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On structural properties of functions arising from strong
approximation of Fourier series

V. TOTIK

Intrdduétion
Let f(x) be an integrable and 2=-periodic function, and let
) . | J(x) ~ 223+."§ (a,cos nx+ b, sin nx)
be its Fourier series. Denote by s,(x)=s,(f; x) and @(f; 5) the 7'1'-th partial sun;
of (1) and the modulus of continuity of f, respectively; |- || always stays for the

supremum norm.
FRreuD [1] proved that

S ls—f1°

k=1

<o forsome p=1 implies f€ L'ip-ll;.
An analogous problem with p=1 was investigated by LEINDLER and NIKBIN

[6], and this result was generalized by LEINDLER [4] as follows: If r is a nonnegative
integer and

fOx+h)—fO) = K-h -log—;; (x€[0, 2x))

Skl <=,
then

forall x, and this estimation is best possible.
From this result it follows that

” > |sk—f|l| <o does not imply fecLipl.
k=1
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228 V. Totik
LeINDLER raised the question whether the condition

The answer was given in the affirmative by OskoLkov [7] and SzaBapos [8].
They also proved

©o

2 Is,—f1P

<oo withsome p (0<p<1) implies f€Lipl.

Theorem A. Fof‘an arbitrary modulus of continuity Q,

@ | 3 atse-] <
and
) fgw

imply felip 1.

Under a certain restriction on Q they also proved the necessity of condition
(3). In [10] we proved the necessity of (3) without any further assumption, and
more generally, we proved Theorem B (below).

In order to simplify our assertions, Q(x) will always denote an increasing convex
or concave function on [0, =), with the properties

©) Q(x)= 0(x=>0) _ljm Qx) =20 =0,

and we suppose that the inverse of 2(x) (denoted by €(x)) exists in the interval [0; 1].
With these notations we proved

- Theorem B. If f satisfies (2), then
© (9= @f”m &),

but no estimate better than this can be given. Moreover, if Q is concave, then we
can replace

15 1
re W by [
x a5 Q(x)
The following theorem answers the analogous problem for the conjugate
function.

Theorem 1. (i) If Q is concave, then (2) implies f€Lip 1 (ii) Let Q be convex.
From (2) the continuity of f follows if and only if

(6) f Qf‘) dx < oo

]
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If (6) is fulfilled, then (2) implies that
6 pr—
s Q) )
@) w(f,6)~0[f ~— dx).

0

Furthermore, there exists a function f, for which (2) is true, but
5 —_—
®) o(fo; 5);.:]—‘%")(1;: (c>0).
0

We note that part (i) is a known result of LEINDLER [4].
Recently KroTov and LEINDLER [2] investigated the problem to give a necessary
and sufficient condition for a monotonic sequence {4,} such that

oo

2 lse—f1P

) .

< oo withsome p (0 < p <)
should imply w(f; 8)=0(w(5)), where w(d) is a fixed modulus of continuity.
They proved

Theorem C. Let {A,} be a positive nondecreasing sequence, w(9) be a modulus
of continuity and O<p<oo. Then (9) implies w(f;8)=0(w(8)) if and only if
n _l 1
(10) Sk-Ad) r=0 n-w[——) .
k=1 n
As a common generalization of Theorem B and C we shall pfove

Theorem 2. Let Q be a convex or concave function with properties (4), and let
{45, {mts be positive nondecreasing sequences. If

an | 2 2ewis—n]| <=
then . . 2 .
1 I &1 (1 .
: (1) =o[% 3 La(L)
(12) o|f n nk;; W \k-4,
Furthermore, there exists a function " f, satisfyihg (11), for which .
1 21 1
@ eluy)Eer nalEy) o
' Corollary 1 Condition (11) lmplzes fELlpl lfand only lf: | _
1 (1
Lol :
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Corollary 2. Let y=0. Then

| 2 005 <=
implies

o(f; 8) =0(6f§(—);12+2dx).

It is easy to see that (12) reduces to (5) and (10) if 2, =p,=1 and y,=1,
Q(x)=xP, respectively. Thus Theorem B and C, and hence all of the above results
are consequences of Theorem 2.

We remark that for Q(x)=x? LEINDLER [5] proved some general statements
of similar type.

It is a very interesting problem to find the analogue of Theorem 2 for the
conjugate function.

