorem answers the analogous problem for the conjugate function.

Theorem 1. (i) If Ω is concave, then (2) implies $\tilde{f} \in \operatorname{Lip} 1$. (ii) Let Ω be convex. From (2) the continuity of f follows if and only if

$$
\begin{equation*}
\int_{\theta}^{1} \frac{\bar{\Omega}(x)}{x} d x<\infty \tag{6}
\end{equation*}
$$

If (6) is fulfilled, then (2) implies that

$$
\begin{equation*}
\omega(\tilde{f} ; \delta)=O\left(\int_{0}^{\delta} \frac{\bar{\Omega}(x)}{x} d x\right) \tag{7}
\end{equation*}
$$

Furthermore, there exists a function f_{0} for which (2) is true, but

$$
\begin{equation*}
\omega\left(f_{0} ; \delta\right) \geqq c \int_{0}^{\delta} \frac{\bar{\Omega}(x)}{x} d x \quad(c>0) \tag{8}
\end{equation*}
$$

We note that part (i) is a known result of Leindler [4].
Recently Krotov and Leindler [2] investigated the problem to give a necessary and sufficient condition for a monotonic sequence $\left\{\lambda_{k}\right\}$ such that

$$
\begin{equation*}
\left\|\sum_{k=0}^{\infty} \lambda_{k}\left|s_{k}-f\right|^{p}\right\|<\infty \quad \text { with some } p \quad(0<p<\infty) \tag{9}
\end{equation*}
$$

should imply $\omega(f ; \delta)=O(\omega(\delta))$, where $\omega(\delta)$ is a fixed modulus of continuity. They proved

Theorem C. Let $\left\{\lambda_{k}\right\}$ be a positive nondecreasing sequence, $\omega(\delta)$ be a modulus of continuity and $0<p<\infty$. Then (9) implies $\omega(f ; \delta)=O(\omega(\delta))$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{n}\left(k \cdot \lambda_{k}\right)^{-\frac{1}{p}}=O\left(n \cdot \omega\left(\frac{1}{n}\right)\right) \tag{10}
\end{equation*}
$$

As a common generalization of Theorem B and C we shall prove
Theorem 2. Let Ω be a convex or concave function with properties (4), and let $\left\{\lambda_{k}\right\}_{0}^{\infty},\left\{\mu_{k}\right\}_{0}^{\infty}$ be positive nondecreasing sequences. If

$$
\begin{equation*}
\left\|\sum_{k=0}^{\infty} \lambda_{k} \Omega\left(\mu_{k}\left|s_{k}-f\right|\right)\right\|<\infty \tag{11}
\end{equation*}
$$

then

$$
\begin{equation*}
\omega\left(f ; \frac{1}{n}\right)=O\left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{\mu_{k}} \bar{\Omega}\left(\frac{1}{k \cdot \lambda_{k}}\right)\right) \tag{12}
\end{equation*}
$$

Furthermore, there exists a function f_{0} satisfying (11), for which

$$
\begin{equation*}
\omega\left(f_{0} ; \frac{1}{n}\right) \geqq c \cdot \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\mu_{k}} \bar{\Omega}\left(\frac{1}{k \cdot \lambda_{k}}\right) \quad(c>0) \tag{13}
\end{equation*}
$$

Corollary 1. Condition (11) implies $f \in \operatorname{Lip} 1$ if and only if

$$
\sum_{k=1}^{\infty} \frac{1}{\mu_{k}} \bar{\Omega}\left(\frac{1}{k \cdot \lambda_{k}}\right)<\infty
$$

Corollary 2. Let $\gamma \geqq 0$. Then

$$
\left\|\sum_{k=0}^{\infty} k^{\nu} \Omega\left(\left|s_{k}-f\right|\right)\right\|<\infty
$$

implies

$$
\omega(f ; \delta)=O\left(\delta \int_{\delta}^{1} \frac{\bar{\Omega}\left(x^{1+\gamma}\right)}{x^{2}} d x\right)
$$

It is easy to see that (12) reduces to (5) and (10) if $\lambda_{-k}=\mu_{k}=1$ and $\mu_{k}=1$, $\Omega(x)=x^{p}$, respectively. Thus Theorem B and C, and hence all of the above results are consequences of Theorem 2.

We remark that for $\Omega(x)=x^{p}$ Leindler [5] proved some general statements of similar type.

It is a very interesting problem to find the analogue of Theorem 2 for the conjugate function.

We shall now generalize Theorem B in another direction. Let β be a nonnegative number and consider the condition

$$
\begin{equation*}
\left\|\sum_{k=0}^{\infty} k^{\beta} \Omega\left(\left|s_{k}-f\right|\right)\right\|<\infty \tag{14}
\end{equation*}
$$

instead of (2). We ask for the differentiability properties of f and f. We prove
Theorem 3. Let Ω be a concave function with properties (4), and let $\beta \geqq 0$, $\left.r=[\beta]^{*}\right)$. (14) implies that f, \tilde{f} are r times differentiable, and if r is odd then

$$
\begin{gather*}
f^{(r)} \in \operatorname{Lip~1} \tag{15}\\
\omega\left(f^{(r)} ; \delta\right)=O\left(\delta \int_{\delta}^{1} \frac{\bar{\Omega}\left(x^{1+\beta-r}\right)}{x^{2}} d x\right), \tag{16}
\end{gather*}
$$

while if r is even then the role of f and f in (15) and (16) must be inverted. Furthermore, there are functions f_{β} satisfying (14) with

$$
\begin{equation*}
\omega\left(f_{\beta}^{(r)} ; \delta\right) \quad \text { or } \quad \omega\left(f_{\beta}^{(r)} ; \delta\right) \geqq c \delta \int_{\delta}^{1} \frac{\bar{\Omega}\left(x^{1+\beta-r}\right)}{x^{2}} d x \quad(c>0) \tag{17}
\end{equation*}
$$

according as r is odd or even.
The example $\Omega(x)=e^{-\frac{1}{x}}, f(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin n x$ shows that for certain convex Ω condition (14) - with arbitrary large β - does not guarantee the differentiability

[^1]of f. On this account for convex Ω we shall investigate the condition
\[

$$
\begin{equation*}
\left\|\sum_{k=0}^{\infty} \Omega\left(k^{\beta}\left|s_{k}-f\right|\right)\right\|<\infty \tag{18}
\end{equation*}
$$

\]

rather than (14).
Before we state our result concerning (18), we need the following
Definition. If ω is a modulus of continuity for which $\sum_{k=0}^{\infty} \omega\left(\frac{1}{2^{k}}\right)<\infty$, or equivalently $\int_{0}^{1} \frac{\omega(x)}{x} d x<\infty$, let

$$
\omega^{*}(\delta)=\sup _{\left\{\varepsilon_{k}\right\}} \sum_{k=0}^{\infty} \omega\left(\frac{\varepsilon_{k} \delta}{2^{k}}\right)
$$

where the supremum is taken over the sequences $\left\{\varepsilon_{k}\right\}$ which satisfy the conditions:

$$
\varepsilon_{k} \geqq 0 \quad(k=0,1, \ldots), \quad \sum_{k=0}^{\infty} \varepsilon_{k} \leqq 1 .
$$

It is easy to verify that $\omega^{*}(\delta)$ is again a modulus of continuity, and that

$$
\omega(\delta) \leqq \omega^{*}(\delta) \leqq \int_{0}^{\delta} \frac{\omega(x)}{x} d x
$$

With these notations we prove
Theorem 4. *) Let Ω be convex with properties (4), $\beta \geqq 0$, and $[\beta]=r$.
(i) If $\beta \neq[\beta]$ then (18) implies

$$
\begin{equation*}
\omega\left(f^{(r)} ; \delta\right)=O(\bar{\Omega}(\delta)) \tag{19}
\end{equation*}
$$

(ii) Let $\beta=[\beta]>0$. From (18) it follows that

$$
\begin{equation*}
\omega\left(f^{(r-1)} ; \delta\right)=O\left(\delta \int_{\delta}^{1} \frac{\bar{\Omega}(x)}{x} d x\right) \tag{20}
\end{equation*}
$$

and this estimation cannot be improved. Thus if (18) implies the existence of $f^{(r)}$ then

$$
\begin{equation*}
\int_{\theta}^{1} \frac{\bar{\Omega}(x)}{x} d x<\infty \tag{21}
\end{equation*}
$$

In each of the above statements we can put f in place of f.

[^2](iii) Let us :uppose that (21) is satisfied and $r>0$. Then (18) implies
\[

$$
\begin{gather*}
\omega\left(f^{(r)} ; \delta\right)=O\left(\int_{0}^{\delta} \frac{\bar{\Omega}(x)}{x} d x\right) \tag{22}\\
\omega\left(f^{(r)} ; \delta\right)=O\left(\bar{\Omega}^{*}(\delta)+\delta \int_{\delta}^{1} \frac{\bar{\Omega}(x)}{x^{2}} d x\right), \tag{23}
\end{gather*}
$$
\]

if r is even, and the roles of f and f must be interverted in the odd case. Furthermore there are functions f_{r} satisfying (18), for which

$$
\begin{equation*}
\omega\left(f_{r}^{(r)} ; \delta\right) \quad \text { or } \quad \omega\left(f_{r}^{(r)} ; \delta\right) \geqq c \int_{0}^{\delta} \frac{\bar{\Omega}(x)}{x} d x \quad(c>0) \tag{24}
\end{equation*}
$$

according as r is even or odd.
Remark. Estimation (23) is best possible also in the following sense: If

$$
\begin{equation*}
\bar{\Omega}^{*}(\delta)+\delta \int_{\delta}^{1} \frac{\bar{\Omega}(x)}{x^{2}} d x \neq O(\omega(\delta)) \tag{25}
\end{equation*}
$$

where $\omega(\delta)$ is an arbitrary modulus of continuity, then there is an f satisfying (18), but

$$
\begin{equation*}
\omega\left(f^{(r)} ; \delta\right) \quad \text { or } \quad \omega\left(\tilde{f}^{(r)} ; \delta\right) \neq O(\omega(\delta)) \tag{26}
\end{equation*}
$$

according as r is even or not.
We mention that from the proof of (i) the stronger estimation

$$
\omega\left(f^{(r)} ; \delta\right)=O\left(\delta \int_{\delta}^{1} \frac{\bar{\Omega}(x)}{x^{2-\beta+r}} d x\right)
$$

also follows and with the aid of the function $f_{0}(x)=\sum_{n=1}^{\infty} \frac{1}{8 n^{1+\beta}} \bar{\Omega}\left(\frac{1}{n}\right) \sin n x$ one can prove that this is the best possible if r is even, but we do not know what is the best estimation if r is odd.

I am grateful to Professor L. Leindler, who called my attention to these problems, and whose permanent interest and advises helped me very much in my work.

§ 1. Lemmas

Lemma 1 ([10], Lemma 2). Let $\left\{\varrho_{n}\right\}$ be a decreasing sequence of positive numbers and let

$$
\varrho(x)=\sum_{n=1}^{\infty} \varrho_{n} \frac{1}{n} \sin n x .
$$

Then

$$
\varrho\left(\frac{\pi}{m}\right) \geqq \frac{1}{2} \frac{1}{m} \cdot \sum_{n=1}^{m} \varrho_{n}:(m=2,3, \ldots)
$$

Lemma 2. Let $\omega(x)$ bé a modulus of continuity, $\beta \geqq 0$, and suppose that $E_{n}(f)=O\left(\frac{1}{n^{\beta}} \omega\left(\frac{1}{n}\right)\right)$. The following statements are true:
(i) if $\beta>0$ then $E_{n}(f)=O\left(\frac{1}{n^{\beta}} \omega\left(\frac{1}{n}\right)\right)$,
(ii) if $\beta=0$, and $\int_{0}^{1} \frac{\omega(x)}{x} d x<\infty$ then $E_{n}(f)=O\left(\int_{0}^{1 / n} \frac{\omega(x)}{x} d x\right)$,
(iii) if $\beta>[\beta]=r$, then $E_{n}\left(f^{(r)}\right)=O\left(\frac{1}{n^{\beta-r}} \omega\left(\frac{1}{n}\right)\right)$,
(iv) if $\beta=[\beta]>0$, then $E_{n}\left(f^{(\beta-1)}\right)=O\left(\frac{1}{n} \omega\left(\frac{1}{n}\right)\right)$,
(v) if $\beta=[\beta]$, and $\int_{0}^{1} \frac{\omega(x)}{x} d x<\infty$ then $E_{n}\left(f^{(\beta)}\right)=O\left(\int_{0}^{1 / n} \frac{\omega(x)}{x} d x\right)$.

These statements can be easily proved using the estimations below (see [9], pages 321 and 304):

$$
E_{n}(\tilde{f}) \leqq c\left(E_{n}(f)+\sum_{v=n+1}^{\infty} \frac{1}{v} E_{v}(f)\right), \quad E_{n}\left(f^{(r)}\right) \leqq c_{r}\left(n^{r} E_{n}(f)+\sum_{v=n+1}^{\infty} v^{r-1} E_{v}(f)\right)
$$

To prove (ii) and (v) use the inequality

$$
\sum_{v=n}^{\infty} \frac{1}{v} \omega\left(\frac{1}{v}\right) \leqq \int_{0}^{1 / n} \frac{\omega(x)}{x} d x
$$

We omit the details.
Lemma 3. If Ω is concave, and $\left\{\lambda_{k}\right\}_{0}^{\infty},\left\{\mu_{k}\right\}_{0}^{\infty}$ are nondecreasing positive sequences then

$$
\begin{equation*}
\sum_{k=0}^{\infty} \lambda_{k} \Omega\left(\mu_{k}\left|s_{k}(x)-f(x)\right|\right) \leqq K \tag{1.1}
\end{equation*}
$$

implies that

$$
\begin{equation*}
E_{4 n}=O\left(\log n\left(n^{2} \lambda_{n}^{2} \mu_{n} \Omega\left(\frac{\log n}{n \lambda_{n}}\right)\right)^{-1}\right) \tag{1.2}
\end{equation*}
$$

Proof. Using the known Lebesgue estimation

$$
\left|s_{n}(x)-f(x)\right| \leqq 3 E_{n}(f) \log n
$$

and the inequality

$$
\frac{\Omega\left(a y_{1}\right)}{y_{1}}=a \frac{\Omega\left(a y_{1}\right)}{a y_{1}} \geqq a \frac{\Omega\left(a y_{2}\right)}{a y_{2}}=\frac{\Omega\left(a y_{2}\right)}{y_{2}} \quad\left(a>0 ; 0<y_{1}<y_{2}\right)
$$

coming from the concavity of Ω, we get from (1.1)

$$
\begin{aligned}
& K \geqq\left\|\sum_{k=n+1}^{2 n} \lambda_{k} \Omega\left(\mu_{k}\left|s_{k}-f\right|\right)\right\|=\left\|\sum_{k=n+1}^{2 n} \lambda_{k}\left|s_{k}-f\right| \frac{\Omega\left(\mu_{k}\left|s_{k}-f\right|\right)}{\left|s_{k}-f\right|}\right\| \geqq \\
& \geqq \frac{\Omega\left(\mu_{n} E_{n} \log n\right)}{3 E_{n} \log 2 n} \lambda_{n} n\left\|\frac{\sum_{k=n+1}^{2 n}\left|s_{k}-f\right|}{n}\right\| \geqq \frac{\Omega\left(\mu_{n} E_{n} \log n\right)}{6 E_{n} \log n} \lambda_{n} n E_{2 n}
\end{aligned}
$$

i.e.

$$
\begin{equation*}
E_{4 n}=O\left(E_{2 n} \log n\left(n \lambda_{n} \Omega\left(\mu_{2 n} E_{2 n} \log n\right)\right)^{-1}\right. \tag{1.3}
\end{equation*}
$$

Now it follows from (1.1) that

$$
\sum_{k=0}^{\infty} \lambda_{k} \mu_{k}\left|s_{k}(x)-f(x)\right| \leqq K^{\prime}
$$

and from this that $E_{2 n}=O\left(\left(n \lambda_{n} \mu_{n}\right)^{-1}\right)$. If we write this estimation in (1.3) wc obtain (1.2)

Lemma 4. If $\Omega(x)$ is convex, $\left\{\lambda_{k}\right\},\left\{\mu_{k}\right\}$ are nondecreasing positive sequences, and

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{8 n \mu_{n}} \bar{\Omega}\left(\frac{1}{n \lambda_{n}}\right) \sin n x
$$

then

$$
\left\|\sum_{k=0}^{\infty} \lambda_{k} \Omega\left(\mu_{k}\left|s_{k}-f\right|\right)\right\|<\infty
$$

Proof. We introduce the notation

$$
A_{n}(x)=\frac{1}{8 n \mu_{n}} \bar{\Omega}\left(\frac{1}{n \lambda_{n}}\right) \sin n x .
$$

Since $f(x)$ is odd, it is enough to consider the case $x>0$. Let $\frac{\pi}{N}<x \leqq \frac{\pi}{N-1}$,
where N is an integer. With these notations we have

$$
\begin{equation*}
\sum_{k=0}^{\infty} \lambda_{k} \Omega\left(\mu_{k}\left|s_{k}(x)-f(x)\right|\right)=\left(\sum_{k=0}^{N-1}+\sum_{k=N}^{\infty}\right) \lambda_{k} \Omega\left(\mu_{k}\left|s_{k}(x)-f(x)\right|\right)=B_{1}(x)+B_{2}(x) \tag{1.4}
\end{equation*}
$$

Using the well-known estimation

$$
\left|\sum_{l=p}^{\infty} a_{l} \sin l x\right| \leqq \frac{4}{x} a_{p} \quad\left(a_{p} \geqq a_{p+1} \geqq \ldots\right)
$$

we get

$$
\begin{align*}
B_{2}(x) & =\sum_{k=N}^{\infty} \lambda_{k} \Omega\left(\mu_{k}\left|\sum_{n=k+1}^{\infty} A_{n}(x)\right|\right) \leqq \sum_{k=N}^{\infty} \lambda_{k} \Omega\left(\mu_{k} \frac{4}{x} \frac{1}{8(k+1) \mu_{k+1}} \bar{\Omega}\left(\frac{1}{(k+1) \lambda_{k+1}}\right)\right) \leqq \tag{1.5}\\
& \leqq \sum_{k=N}^{\infty} \lambda_{k} \Omega\left(\frac{1}{N x} \frac{N}{k+1} \bar{\Omega}\left(\frac{1}{(k+1) \lambda_{k+1}}\right)\right) \leqq \sum_{k=N}^{\infty} \lambda_{k} \Omega\left(\frac{N}{k+1} \bar{\Omega}\left(\frac{1}{(k+1) \lambda_{k+1}}\right)\right) \leqq \\
& \leqq \sum_{k=N}^{\infty} \lambda_{k} \frac{N}{k+1} \Omega\left(\bar{\Omega}\left(\frac{1}{(k+1) \lambda_{k+1}}\right)\right) \leqq \sum_{k=N}^{\infty} \frac{N}{(k+1)^{2}} \leqq 1 .
\end{align*}
$$

From the convexity of Ω it follows that

$$
\leqq \sum_{k=0}^{N-1} \cdot \frac{1}{2} \lambda_{k} \Omega\left(2 \mu_{k}\left|\sum_{n=k+1}^{N-1} A_{n}(x)\right|\right)+\sum_{k=0}^{N-1} \frac{1}{2} \lambda_{k} \Omega\left(2 \mu_{k}\left|\sum_{n=N}^{\infty} A_{n}(x)\right|\right)=B_{11}(x)+B_{12}(x) .
$$

Similarly to (1.5) we get

$$
\begin{equation*}
B_{12}(x) \leqq \sum_{k=0}^{N-1} \frac{1}{2} \lambda_{k} \Omega\left(2 \mu_{k} \frac{4}{x N} \frac{1}{8 \mu_{N}} \bar{\Omega}\left(\frac{1}{N \lambda_{N}}\right)\right) \leqq \frac{1}{2} \sum_{k=0}^{N-1} \lambda_{N} \Omega\left(\bar{\Omega}\left(\frac{1}{N \lambda_{N}}\right)\right)=\frac{1}{2} \tag{1.7}
\end{equation*}
$$