We shall now generalize Theorem B in another direction. Let § be a nonnegative
number and consider the condition

(9 |2 K 0ts—n| <=
instead of (2). We ask for the differentiability properties of f and f. We prove

Theorem 3. Let .Q be a concave function with properties (4), and let B=0,
r=[B1*). (14) implies that f, f are r times differentiable, and if r is odd then

(15) f®¢elipl
.. _ 1 Q‘(xl-(-ﬁ—r)
16) w(f”,é)—O(é!de),

while if r is even then the role of f and f in (15) and (1'6) must be inverted. Furthermore,
there are functions fy satisfying (14) with

g(x1+ﬁ—r)
x2

an o(ff;8) o w(ff;8) = / dx (c>0),

according as r is odd or even.

-1 =1 . .
The example Q(x)=e *, f(x)= Z?—sm nx shows that for certain convex
. n=1

Q condition (14) — with arbitrary large  — does not guarantee the differentiability

*) [B] denotes the integral part of 8.
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of f. On this account for convex Q we shall investigate the condition

(18)
rather than (14).
Before we state our result concerning (18), we need the following

" Definition. If @ is a modulus of continuity for which Z’w(zlk)

or equivalently f @dx<oo, let
1]

w*(8) = sup Zcu( 5],

{e;} k=

where the supremum is taken over the sequences {¢,} which satisfy the conditions:

=0 (k=0,1,..), &g =1

M

k

I
o

T ltis easy to verify that w*(d) is again a modulus of continuity, and that

w (x)

w0 () = o*(5) sf
With these notations we prove
Theorem 4. *) Let Q be convex with properties (4), =0, and [Bl=r.
(G) If B=[B] then (18) implies
(19) ' o(f®; §) = 0(2(©)).
(i) Let B=[p]=0. From (18) it follows that

. 1 Q (x)
) : (r-1). — e\ 004
20) w(fe; 5) = 05 S5 )
and this estimation cannot be improved. Thus if (18) implies the existence of f ) then
N Q(x)
@1 f o dx <.

(-]

In each of the above statements we can put f in place of f.

*) We mention, that KroTov proved for a subclass of convex functions much more general
results. His proofs are totally different from ours.

[y



232 : V. Totik . .

(iii) Let us wuppose that (21) is satisfied and r=0. Then (18) implies
5 =
Q(x) )
). — _—
) w78 = o[ [ S ax),

(23) o Q(f(’);5)= (Q*(5)+5f Q(x) ],

if r is even, and the roles of f and f must be interverted in the odd case. Furthermore
there are functions f, satisfying (18), for which ‘
24) o(f;8) or w(fP;0)=c f 2x) dx (c=0)

o

according as r is even or odd.

. Remark. Estimation (23) is best possible also in the following sense: If

(25) a*©)+6 [ igx) dx # O(w(5)),
]

where «w(0) is an arbitrary modulus of continuity, then there is an f satisfying (18), but
(26) o(f;8) or o(f®; ) # O(w(d))

according as r is even or not.

We mention that from the proof of (i) the stronger estimation
1 =
Q(x)
). —
o(f ,5)_0(56/-)‘2—_,,de]

also follows and with the aid of the function fy(x)= S’ ™ } y; Q(l)sm nx one

can prove that this is the best possible if r is even, but we do not know what is
the best estimation if r is odd. o :

I am grateful to Professor L. LEINDLER, who called my attention to these
problems, and whose permanent interest and advises helped me very much in
my work.

§ 1. Lemmas - S

Lemma 1 ({10}, Lemma 2). Let {g,} be a decreasing sequence of positive numbers
and let

oo 1 .
. o(x)= 2 g,—sinnx.
n=1 n

Then

IIV

L3 = U TP L S
TG =23
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Lemma 2. Let w(x) be a modulus of continuity, B=0, and suppose that

1
E.(f)=0 [71760 (711-]] . The following statements are true:

G if B=>0 then E,,(f')=0[n—}gw[i)],

n

w (x)

) f p=0, and f dx<oo then E,(f)= (fl/"ﬂ)(;’i)dx],

(i) if B=[Bl=r, then E,(f)=0 [n”" w(;]] ,
@) if B=If>=0, then E(f-")=0 [%m[i]}

n

dx < then E,(f®) =0 (ofm%")dx].

b w(x)

™ if B=1l, and [

These statements can be easily proved using the estimations below (see [9],
" pages 321 and 304):

- o= ' =
ED=c(Bn+ 3 TEO), BUD=.(EN+ 3 vED).
To prove (ii) and (v) use the inequality
=1 (1 7" w(x)
Ssol5)= ) 2
We omit the details. ’

Lemma 3. If Q is concave, and {1, ), {i}s are nondecreasing positive sequences
then

(L1) 2 09l 0)~f() = K
implies that . o ‘ -
2 " E, =0 [log n [nzlﬁunQ [ 1:% n ])_1] o

. Proof. Using the known Lebesgue estimation

5200 —f ()| = 3E,(f) log n

and the inequality

Qay) _  Qay) _  Lay) _ 2y
321 ay,” " oay, T W

- (a,>:.Q; 0<y <)
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coming from the concavity of Q, we get from (1.1)

K= Hmzi }.,‘Q(y,]s,‘—fl)” = m%:l Lelse—f] ﬂ(%":'s__*filﬂl” =

_ Q(E,logn)
3E,log2n "

2n
s —
k=§+l | ' fl Q(ﬂnEn lOg n)
- = A,nE,y,

6E,logn

1e.
(1.3) E,, = O(E,,log n(n1,Q(us, E,, log n))~L.

Now it follows from (1.1) that

2 Dl (-G = K,

and from this that E, =0((n,p,)~?). If we write this estimation in (1.3) wc ob-
tain (1.2)

Lemma 4. If Q(x) is convex, {A}, {us} are nondecreasing positive sequences,
and

= 1 (1Y.
fx) = ,,gi 8nu, 2 [ nl, ] s nx
then

”g: R pls—f I)“ =

Proof. We introduce the notation

1 _[ 1 ] .
A,,(x)—mﬂ ?l: Sin nx.

Since f(x) is odd, it is enough to consider the case x=0. Let %<x §N—n1—,
where N is an integer. With these notations we have

14 Zhous0-1@) = (2 + 3 ) 400 -1@) = B0+ B,

Using the well-known estimation

‘i'asinlx's4a @,=za,,,=..)
l=p, Sxr p = Yptl =+)»
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1
D e s1

- 1 N 1 S N 5 !
‘§k§ A Q[Nx k+1 Q[(k+1)/1k+1 ]] § [k+1 Q((k'*'l)'l’""l ]] =

= N (- 1 = N
PR o Q(Q[(k+1)/1k+1)] =2 Tt 1p

From the convexity of Q it follows that

2\ n=§1’4"(")‘) gkgv'l"g["*%s(u Q[(k+11),1,‘f1 ]] =

III\

=1.

uA'

N-1 N-1
(1.6) 5= 3 weu| 3 4,.00|tu
k=0 n=k+1

N-1 N-1 1
> 4,0+ > 2 ne(m
k+1 k=0

N-1 1

k=0

3 4,0 = B+ B

Similarly to (1.5) we get

A7) Buds 3 24 g[z iirz[—‘-]]( L5 welo(m)| = 2
12{X) = 5 % i *N Suy Niy 2 N Niw =3-

Finally, using the inequality sin x=x (x=0), we obtain

¢ L))y [n::ﬁ[nin]]

N—1 N
2B, (x) = A 8212 = A Q =
() 'kgo , [ukn=k+1 8nuy, n kgt') i N-1
N_IQ[Q( 1 )
51\1—21l n=§l-1 n, 1 ©N=2 N—1l=_l_1v2_"1nl= L
=5 N-1 T N-1,S.k41n N-1,5 n ’

and this — together with (1.4)—(1.7) — verifies our Lemma.

Lemma 5. If Q(x) is concave, {4}, {1} are positive nondecreasing sequences
and .

fx) = é' ”—1- Q( 21}'"2 ] sin nx,
then

”é:, A R st —fl)“ <oo,
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. From the conca-

Proof. Let 4 (x)_— ( 7 )smnx and —<x<
vity of Q we obtam

s
N—
. oo N-—1 oo
49 Zhoub@-re) = (Z+ 340080 -1@) = B@+ B,
(1.9)
By(x) = S le(ﬂk
k=N

n:gf"(")] PR [;mim Q[(k+1)zlz<k+m]]§

< = 1 N V. 1
=340 —9[———]]§ 2 —Q[Q[———]]é
kg;v k [ s (k+ 1)22(1‘.{.1)! k;'N k ™ (k+ 1)2}.(1‘_*.1)5

N-1 N-1 N-1
110) B = 3 re(n 3 4,0)+ 3 he(wm
k=0 k+1 k=0

n=

3 4,09]) = Bu+ B

Similarly to (1.9), we get

[

0 < Sl o) 4 o) <

T

In order to estimate B;,(x) let 2" '=N—1<2" and mk=[log (k+1)]. Using
these notations we have

: N—2 N-1 1 _( 1
(1.12) By(x) = > ﬂkﬂ[ﬂk 2 —9(2—/1'] "x] =
k=0 n*/Apz

n=k+1 Up2

1

3o Faldeat) = a3 E b))

=oMk =m,;, n=2

sznzmzlzkng[':zl (n ] ]

I=m,

m—1
=2 2 AkQ[ ( ]22’+1 "'] = 2 2 2l+1) ,“Q[ [2211 ]221+1—-m] =
221 . .