Finally, using the inequality $\sin x \leqq x(x \geqq 0)$, we obtain

$$
\begin{aligned}
& 2 B_{11}(x) \leqq \sum_{k=0}^{N-1} \lambda_{k} \Omega\left(2 \mu_{k} \sum_{n=k+1}^{N-1} \frac{1}{8 n \mu_{n}} \bar{\Omega}\left(\frac{1}{n \lambda_{n}}\right) n x\right) \leqq \sum_{k=0}^{N-2} \lambda_{k} \Omega\left(\frac{\sum_{n=k+1}^{N-1} \bar{\Omega}\left(\frac{1}{n \lambda_{n}}\right)}{N-1}\right) \leqq \\
& \leqq \sum_{k=0}^{N-2} \lambda_{k} \frac{\sum_{n=k+1}^{N-1} \Omega\left(\bar{\Omega}\left(\frac{1}{n \lambda_{n}}\right)\right)}{N-1} \leqq \frac{1}{N-1} \sum_{k=0}^{N-2} \sum_{n=k+1}^{N-1} \frac{1}{n}=\frac{1}{N-1} \sum_{n=1}^{N-1} n \frac{1}{n}=1 ;
\end{aligned}
$$

and this - together with (1.4)-(1.7) - verifies our Lemma.
Lemma 5. If $\Omega(x)$ is concave, $\left\{\lambda_{k}\right\},\left\{\mu_{k}\right\}$ are positive nondecreasing sequences and

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{\mu_{n^{2}}} \bar{\Omega}\left(\frac{1}{n^{2} \lambda_{n^{2}}}\right) \sin n x,
$$

then

$$
\left\|\sum_{k=0}^{\infty} \lambda_{k} \Omega\left(\mu_{k}\left|s_{k}-f\right|\right)\right\|<\infty .
$$

Proof. Let $A_{n}(x)=\frac{1}{\mu_{n^{2}}} \bar{\Omega}\left(\frac{1}{n^{2} \lambda_{n^{2}}}\right) \sin n x$ and $\frac{\pi}{N}<x \leqq \frac{\pi}{N-1}$. From the conca-
vity of Ω we obtain

$$
\begin{equation*}
\sum_{k=0}^{\infty} \lambda_{k} \Omega\left(\mu_{k}\left|s_{k}(x)-f(x)\right|\right)=\left(\sum_{k=0}^{N-1}+\sum_{k=N}^{\infty}\right) \lambda_{k} \Omega\left(\mu_{k}\left|s_{k}(x)-f(x)\right|\right)=B_{1}(x)+B_{2}(x) \tag{1.8}
\end{equation*}
$$

$$
\begin{align*}
B_{2}(x) & =\sum_{k=N}^{\infty} \lambda_{k} \Omega\left(\mu_{k}\left|\sum_{n=k+1}^{\infty} A_{n}(x)\right|\right) \leqq \sum_{k=N}^{\infty} \lambda_{k} \Omega\left(\mu_{k} \frac{4}{x} \frac{1}{\mu_{(k+1)^{2}}} \bar{\Omega}\left(\frac{1}{(k+1)^{2} \lambda_{(k+1)^{2}}}\right)\right) \leqq \tag{1.9}\\
& \leqq \sum_{k=N}^{\infty} \lambda_{k} \Omega\left(\frac{4 N}{\pi} \bar{\Omega}\left(\frac{1}{(k+1)^{2} \lambda_{(k+1)}}\right)\right) \leqq \sum_{k=N}^{\infty} \lambda_{k} \frac{4 N}{\pi} \Omega\left(\bar{\Omega}\left(\frac{1}{(k+1)^{2} \lambda_{(k+1)^{2}}}\right)\right) \leqq \\
& \leqq \sum_{k=N}^{\infty} \frac{4 N}{\pi} \frac{1}{(k+1)^{2}} \leqq \frac{4}{\pi} .
\end{align*}
$$

$$
\begin{equation*}
B_{1}(x) \leqq \sum_{k=0}^{N-1} \lambda_{k} \Omega\left(\mu_{k} \sum_{n=k+1}^{N-1} A_{n}(x)\right)+\sum_{k=0}^{N-1} \lambda_{k} \Omega\left(\mu_{k}\left|\sum_{n=N}^{\infty} A_{n}(x)\right|\right)=B_{11}(x)+B_{12}(x) \tag{1.10}
\end{equation*}
$$

Similarly to (1.9), we get
(1.11) $\quad B_{12}(x) \leqq \sum_{k=0}^{N-1} \lambda_{k} \Omega\left(\mu_{k} \frac{4}{x} \frac{1}{\mu_{N^{2}}} \bar{\Omega}\left(\frac{1}{N^{2} \lambda_{N^{2}}}\right)\right) \leqq \frac{4 N}{\pi} \lambda_{N} \sum_{k=0}^{N-1} \Omega\left(\bar{\Omega}\left(\frac{1}{N^{2} \lambda_{N^{2}}}\right)\right) \leqq \frac{4}{\pi}$.

In order to estimate $B_{11}(x)$ let $2^{m-1} \leqq N-1<2^{m}$ and $m_{k}=[\stackrel{2}{\log }(k+1)]$. Using these notations we have

$$
\begin{equation*}
B_{11}(x) \leqq \sum_{k=0}^{N-2} \lambda_{k} \Omega\left(\mu_{k} \sum_{n=k+1}^{N-1} \frac{1}{\mu_{n^{2}}} \bar{\Omega}\left(\frac{1}{n^{2} \lambda_{n^{2}}}\right) n x\right) \leqq \tag{1.12}
\end{equation*}
$$

$$
\leqq \sum_{k=0}^{2^{m}-1} \lambda_{k} \Omega\left(\sum_{n=2^{m_{k}}}^{2^{m}-1} \bar{\Omega}\left(\frac{1}{n^{2} \lambda_{n^{2}}}\right) n \frac{\pi}{2^{m-1}}\right) \leqq 2 \pi \sum_{k=0}^{2^{m}-1} \lambda_{k} \Omega\left(\sum_{l=m_{k}}^{m-1} \sum_{n=2^{1}}^{2^{t+1}-1} \bar{\Omega}\left(\frac{1}{n^{2} \lambda_{n^{2}}}\right) \frac{n}{2^{m}}\right) \leqq
$$

$$
\leqq 2 \pi \sum_{k=0}^{2^{m}-1} \lambda_{k} \sum_{l=m_{k}}^{m-1} \Omega\left(\sum_{n=2^{l}}^{2^{l+1}-1} \bar{\Omega}\left(\frac{1}{n^{2} \lambda_{n^{2}}}\right) \frac{n}{2^{m}}\right) \leqq
$$

$$
\leqq 2 \pi \sum_{l=0}^{m-1} \sum_{m_{k} \leqq l} \lambda_{k} \Omega\left(\bar{\Omega}\left(\frac{1}{2^{2 l} \lambda_{2^{2 l}}}\right) 2^{2 l+1-m}\right) \leqq 2 \pi \sum_{l=0}^{m-1} 2^{l+1} \lambda_{2^{l+1}} \Omega\left(\bar{\Omega}\left(\frac{1}{2^{2 l} \cdot \lambda_{2^{2 l}}}\right) 2^{2 l+1-m}\right)=
$$

$$
\because 2 \pi \sum_{l=0}^{\frac{m-1}{2}}+2 \pi \sum_{l=\frac{m+1}{2}}^{m-1} \leqq 2 \pi \sum_{l=0}^{\frac{m-1}{2}} 2^{l+1} \lambda_{2^{l+1}} \Omega\left(\bar{\Omega}\left(\frac{1}{2^{2 l} \lambda_{2^{2 l}}}\right)\right)+
$$

$$
+2 \pi \sum_{l=\frac{m+1}{2}}^{m-1} 2^{l+1} \lambda_{2^{l+1}} 2^{2 l+1-m} \Omega\left(\bar{\Omega}\left(\frac{1}{2^{2 l} \lambda_{2^{2 l}}}\right)\right) \leqq 12 \pi+4 \pi \frac{\lambda_{2}}{\lambda_{1}}
$$

(1.8)-(1.12) verify the assertion.

Lemma 6: Let $r \geqq 1$ and Ω concave. If

$$
\begin{equation*}
\left\|\sum_{k=0}^{\infty} k^{r} \Omega\left(\left|s_{k}(f)-f\right|\right)\right\|<\infty \tag{1.13}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|\sum_{k=0}^{\infty} k^{r-1} \Omega\left(\left|s_{k}\left(\tilde{f}^{\prime}\right)-\tilde{f}^{\prime}\right|\right)\right\|<\infty . \tag{1.14}
\end{equation*}
$$

Proof. Let $f \sim \sum_{k=0}^{\infty} A_{k}(x)$. Taking into account the concavity of Ω and $r \geqq 1$, (1.13) gives that

$$
\sum_{k=0}^{\infty} k\left|A_{k}(x)\right| \leqq \sum_{k=0}^{\infty} k\left(\left|s_{k-1}(x)-f(x)\right|+\left|s_{k}(x)-f(x)\right|\right)=O\left(\sum_{k=0}^{\infty} k^{r} \Omega\left(\left|s_{k}(x)-f(x)\right|\right)\right)
$$

i.e. $\sum_{k=0}^{\infty} k A_{k}(x)$ is absolutely convergent. From this it follows that $f^{\prime}(x)=\sum_{k=0}^{\infty} k A_{k}(x)$, and hence

$$
\begin{gathered}
\sum_{k=0}^{\infty} k^{r-1} \Omega\left(\left|s_{k}\left(\tilde{f}^{\prime} ; x\right)-f^{\prime}(x)\right|\right)=\sum_{k=0}^{\infty} k^{r-1} \Omega\left(\left|\sum_{n=k+1}^{\infty} n A_{n}(x)\right|\right)= \\
=\sum_{k=0}^{\infty} k^{r-1} \Omega\left(\left|k\left(s_{k}(x)-f(x)\right)+\sum_{n=k}^{\infty}\left(s_{n}(x)-f(x)\right)\right|\right) \leqq \sum_{k=0}^{\infty} k^{r-1} \Omega\left(k\left|s_{k}(x)-f(x)\right|\right)+ \\
+\sum_{k=0}^{\infty} k^{r-1} \sum_{n=k}^{\infty} \Omega\left(\left|s_{n}(x)-f(x)\right|\right) \leqq \sum_{k=0}^{\infty} k^{r} \Omega\left(\left|s_{k}(x)-f(x)\right|\right)+\sum_{n=0}^{\infty} \Omega\left(\left|s_{n}(x)-f(x)\right|\right) \sum_{k=0}^{n} k^{r-1}
\end{gathered}
$$

from which, using (1.13), we obtain (1.14).

$$
\begin{gathered}
\text { Lemma 7. Let } \quad R_{n}(r, f)=R_{n}(r, f ; x)=\sum_{k=0}^{n}\left(1-\left(\frac{k}{n+1}\right)^{r}\right) A_{k}(x), \text { where } f(x) \sim \\
\sim \sum_{k=0}^{\infty} A_{k}(x) . \text { If }|f| \leqq \delta \text { and } r \geqq 1, \text { then } \\
\\
\left|R_{n}(r, f)\right| \leqq C_{r} \delta
\end{gathered}
$$

where C_{r} depends only on r.

Proof. Denote $D_{k}(t)$ and $K_{k}(t)$ the k-th Dirichlet and Fejér kernel, respectively. Using the nonnegativity of $K_{k}(t)$ we get by an Abel rearrangement

$$
\begin{aligned}
& \left|R_{n}(r, f ; x)\right|=\frac{1}{(n+1)^{r}}\left|\sum_{k=0}^{n} s_{k}(x)\left((k+1)^{r}-k^{r}\right)\right|= \\
& =\frac{1}{(n+1)^{r}}\left|\frac{1}{\pi} \int_{-\pi}^{\pi} f(x+u)\left\{\sum_{k=0}^{n} D_{k}(u)\left((k+1)^{r}-k^{r}\right)\right\} d u\right|= \\
& \left.=\frac{1}{(n+1)^{r}} \frac{1}{\pi} \right\rvert\, \int_{-\pi}^{\pi} f(x+u)\left\{\sum_{k=0}^{n-1}(k+1) K_{k}(u)\left(2(k+1)^{r}-k^{r}-(k+2)^{r}\right)+\right. \\
& \left.+(n+1) K_{n}(u)\left((n+1)^{r}-n^{r}\right)\right\} d u \mid \leqq \\
& \leqq \frac{\delta}{(n+1)^{r}} \frac{1}{\pi}\left\{\sum_{k=0}^{n-1}(k+1)\left(k^{r}+(k+2)^{r}-2(k+1)^{r}\right)+\left((n+1)^{r}-n^{r}\right)(n+1)\right\}= \\
& =O\left(\frac{\delta}{(n+1)^{r}}\left\{\sum_{k=1}^{n-1}(k+1) k^{r-2}+(n+1)^{r}\right\}\right)=O(\delta),
\end{aligned}
$$

and this proves our lemma.

Lemma 8. For

$$
\tau_{n}(r, f)=\tau_{n}(r, f ; x)=\frac{2^{r} R_{2 n-1}(r, f ; x)-R_{n-1}(r, f ; x)}{2^{r}-1} \quad(r \geqq 1)
$$

we have

$$
\left|\tau_{n}(r, f)-f\right| \leqq c_{r}^{\prime} E_{n}(f)
$$

Proof.

$$
\begin{aligned}
\left|\tau_{n}(r, f)-f\right| & =\left|\frac{\sum_{k=n}^{2 n-1}\left(s_{k}-f\right)\left((k+1)^{r}-k^{r}\right)}{n^{r}\left(2^{r}-1\right)}\right| \leqq \frac{\sum_{k=n}^{2 n-1}\left|s_{k}-f\right|\left((k+1)^{r}-k^{r}\right)}{n^{r}\left(2^{r}-1\right)} \leqq \\
& \leqq \frac{r}{n} \sum_{k=n}^{2 n-1}\left|s_{k}-f\right|=O\left(E_{n}(f)\right)
\end{aligned}
$$

In the last step we used one of the results of Leindler [3].
Lemma 9. Let Ω be a convex function, for which

$$
\int_{0}^{1} \frac{\bar{\Omega}(x)}{x} d x<\infty
$$

and let $a_{n} \geqq 0$ such that

$$
\sum_{k=1}^{\infty} \Omega\left(k a_{k}\right) \leqq K \quad \text { for some } \quad K \geqq 1
$$

Then

$$
\sum_{k=n}^{\infty} a_{k} \leqq K \bar{\Omega}^{*}\left(\frac{1}{n}\right)
$$

$\left(\bar{\Omega}^{*}(\delta)\right.$ was defined in the Definition).
Proof. It is enough to prove Lemma 9 for $K=1$, namely if $K>1$ we can apply the case $K=1$ to the sequence $\frac{a_{n}}{K}$, using the inequality $\Omega\left(\frac{x}{K}\right) \leqq \frac{\Omega(x)}{K}$.

For $K=1$ the proof is very simple:
i.e.

$$
\Omega\left(\sum_{k=2^{s} n}^{2^{s}+1_{n-1}} a_{k}\right) \leqq \Omega\left(\frac{\sum_{k=2^{s} n}^{2^{s+1} n-1} k a_{k}}{2^{s} n}\right) \leqq \frac{\sum_{k=2^{s} n}^{2^{s+1} n-1} \Omega\left(k a_{k}\right)}{2^{s} n}:=\frac{\varepsilon_{s}}{2^{s} n}
$$

$$
\sum_{k=2^{s} n}^{2^{s+1} n-i} a_{k} \leqq \bar{\Omega}\left(\frac{\varepsilon_{s}}{2^{s} n}\right)
$$

and if we sum these inequalities for $s=0,1, \ldots$ we get the required inequality.
Lemma 10. If ω is concave and $E_{n}(f)=O\left(\omega^{*}\left(\frac{1}{n}\right)\right)$, then

$$
\begin{equation*}
\omega(f ; \delta)=O\left(\delta \int_{\delta}^{1} \frac{\omega(x)}{x^{2}} d x+\omega^{*}(\delta)\right) \tag{1.15}
\end{equation*}
$$

Proof. It is enough to prove (1.15) for $\delta=\frac{1}{2^{m}}$. We shall use the following inequality (see [9], page 333).

$$
\begin{equation*}
\omega\left(f ; \frac{1}{n}\right) \leqq K\left(\frac{\sum_{k=0}^{n} E_{k}(f)}{n+1}\right) \tag{1.16}
\end{equation*}
$$

From the definition of ω^{*} it follows that there are sequences $\left\{\varepsilon_{s}^{(r)}\right\}_{s=0}^{\infty}$ ($r=0,1, \ldots, m-1$), for which

$$
\begin{aligned}
& \omega\left(f ; \frac{1}{2^{m}}\right)=O\left(2^{-m} \sum_{k=1}^{2^{m}} \omega^{*}\left(\frac{1}{k}\right)\right)=O\left(2^{-m} \sum_{r=0}^{m-1} 2^{r} \omega^{*}\left(\frac{1}{2^{r}}\right)\right)= \\
& =O\left(2^{-m} \sum_{r=0}^{m-1} 2^{r} \sum_{s=0}^{\infty} \omega\left(\frac{\varepsilon_{s}^{(r)}}{2^{r+s}}\right)\right)=O\left(2^{-m} \sum_{r=0}^{m-1} 2^{r}\left\{\sum_{s=0}^{m-r-1} \omega\left(\frac{\varepsilon_{s}^{(r)}}{2^{r+s}}\right)+\omega^{*}\left(\frac{1}{2^{m}}\right)\right\}\right)= \\
& =O\left(2^{-m} \sum_{r=0}^{m-1} 2^{r} \sum_{s=0}^{m-r-1} \omega\left(\frac{1}{2^{r+s}}\right)+\omega^{*}\left(\frac{1}{2^{m}}\right)\right)=O\left(2^{-m} \sum_{i=0}^{m-1} 2^{t+1} \omega\left(\frac{1}{2^{t}}\right)+\omega^{*}\left(\frac{1}{2^{m}}\right)\right)= \\
& =O\left(2^{-m} \int_{2^{-m}}^{1} \frac{\omega(x)}{x^{2}} d x+\omega^{*}\left(\frac{1}{2^{m}}\right)\right)
\end{aligned}
$$

and this proves (1.15).

§ 2. Proof of the theorems

Proof of Theorem 1. It is enough to prove the theorem for convex Ω, namely if Ω is concave, then (2) implies

$$
\left\|\sum_{k=0}^{\infty}\left|s_{k}-f\right|\right\|<\infty,
$$

and if we apply the second part of Theorem 1 to the convex function $\Omega(x)=x$ we get that

$$
\omega(f ; \delta)=O\left(\int_{0}^{\delta} \frac{x}{x} d x\right)=O(\delta)
$$

i.e. $f \in \operatorname{Lip} 1$.

Let thus Ω be convex. First we prove (7). Let us denote by $\sigma_{n}(f)=\sigma_{n}(f ; x)$ the n-th $(C, 1)$-mean of the Fourier series of f, and let

$$
\tau_{n}(f)=\tau_{n}(f ; x)=2 \sigma_{2 n-1}(f ; x)-\sigma_{n-1}(f ; x)=\frac{\sum_{k=n}^{2 n-1} s_{k}(x)}{n}
$$

From (2), using the convexity of Ω we get

$$
\begin{align*}
\left|\sigma_{n}(f)-f\right| & =\bar{\Omega}\left(\Omega\left(\left|\sigma_{n}(f)-f\right|\right)\right) \leqq \bar{\Omega}\left(\Omega\left(\frac{\sum_{k=0}^{n}\left|s_{k}-f\right|}{n+1}\right)\right) \leqq \tag{2.1}\\
& \leqq \bar{\Omega}\left(\frac{\sum_{k=0}^{n} \Omega\left(\left|s_{k}-f\right|\right)}{n+1}\right)=O\left(\bar{\Omega}\left(\frac{1}{n}\right)\right) .
\end{align*}
$$

With the notation

$$
f-\sigma_{n}(f)=g_{n}(f)
$$

we have

$$
\begin{equation*}
\sigma_{n}(f)-f=\left(\sigma_{n}\left(\sigma_{n}(f)\right)-\sigma_{n}(f)\right)+\left(\sigma_{n}\left(g_{n}(f)\right)-g_{n}(f)\right) \tag{2.2}
\end{equation*}
$$

We can write (2.1) in the form $g_{n}(f)=\dot{O}\left(\bar{\Omega}\left(\frac{1}{n}\right)\right)$, from which $\sigma_{n}\left(g_{n}(f)\right)=$ $=O\left(\bar{\Omega}\left(\frac{1}{n}\right)\right)$, and so (2.2) implies

$$
\begin{equation*}
\sigma_{n}\left(\sigma_{n}(f)\right)-\sigma_{n}(f)=O\left(\bar{\Omega}\left(\frac{1}{n}\right)\right) . \tag{2.3}
\end{equation*}
$$

If we keep in view the expression of $\sigma_{n}(f)$, it is easy to see that

$$
\sigma_{n}\left(\sigma_{n}(f)\right)-\sigma_{n}(f)=-\frac{\left(\tilde{\sigma}_{n}(f)\right)^{\prime}}{n+1}
$$

so (2.3) implies $\tilde{\sigma}_{n}^{\prime}(f)=O\left(n \bar{\Omega}\left(\frac{1}{n}\right)\right)$, and together with this

$$
\begin{equation*}
\left(\tilde{\tau}_{n}(f)\right)^{\prime}=\left(\tau_{n}(\tilde{f})\right)^{\prime}=O\left(n \bar{\Omega}\left(\frac{1}{n}\right)\right) . \tag{2.4}
\end{equation*}
$$

Now (2.1) gives $E_{n}(f)=O\left(\bar{\Omega}\left(\frac{1}{n}\right)\right)$, from which by Lemma 2 (ii) it follows $E_{n}(\tilde{f})=O\left(\int_{0}^{1 / n} \frac{\bar{\Omega}(x)}{x} d x\right)$. It is known (see e.g. Lemma 8) that $\left|\tau_{n}(g)-g\right| \leqq$ $\leqq K E_{n}(g)$; and hence, also using the previous estimation, we get

$$
\begin{equation*}
\left|\tau_{n}(\tilde{f})-\tilde{f}\right|=o\left(\int_{0}^{1 / n} \frac{\bar{\Omega}(x)}{x} d x\right) \tag{2.5}
\end{equation*}
$$

Now we are ready to prove (7). If $|h| \leqq \frac{1}{n}$, then (2.4) and (2.5) give.

$$
\begin{aligned}
|\tilde{f}(x)-\tilde{f}(x+h)| & \leqq\left|\tilde{f}(x)-\tau_{n}(\tilde{f} ; x)\right|+\left|\tau_{n}(\tilde{f} ; x)-\tau_{n}(\tilde{f} ; x+h)\right|+\left|\tau_{n}(\tilde{f} ; x+h)-\tilde{f}(x+h)\right|= \\
& =O\left(\int_{0}^{1 / n} \frac{\bar{\Omega}(x)}{x} d x+\left|h \tau_{n}^{\prime}(\tilde{f} ; x+\vartheta h)\right|\right)= \\
& =O\left(\int_{0}^{1 / n} \frac{\bar{\Omega}(x)}{x} d x+|h| n \bar{\Omega}\left(\frac{1}{n}\right)\right)=O\left(\int_{0}^{1 / n} \frac{\bar{\Omega}(x)}{x} d x\right)
\end{aligned}
$$

and this is equivalent to (7).
By Lemma 4, (2) is satisfied by the function

$$
f_{0}(x)=\sum_{n=1}^{\infty} \frac{1}{\gamma_{n}} \bar{\Omega}\left(\frac{1}{n}\right) \sin n x .
$$

Then,

$$
f_{0}(x)=-\sum_{\equiv=1}^{\infty} \frac{1}{8 n} \bar{\Omega}\left(\frac{1}{n}\right) \cos n x,
$$

and here the right hand side is the Fourier series of a continuous function only if

$$
\sum_{n=1}^{\infty} \frac{1}{n} \bar{\Omega}\left(\frac{1}{n}\right)<\infty
$$

(for the ($C, 1$) means of this series must then be bounded), and this is the same as (6). The statement, that in case (6) f is continuous is a direct consequence of (7), proved above.

Let $h=\frac{\pi}{2^{k+1}}$; then

$$
\tilde{f}_{0}(h)-\tilde{f}_{0}(0)=\sum_{n=2^{k}+1}^{\infty} \frac{1}{8 n} \bar{\Omega}\left(\frac{1}{n}\right)-\sum_{n=2^{k}+1}^{\infty} \frac{1}{8 n} \bar{\Omega}\left(\frac{1}{n}\right) \cos n h+\sum_{n=1}^{2^{k}} \frac{1}{8 n} \bar{\Omega}\left(\frac{1}{n}\right) 2 \sin ^{2} n \frac{h}{2} .
$$

It is easy to see that

$$
\sum_{n=2^{k}+1}^{\infty} \frac{1}{8 n} \bar{\Omega}\left(\frac{1}{n}\right) \cos n h \leqq 0,
$$

and so

$$
\tilde{f}_{0}(h)-\tilde{f}_{0}(0) \geqq \sum_{n=2^{k}+1}^{\infty} \frac{1}{8 n} \bar{\Omega}\left(\frac{1}{n}\right) \geqq c \int_{0}^{1 / 2^{k}} \frac{\bar{\Omega}(x)}{x} d x,
$$

and hence (8) follows by a standard argument.
We have completed our proof.
Proof of Theorem 2. We have to consider two cases separately
Case $I: \Omega$ is convex. Let

$$
\sum_{k=0}^{\infty} \lambda_{k} \Omega\left(\mu_{k}\left|s_{k}(x)-f(x)\right|\right) \leqq K
$$

We have

$$
\begin{aligned}
\Omega\left(\mu_{n} E_{2 n}\right) & \leqq \Omega\left(\mu_{n}\left\|\frac{\sum_{k=n+1}^{2 n}\left|s_{k}-f\right|}{n}\right\| \| \leqq \Omega\left(\left\|\frac{\sum_{k=n+1}^{2 n} \mu_{k}\left|s_{k}-f\right|}{n}\right\|\right)=\right. \\
& =\left\|\Omega\left(\frac{\sum_{k=n+1}^{2 n} \mu_{k}\left|s_{k}-f\right|}{n}\right)\right\| \leqq\left\|\frac{\sum_{k=n+1}^{2 n} \Omega\left(\mu_{k}\left|s_{k}-f\right|\right)}{n}\right\| \leqq \\
& \leqq\left\|\frac{\sum_{k=n+1}^{2 n} \lambda_{k} \Omega\left(\mu_{k}\left|s_{k}-f\right|\right)}{n \lambda_{n}}\right\| \leqq \frac{K}{n \lambda_{n}},
\end{aligned}
$$

i.e.

$$
E_{2 n}(f)=O\left(\frac{1}{\mu_{n}} \bar{\Omega}\left(\frac{1}{n \lambda_{n}}\right)\right),
$$

and hence, using the inequality (1.16),

$$
\omega\left(f ; \frac{1}{n}\right)=O\left(\frac{\sum_{k=0}^{n} E_{k}}{n+1}\right)=O\left(\frac{\sum_{k=0}^{n} E_{2 k}}{n+1}\right)=O\left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{\mu_{k}} \bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right)\right)
$$

and this is (12).
Let

$$
f_{0}(x)=\sum_{n=1}^{\infty} \frac{1}{8 n \mu_{n}} \bar{\Omega}\left(\frac{1}{n \lambda_{n}}\right) \sin n x .
$$

By Lemma 4, f_{0} satisfies (11). Now applying Lemma 1 to f_{0} we get

$$
f_{0}\left(\frac{\pi}{n}\right)-f_{0}(0) \geqq \frac{1}{2} \frac{1}{8} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\mu_{k}} \bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right)
$$

and this proves (13).
Case II: Ω is concave. By Lemma 3 we have

$$
\begin{equation*}
E_{4 n}(f)=O\left(\log n\left(n^{2} \lambda_{n}^{2} \mu_{n} \Omega\left(\frac{\log n}{n \lambda_{n}}\right)\right)^{-1}\right) \tag{2.6}
\end{equation*}
$$

Let m_{k} resp. n_{k} the least and the greatest n (if any), for which

$$
\begin{equation*}
\frac{1}{(k+1) \lambda_{k+1}}<\Omega\left(\frac{\log n}{n \lambda_{n}}\right) \leqq \frac{1}{k \lambda_{k}} . \tag{2.7}
\end{equation*}
$$

Ω is concave, so there is a $c>0$ for which

$$
\Omega\left(\frac{\log k}{k \lambda_{k}}\right) \geqq c \frac{\log k}{k \lambda_{k}}>\frac{1}{k \lambda_{k}}
$$

if k is large enough. From this and (2.7) it follows at once for $k \geqq k_{0}$ that

$$
\begin{gather*}
m_{k} \geqq k+1, \quad \lambda_{m_{k}} \geqq \lambda_{k+1}, \quad \mu_{m_{k}} \geqq \mu_{k} \tag{2.8}\\
\frac{\log m_{k}}{m_{k} \lambda_{m_{k}}} \leqq \bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right), \quad \frac{\log n_{k}}{n_{k} \lambda_{n_{k}}} \geqq \bar{\Omega}\left(\frac{1}{(k+1) \lambda_{k+1}}\right) . \tag{2.9}
\end{gather*}
$$

We shall show that for $k \geqq k_{0}$

$$
\begin{equation*}
\sum_{n=m_{k}}^{m_{k}} \log n\left(n^{2} \lambda_{n}^{2} \mu_{n} \Omega\left(\frac{\log n}{n \lambda_{n}}\right)\right)^{-1}=O\left((k+1)\left(\frac{1}{\mu_{k}} \bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right)-\frac{1}{\mu_{k+1}} \bar{\Omega}\left(\frac{1}{(k+1) \lambda_{k+1}}\right)\right)\right) \tag{2.10}
\end{equation*}
$$

First we consider the case $n_{k}=m_{k}=n$. Using the inequalities

$$
\bar{\Omega}\left(\frac{1}{(k+1) \lambda_{k+1}}\right) \leqq \bar{\Omega}\left(\frac{1}{(k+1) \lambda_{k}}\right) \leqq \frac{k}{k+1} \bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right), \quad \frac{\Omega(x)}{x} \geqq C
$$

coming from the concavity of Ω, we obtain for $k \geqq k_{0}$

$$
\begin{gathered}
\log n\left(n^{2} \lambda_{n}^{2} \mu_{n} \Omega\left(\frac{\log n}{n \lambda_{n}}\right)\right)^{-1}=O\left(\frac{1}{n \lambda_{n} \mu_{n}}\right)=O\left(\frac{\log n}{n \lambda_{n} \mu_{n}}\right)=O\left(\frac{1}{\mu_{k}} \bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right)\right)= \\
=O\left(\frac{(k+1)}{\mu_{k}}\left(\bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right)-\bar{\Omega}\left(\frac{1}{(k+1) \lambda_{k+1}}\right)\right)\right)= \\
=O\left((k+1)\left(\frac{1}{\mu_{k}} \bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right)-\frac{1}{\mu_{k+1}} \bar{\Omega}\left(\frac{1}{(k+1) \lambda_{k+1}}\right)\right)\right) .
\end{gathered}
$$

If, however, $n_{k}>m_{k}$ and $k \geqq k_{0}$, then

$$
\begin{aligned}
& \quad \sum_{n=m_{k}}^{n_{k}} \log n\left(n^{2} \lambda_{n}^{2} \mu_{n} \Omega\left(\frac{\log n}{n \lambda_{n}}\right)\right)^{-1}=O\left(\frac{(k+1) \lambda_{k+1}}{\lambda_{m_{k}}^{2} \mu_{m_{k}}} \sum_{n=m_{k}}^{n_{k}} \frac{\log n}{n^{2}}\right)= \\
& =O\left(\frac{(k+1)}{\lambda_{m_{k}} \mu_{m_{k}}} \int_{m_{k}}^{n_{k}} \frac{\log x-1}{x^{2}} d x\right)=O\left(\frac{(k+1)}{\lambda_{m_{k}} \mu_{m_{k}}}\left(\frac{\log m_{k}}{m_{k}}-\frac{\log n_{k}}{n_{k}}\right)\right)= \\
& =O\left(\frac{(k+1)}{\mu_{k}}\left(\frac{\log m_{k}}{m_{k} \lambda_{m_{k}}}-\frac{\log n_{k}}{n_{k} \lambda_{n_{k}}}\right)\right)=O\left(\frac{(k+1)}{\mu_{k}}\left(\bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right)-\bar{\Omega}\left(\frac{1}{(k+1) \lambda_{k+1}}\right)\right)\right)= \\
& =O\left((k+1)\left(\frac{1}{\mu_{k}} \bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right)-\frac{1}{\mu_{k+1}} \bar{\Omega}\left(\frac{1}{(k+1) \lambda_{k+1}}\right)\right)\right) .
\end{aligned}
$$

Thus we have proved (2.10) for $k \geqq k_{0}$.
Let now $m_{i} \leqq m \leqq n_{i}$. Using (2.6) and (2.10) we get

$$
\begin{aligned}
& \quad \omega\left(f ; \frac{1}{m}\right)=O\left(\frac{1}{m} \sum_{k=0}^{m} E_{k}(f)\right)=O\left(\frac{1}{m} \sum_{k=0}^{m} E_{4 k}(f)\right)= \\
& =O\left(\frac{1}{m} \sum_{k=1}^{i} \sum_{n=m_{k}}^{n_{k}} \log n\left(n^{2} \lambda_{n}^{2} \mu_{n} \Omega\left(\frac{\log n}{n \lambda_{n}}\right)\right)^{-1}\right)=O\left(\frac{1}{m}\left(\sum_{k=1}^{k_{0}-1}+\sum_{k=k_{0}}^{i}\right)\right)= \\
& =O\left(\frac{1}{m}+\frac{1}{m} \sum_{k=k_{0}}^{i}(k+1)\left(\frac{1}{\mu_{k}} \bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right)-\frac{1}{\mu_{k+1}} \bar{\Omega}\left(\frac{1}{(k+1) \lambda_{k+1}}\right)\right)\right)= \\
& =O\left(\frac{1}{m} \sum_{k=1}^{i} \frac{1}{\mu_{k}} \bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right)\right)=O\left(\frac{1}{m} \sum_{k=1}^{m} \frac{1}{\mu_{k}} \bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right)\right),
\end{aligned}
$$

which proves (12). Let

$$
f_{0}(x)=\sum_{n=1}^{\infty} \frac{1}{\mu_{n^{2}}} \bar{\Omega}\left(\frac{1}{n^{2} \lambda_{n^{2}}}\right) \sin n x .
$$

By Lemma $5, f_{0}$ satisfies (11). Applying again Lemma 1 (it is easy to see that it is applicable), we obtain

$$
\begin{aligned}
f_{0}\left(\frac{\pi}{n}\right)-f_{0}(0) & \geqq \frac{1}{2} \frac{1}{n} \sum_{k=1}^{n} k \frac{1}{\mu_{k^{2}}} \bar{\Omega}\left(\frac{1}{k^{2} \lambda_{k^{2}}}\right) \geqq \frac{1}{6} \frac{1}{n} \sum_{k=1}^{n}(2 k+1) \frac{1}{\mu_{k^{2}}} \bar{\Omega}\left(\frac{1}{k^{2} \lambda_{k^{2}}}\right) \geqq \\
& \geqq \frac{1}{6} \frac{1}{n} \sum_{k=1}^{n^{2}-1} \frac{1}{\mu_{k}} \bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right) \geqq \frac{1}{6} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\mu_{k}} \bar{\Omega}\left(\frac{1}{k \lambda_{k}}\right)
\end{aligned}
$$

and this is (13). - The proof of Theorem 2 is thus completed.
Proof of Theorem 3. We shall consider only the case when r is odd, the other case could be treated similarly.

If we apply Lemma $6 r$-times, we gett hat (14) implies

$$
\left\|\sum_{k=0}^{\infty} k^{\beta-r} \Omega\left(\left|s_{k}\left(f^{(r)}\right)-f^{(r)}\right|\right)\right\|<\infty
$$

and hence, using the assertion (i) of Theorem 1, we get $\tilde{\left.f^{r}\right)}=f^{(r)} \in \operatorname{Lip} 1$, while using Corollary 2 of Theorem 2 we obtain

$$
\omega\left(\tilde{f}^{(r)} ; \delta\right)=O\left(\delta \int_{\delta}^{1} \frac{\bar{\Omega}\left(x^{1+\beta-r}\right)}{x^{2}} d x\right)
$$

as it was proposed in (16).
Let

$$
f_{\beta}(x)=\sum_{n=1}^{\infty} \bar{\Omega}\left(\frac{1}{n^{2+\beta}}\right) \sin n x .
$$

If we run through the proof of Lemma 5 we can see that its proof equally works for f_{β}, so f_{β} satisfies (14). Keeping in mind that $\bar{\Omega}$ is convex, we have

$$
n^{\beta+2} \bar{\Omega}\left(\frac{1}{n^{\beta+2}}\right) \geqq(n+1)^{\beta+2} \bar{\Omega}\left(\frac{1}{(n+1)^{\beta+2}}\right)
$$

and this implies that

$$
n^{r+1} \bar{\Omega}\left(\frac{1}{n^{\beta+2}}\right) \geqq(n+1)^{r+1} \bar{\Omega}\left(\frac{1}{(n+1)^{\beta+2}}\right)
$$

so we can apply Lemma 1 to $\tilde{f}_{\beta}^{(r)}$, and this gives

$$
\begin{align*}
\left|\tilde{f}_{\beta}^{(r)}\left(\frac{\pi}{n}\right)-\tilde{f}_{\beta}(0)\right| & \geqq \frac{1}{2} \frac{1}{n} \sum_{k=1}^{n} k^{r+1} \bar{\Omega}\left(\frac{1}{k^{\beta+2}}\right) \geqq c \frac{1}{n} \int_{1 / n}^{1} \frac{\bar{\Omega}\left(x^{\beta+2}\right)}{x^{\beta+3}} d x= \tag{2.11}\\
& =c^{\prime} \frac{1}{n} \int_{-\frac{2+\beta}{1+\beta-r}}^{1} \frac{\bar{\Omega}\left(u^{1+\beta-r}\right)}{u^{\gamma}} d u
\end{align*}
$$

where

$$
\gamma=\frac{1+\beta-r}{2+\beta}\left(r+3+\frac{1+r}{1+\beta-r}\right) \geqq 2 .
$$

Also $\frac{2+\beta}{1+\beta-r} \geqq 1$, so we get from (2.11) that

$$
\left|\tilde{f}_{\beta}^{(r)}\left(\frac{\pi}{n}\right)-\tilde{f}_{\beta}^{(r)}(0)\right| \geqq c \frac{1}{n} \int_{1 / n}^{1} \frac{\bar{\Omega}\left(x^{1+\beta-r}\right)}{x^{2}} d x
$$

which was to be proved.
Thus we have completed our proof.

Proof of Theorem 4. Let $f(x) \sim \sum_{k=0}^{\infty} A_{k}(x)$ and

$$
R_{n}(\beta, f ; x)=\sum_{k=0}^{n}\left(1-\left(\frac{k}{n+1}\right)^{\beta}\right) A_{k}(x) .
$$

Using an Abel rearrangement we get from (18)

$$
\begin{aligned}
& \Omega\left(\frac{(n+1)^{\beta}}{2^{\beta}(\beta+1)}\left|R_{n}(\beta+1, f)-f\right|\right)=\Omega\left(\frac{(n+1)^{\beta}}{2^{\beta}(\beta+1)}\left|\frac{\sum_{k=0}^{n} s_{k}\left((k+1)^{\beta+1}-k^{\beta+1}\right)}{(n+1)^{\beta+1}}-f\right|\right)= \\
& =\Omega\left(\frac{(n+1)^{\beta}}{2^{\beta}(\beta+1)}\left|\frac{\sum_{k=0}^{n}\left(s_{k}-f\right)\left((k+1)^{\beta+1}-k^{\beta+1}\right)}{(n+1)^{\beta+1}}\right|\right) \leqq \Omega\left(\frac{\left|s_{0}-f\right|+\sum_{k=1}^{n} k^{\beta}\left|s_{k}-f\right|}{n+1}\right) \leqq \\
& \leqq \frac{\Omega\left(\left|s_{0}-f\right|\right)+\sum_{k=1}^{n} \Omega\left(k^{\beta}\left|s_{k}-f\right|\right)}{n+1} \leqq \frac{K}{n+1}
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left|R_{n}(\beta+1, f)-f\right|=O\left(\frac{1}{n^{\beta}} \bar{\Omega}\left(\frac{1}{n}\right)\right) \tag{2.12}
\end{equation*}
$$

Now $\boldsymbol{R}_{\boldsymbol{n}}(\beta+1, f)$ is a trigonometric polinomial of order at most n, so (2.12) implies

$$
\begin{equation*}
E_{n}(f)=O\left(\frac{1}{n^{\beta}} \bar{\Omega}\left(\frac{1}{n}\right)\right) \tag{2.13}
\end{equation*}
$$

We shall treat after that the cases (i)-(iii) separately.
Case (i). By Lemma 2 (iii) from (2.13) it follows that $E_{n}\left(f^{(r)}\right)=O\left(\frac{1}{n^{\beta-r}} \bar{\Omega}\left(\frac{1}{n}\right)\right)$,
this, connecting with inequality (1.16) gives and this, connecting with inequality (1.16) gives

$$
\omega\left(f^{(r)} ; \frac{1}{n}\right)=O\left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{k^{\beta-r}} \bar{\Omega}\left(\frac{1}{k}\right)\right)\left(=O\left(\frac{1}{n} \int_{1 / n}^{1} \frac{\bar{\Omega}(x)}{x^{2-\beta+r}} d x\right)\right)
$$

From the concavity of $\bar{\Omega}$ it follows that $\bar{\Omega}\left(\frac{1}{k}\right) \leqq \frac{n}{k} \bar{\Omega}\left(\frac{1}{n}\right)(n \geqq k)$ and so

$$
\omega\left(f^{(r)} ; \frac{1}{n}\right)=O\left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{k^{\beta-r}} \frac{n}{k} \bar{\Omega}\left(\frac{1}{n}\right)\right)=O\left(\bar{\Omega}\left(\frac{1}{n}\right)\right)
$$

and this proves (19).
Case (ii) According to Lemma 2 (iv), (2.13) implies

$$
E_{n}\left(f^{(r-1)}\right)=O\left(\frac{1}{n} \bar{\Omega}\left(\frac{1}{n}\right)\right)
$$

and so

$$
\omega\left(f^{(r-1)} ; \frac{1}{n}\right)=O\left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{k} \bar{\Omega}\left(\frac{1}{k}\right)\right)=O\left(\frac{1}{n} \int_{1 / n}^{1} \frac{\bar{\Omega}(x)}{x} d x\right)
$$

from which (20) already follows.
Let r e.g. even, and

$$
f_{0}(x)=\sum_{n=1}^{\infty} \frac{1}{n^{r+1}} \bar{\Omega}\left(\frac{1}{n^{2}}\right) \cos n x
$$

(if r is odd then we must take $\sin x$ in place of $\cos x$). f_{0} satisfies (18):

$$
\begin{gathered}
\sum_{k=0}^{\infty} \Omega\left(k^{r}\left|\sum_{n=k+1}^{\infty} \frac{1}{n^{r+1}} \bar{\Omega}\left(\frac{1}{n^{2}}\right) \cos n x\right|\right) \leqq \sum_{k=0}^{\infty} \Omega\left(k^{r} \frac{1}{(k+1)^{r}} \bar{\Omega}\left(\frac{1}{(k+1)^{2}}\right)\right) \leqq \sum_{k=0}^{\infty} \frac{1}{(k+1)^{2}} \\
f_{0}^{(r-1)}(x)=(-1)^{r / 2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \bar{\Omega}\left(\frac{1}{n^{2}}\right) \sin n x,
\end{gathered}
$$

and so using Lemma 1 we get

$$
\begin{aligned}
\left|f_{0}^{(r-1)}\left(\frac{\pi}{n}\right)-f_{0}^{(r-1)}(0)\right| & \geqq \frac{1}{2} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{k} \bar{\Omega}\left(\frac{1}{k^{2}}\right) \geqq \frac{1}{6} \frac{1}{n} \sum_{k=1}^{n}(2 k+1) \frac{1}{k^{2}} \bar{\Omega}\left(\frac{1}{k^{2}}\right) \geqq \\
& \geqq \frac{1}{6} \frac{1}{n} \sum_{k=1}^{n^{2}-1} \frac{1}{k} \bar{\Omega}\left(\frac{1}{k}\right) \geqq c \frac{1}{n} \int_{1 / n}^{1} \frac{\bar{\Omega}(x)}{x} d x,
\end{aligned}
$$

and this proves that (20) is best possible in general.
Lemma 2 (i) and the above proofs show that all of the above statements are true for the conjugate function, too.

Case (iii). We shall consider the case when r is even. Let

$$
f=R_{n}(r+1, f)+g_{n}(f)
$$

With this notation

$$
\begin{equation*}
R_{n}(r+1, f)-f=\left(R_{n}\left(r+1, R_{n}(r+1, f)\right)-R_{n}(r+1, f)\right)+\left(R_{n}\left(r+1, g_{n}(f)\right)-g_{n}(f)\right) \tag{2.14}
\end{equation*}
$$

By (2.12) $g_{n}(f)=O\left(\frac{1}{n^{r}} \bar{\Omega}\left(\frac{1}{n}\right)\right), \quad$ and this implies by Lemma 7 that $R_{n}\left(r+1, g_{n}(f)\right)=O\left(\frac{1}{n^{r}} \bar{\Omega}\left(\frac{1}{n}\right)\right)$, and so from (2.14) it. follows that

$$
\begin{equation*}
R_{n}\left(r+1, R_{n}(r+1, f)\right)-R_{n}(r+1, f)=O\left(\frac{1}{n^{r}} \bar{\Omega}\left(\frac{1}{n}\right)\right) \tag{2.15}
\end{equation*}
$$

Let

$$
R_{n}(r+1, f) \sim \sum_{k=0}^{n} A_{k}(x)
$$

Then

$$
\begin{gathered}
R_{n}\left(r+1, R_{n}(r+1, f)\right)-R_{n}(r+1, f)=\sum_{k=0}^{n}\left(1-\left(\frac{k}{n+1}\right)^{r+1}\right) A_{k}(x)-\sum_{k=0}^{n} A_{k}(x)= \\
=-\frac{1}{(n+1)^{r+1}} \sum_{k=0}^{n} k^{r+1} A_{k}(x)=\frac{(-1)^{r 2+1}}{(n+1)^{r+1}}\left(\tilde{R}_{n}(r+1, f)\right)^{(r+1)}
\end{gathered}
$$

This equality together with (2.15) gives

$$
\tilde{R}_{n}^{(r+1)}(r+1, f)=O\left(n \bar{\Omega}\left(\frac{1}{n}\right)\right)
$$

from which

$$
\begin{equation*}
\tilde{\tau}_{n}^{(r+1)}(r+1, f)=\tau_{n}^{(r+1)}(r+1, \tilde{f})=\tau_{n}^{\prime}\left(r+1, \tilde{f}^{(r)}\right)=O\left(n \bar{\Omega}\left(\frac{1}{n}\right)\right) \tag{2.16}
\end{equation*}
$$

follows at once ($\tau_{n}(r, f)$ was defined in Lemma 8).
(2.13) implies by Lemma 2 (i) and (v) and by Lemma 8 that

$$
\begin{equation*}
\left|\tau_{n}\left(r+1, \tilde{f}^{(r)}\right)-f^{(r)}\right|=O\left(\int_{0}^{1 / n} \frac{\bar{\Omega}(x)}{x} d x\right) \tag{2.17}
\end{equation*}
$$

Now we get (22) from (2.16) and (2.17) as we got (7) in Theorem 1 from (2.4) and (2.5).

Before proving (23) we show that $f^{(r)}$ is the sum of its Fourier series. Because of the continuity of $f^{(r)}$ it is enough to prove that its Fourier series everywhere convergent. With the usual notations

$$
\begin{gather*}
f^{(r)}(x) \sim(-1)^{r / 2} \sum_{k=0}^{\infty} k^{r} A_{k}(x), \\
\sum_{k=m}^{n} k^{r} A_{k}(x)=\sum_{k=m}^{n-1}\left(k^{r}-(k+1)^{r}\right) s_{k}(x)-m^{r} s_{m-1}(x)+n^{r} s_{n}(x)= \tag{2.18}\\
= \\
O\left(\sum_{k=m}^{n-1} k^{r-1}\left|s_{k}(x)-f(x)\right|+m^{r}\left|s_{m-1}(x)-f(x)\right|+n^{r}\left|s_{n}(x)-f(x)\right|\right) .
\end{gather*}
$$

Lemma 9 shows by (18) that

$$
\sum_{k=m}^{n-1} k^{i-1}\left|s_{k}(x)-f(x)\right| \rightarrow 0 \quad \text { as } \quad n, m \rightarrow \infty
$$

moreover $\Omega\left(n^{r} \mid s_{n}(x)-f(x)\right) \rightarrow 0(n \rightarrow \infty)$, and this implies $n^{r}\left|s_{n}(x)-f(x)\right| \rightarrow 0$ as $n \rightarrow \infty$. Thus (2.18) gives the convergence of $\sum_{k=0}^{\infty} k^{r} A_{k}(x)$, and so

$$
f^{(r)}(x)=(-1)^{r / 2} \sum_{k=0}^{\infty} k^{r} A_{k}(x)
$$

On this account the following transformations are legitimate, and (2.12), as well as Lemma 9 give

$$
\begin{aligned}
& (-1)^{r / 2}\left(\sigma_{n}\left(f^{(r)}\right)-f^{(r)}\right)=\sum_{k=0}^{n}\left(1-\frac{k}{n+1}\right) k^{r} A_{k}-\sum_{k=0}^{\infty} k^{r} A_{k}=(n+1)^{r}\left(R_{n}(r+1, f)-f\right)- \\
& -\sum_{k=n+1}^{\infty}\left(k^{r}-(n+1)^{r}\right) A_{k}=(n+1)^{r}\left(R_{n}(r+1, f)-f\right)+\sum_{k=n+2}^{\infty}\left(s_{k-1}-f\right)\left(k^{r}-(k-1)^{r}\right)= \\
& =O\left((n+1)^{r} \frac{1}{n^{r}} \bar{\Omega}\left(\frac{1}{n}\right)+\sum_{k=n+2}^{\infty}\left|s_{k-1}-f\right|(k-1)^{r-1}\right)=O\left(\bar{\Omega}\left(\frac{1}{n}\right)+\bar{\Omega}^{*}\left(\frac{1}{n}\right)\right)= \\
& =O\left(\bar{\Omega}^{*}\left(\frac{1}{n}\right)\right), \text { from which } E_{n}\left(f^{(r)}\right)=O\left(\bar{\Omega}^{*}\left(\frac{1}{n}\right)\right) \text { follows at once. Now we can }
\end{aligned}
$$ apply Lemma 10 , and we get (23).

To prove (24) let

$$
f_{r}(x)=\sum_{n=1}^{\infty} \frac{1}{8 n^{r+1}} \bar{\Omega}\left(\frac{1}{n}\right) \sin n x .
$$

By Lemma 4, f_{r} satisfies (18). Now

$$
f_{r}^{(r)}(x)=(-1)^{r / 2+1} \sum_{n=1}^{\infty} \frac{1}{8 n} \bar{\Omega}\left(\frac{1}{n}\right) \cos n x
$$

and in the proof of Theorem 1 we have already seen that for this function (24) is true.
The proof of Theorem 4 is thus completed.
Proof of Remark. Let r be, for example, an odd number.
We separate the proof into two cases.

1. $\delta \int_{\delta}^{1} \frac{\bar{\Omega}(x)}{x^{2}} d x \neq O(\omega(\delta))$. In this case by the aid of the above defined function

$$
f_{r}(x)=\sum_{n=1}^{\infty} \frac{1}{8 n^{r+1}} \bar{\Omega}\left(\frac{1}{n}\right) \sin n x
$$

the proof can be easily carried out.
2. If $\delta \int_{\delta}^{1} \frac{\bar{\Omega}(x)}{x^{2}} d x=O(\omega(\delta))$, then there is a sequence of natural numbers $\left\{n_{m}\right\}$, for whicl.

$$
\begin{equation*}
\omega\left(\frac{\pi}{2 n_{m}}\right)<\frac{1}{4^{m}} \bar{\Omega}^{*}\left(\frac{\pi}{2 n_{m}}\right) . \tag{2.19}
\end{equation*}
$$

Let n be a fixed natural number, and $\varepsilon_{0} \geqq \varepsilon_{1} \geqq \ldots ; \sum_{k=0}^{\infty} \varepsilon_{k} \leqq 1$. Let $c_{m}=\bar{\Omega}\left(\frac{\varepsilon_{k}}{2^{k} n}\right)$ if $2^{k} n \leqq m<2^{k+1} n$, and

$$
f(x)=f_{\left\{e_{k}\right\}, n}(x)=(-1)^{\frac{r-1}{2}} \sum_{m=n}^{\infty} \frac{1}{2 m^{r+1}} c_{m} \cos m x
$$

With the aid of (21) we get that $f^{(r)}$ exists, and less than a bound independent from $\left\{\varepsilon_{k}\right\}$ and n. We show that f satisfies (18).

$$
\begin{align*}
& \sum_{k=0}^{\infty} \Omega\left(k^{r}\left|s_{k}(x)-f(x)\right|\right) \leqq \sum_{k=1}^{n-1} \Omega\left(k^{r} \sum_{m=n}^{\infty} \frac{1}{2 m^{r+1}} c_{m}\right)+\sum_{k=n}^{\infty} \Omega\left(k^{r} \sum_{m=k+1}^{\infty} \frac{1}{2 m^{r+1}} c_{m}\right) \leqq \tag{2.20}\\
& \quad \leqq \sum_{k=1}^{n-1} \Omega\left(k^{r} \frac{1}{2 n^{r}} c_{n}\right)+\sum_{k=n}^{\infty} \Omega\left(k^{r} \frac{1}{2 k^{r}} c_{k}\right) \leqq \frac{1}{2} \sum_{k=1}^{n-1} \Omega\left(\bar{\Omega}\left(\frac{\varepsilon_{0}}{n}\right)\right)+ \\
& \quad+\frac{1}{2} \sum_{k=0}^{\infty} 2^{k} n \Omega\left(\bar{\Omega}\left(\frac{\varepsilon_{k}}{2^{k} n}\right)\right) \leqq \frac{\varepsilon_{0}}{2}+\frac{\sum_{k=0}^{\infty} \varepsilon_{k}}{2} \leqq 1 .
\end{align*}
$$

Now

$$
\hat{f}^{(r)}(0)-\tilde{f}^{(r)}\left(\frac{\pi}{2 n}\right)=\sum_{m=n}^{\infty} \frac{1}{m} c_{m}-\sum_{m=n}^{\infty} \frac{1}{m} c_{m} \cos m \frac{\pi}{2 n}
$$

and from the monotonicity of $\left\{c_{m}\right\}$ it follows that

$$
\sum_{m=n}^{\infty} \frac{c_{m}}{m} \cos m \frac{\pi}{2 n} \leqq 0
$$

and so

$$
\tilde{f}^{(r)}(0)-\tilde{f}^{(r)}\left(\frac{\pi}{2 n}\right) \geqq \frac{1}{2} \sum_{k=0}^{\infty} \bar{\Omega}\left(\frac{\varepsilon_{k}}{2^{k} n}\right)_{m=2^{k} n}^{2^{k+1} n-1} \frac{1}{m} \geqq \frac{1}{4} \sum_{k=0}^{\infty} \bar{\Omega}\left(\frac{\varepsilon_{k}}{2^{k} n}\right) .
$$

Consequently, by a suitable choice of $\left\{\varepsilon_{k}\right\}$ one can attain that the above defined function $f_{\left\{\varepsilon_{k}\right\}, n}(x)=f_{n}(x)$ satisfies

$$
\begin{equation*}
\tilde{f}_{n}^{(r)}(0)-\tilde{f}_{n}^{(r)}\left(\frac{\pi}{2 n}\right) \geqq \frac{1}{10} \bar{\Omega}^{*}\left(\frac{1}{n}\right) \geqq \frac{1}{20} \bar{\Omega}^{*}\left(\frac{\pi}{2 n}\right), \tag{2.21}
\end{equation*}
$$

for in the definition of $\bar{\Omega}^{*}$ we could have supposed that $\left\{\varepsilon_{k}\right\}$ is monotone.
Let now

$$
f(x)=\sum_{m=1}^{\infty} \frac{1}{2^{m}} f_{n_{m}}(x)
$$

This function f satisfies (18); indeed, using the convexity of Ω, we get from (2.20)

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \Omega\left(k^{r}\left|s_{k}(f ; x)-f(x)\right|\right) \leqq \sum_{k=0}^{\infty} \Omega\left(k^{r} \sum_{m=1}^{\infty} \frac{1}{2^{m}}\left|s_{k}\left(f_{n_{m}} ; x\right)-f_{n_{m}}(x)\right|\right) \leqq \\
& \leqq \sum_{k=0}^{\infty} \sum_{m=1}^{\infty} \frac{1}{2^{m}} \Omega\left(k^{r}\left|s_{k}\left(f_{n_{m}} ; x\right)-f_{n_{m}}(x)\right|\right)= \\
&= \sum_{m=1}^{\infty} \frac{1}{2^{m}} \sum_{k=0}^{\infty} \Omega\left(k^{r}\left|s_{k}\left(f_{n_{m}} ; x\right)-f_{n_{m}}(x)\right|\right) \leqq \sum_{m=1}^{\infty} \frac{1}{2^{m}}=1 .
\end{aligned}
$$

From the remark made after the definition of the functions $f_{\left\{\varepsilon_{k}\right\}, n}(x)$, it follows that $\tilde{f}^{(r)}$ exists; and using (2.19), (2.21) we obtain

$$
\begin{aligned}
& \tilde{f}^{(r)}(0)-\tilde{f}^{(r)}\left(\frac{\pi}{2 n_{m}}\right) \geqq \frac{1}{2^{m}}\left(\tilde{f}_{n_{m}}^{(r)}(0)-\tilde{f}_{n_{m}}^{(r)}\left(\frac{\pi}{2 n_{m}}\right) \geqq \frac{1}{2^{m}} \frac{1}{20} \bar{\Omega}^{*}\left(\frac{\pi}{2 n_{m}}\right) \geqq \frac{2^{m}}{20} \omega\left(\frac{\pi}{2 n_{m}}\right),\right. \\
& \text { so } \\
& \omega\left(\tilde{f}^{(r)} ; \delta\right) \neq O(\omega(\delta)),
\end{aligned}
$$

which proves our Remark.

References

[1] G. Freud, Über die Sättigungsklasse der starken Approximation durch Teilsummen der Fourierschen Reihe, Acta Math. Acad. Sci. Hung., 20 (1969), 275-279.
[2] V. G. Krotov and L. Leindler, On the strong summability of Fourier series and the classes H^{ω}, Acta Sci. Math., 40 (1978), 93-98.
[3] L. Leindler, Über die Approximation im starken Sinne, Acta Math. Acad. Sci. Hung., 16 (1965), 255-262.
[4] L. Leindler, On strong approximation of Fourier series, Approximation Theory (Proceedings of a Conference in Poznań, 1972), 129-140.
[5] L. Leindler, On strong summability of Fourier series. II, Acta Math. Acad. Sci. Hung., 20 (1969), 347-355.
[6] L. Leindler and E. M. Nikišin, Note on strong approximation by Fourier series, Acta Math. Acad. Sci. Hung., 24 (1973), 223-227.
[7] K. I. Oskolkov, On strong summability of Fourier series and differentiability of functions, Analysis Math., 2 (1976), 41-47.
[8] J. Szabados, On a problem of L. Leindler concerning strong approximation by Fourier series, Analysis Math., 2 (1976), 155-161.
[9] A. F. Timan, Theory of approximation of functions of a real variable (Delhi, 1966).
[10] V. Totik, On the modulus of continuity in connection with a problem of J. Szabados concerning strong approximation, Analysis Math., 4 (1978), 145-152.

[^0]: Received January 25, 1978.

[^1]: *) $[\beta]$ denotes the integral part of β.

[^2]: *) We mention, that Krotov proved for a subclass of convex functions much more general results. His proofs are totally different from ours.