I1=0 m=l 1=
m-—1

L2 m—1

=Y +21 > =2n 2 z'+1;.2mg[ — )]
=0 m+1 2 lm

===

m—1 g o
F2m S 2PH)a0ut1- mg[g[ | ]] = 1211—}—471:%.
. 2 .

(1.8)—(1.12) verify the assertion.



Structural properties of functions 237

- Lemma 6. Let r=1 and Q concave. If

(1.13) |3 K atsn-0] <=
then
(1.14) o “kg k=105 ()~

Proof. Let f~ Z’Ak(x) Taking into account the concavity of Q and
(1 13) glves that

3001 = 3 k(a0 10 = 0 3 e alsw—)

ie. Z”' kA, (x) is absolutely convergent. From this it follows that f’(x)= g'k}ik(x),
k=0 k=0

and hence

Ska(a0s 0-r @) = Zka 3 nam]) =
e k=0 n=k+1

= S k(K5 ~10)+ 3 (0 —()) = 3 ke 2(klsu (9~ )+

+ S k= 3 (- ) = 3 K (ls()~f () +§ Q(|s,(¥) —F () 2 kY,
from which, using (1.13), we obtain (1.14).

Lemma 7. Let R(r,f) R.(r, f; x)= 2(1—[ k

) 1]’] Ak(x),. where f(x)~
~ ZAk(x) If |f|=6 and rz=l, then

IR,(r, )] = C,6

where C, depends only on r.
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Proof. Denote D, (t) and K,(t) the k-th Dirichlet and Fejér kernel, respectively.
Using the nonnegativity of K,(t) we get by an Abel rearrangement

|R,(r, f3 %)| = (+1),|2's,(x)((k+1)' k')l i
= ff(x+u){2Dk(u)((k+1)' k')}du
(n-il)’n ff(x+"){2’(k+1)Kk(u)(2(k+1)' K — (k+2)’)+
+m+DK,@)((n+1y —n)} du| =
= G TS K D+ =20k 1Y) (1Y =)+ =

k+1)kr—2 =0
- o[y 12 G vkt @r1y]) = 060,
and this proves our lemma.

Lemma 8. For

1, f) =1,(r, f; x) = 2'Rpy—a(r, f§2f)__an—l(r’f§ x) r=1)
we have :
IT"(I', f)_f' = C:En(f)
Proof. .
T e y-k)) T Ak YK
It (r, )1 = ,(2, ) = TE=D) §.

g

=22 11 = O£

k

In the last step we used one of the results of LEINDLER [3].

Lemma 9. Let Q be a convex function, for which
15 . ) - ’.
f g(i),dx <o, ’ R
J x
and let a,=0 such that

S’ Q(kay) = K for some K =1.
k=1
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Then :
S’ a, = KQ* (i]
k=n n
(£2*(6) was defined in the Definition).

Proof. It is enough to prove Lemma 9 for K=1, namely if K>1 we can

apply the case K=1 to the sequence K , using the inequality Q( K] Qéx)
For K=1 the proof is very simple: ’ -
2%41p—1 o 2s+lp_q
2111,,_1 k—2'2' kak - 22: Q(kak) £
Q(,mzzl,. a"] = Q[ 2*n ] = 25n = n
ie.
gs+lp_g _ ( &,
k=2’2'n % = Q 2sn ]’

and if we sum these inequalities for s=0,1,... we get the required inequality.

Lemma 10. If w is concave and'E,,(f)=0[w*(%]], then

Y w(x)

(1.15) o(f; 6) =0[5 j

dx+ o* (5)] .

Proof. It is enough to prove (1.15) for 5—im. We shall use the following
. 2
inequality (see [9], page 333).

- 2 EO)

From the definition of «* it follows that there are sequences {0},
(r=0,1,...,m—1), for which

o 7)ol S (@) - o 3'7r(3) -

ol 5 3ol b Fr U3 o) () -

r=0

- o5 rS ol ()] o[ e (2o (1) -

s=0 1=0

=0f2m f “;(x)d +o [2,,,]]

g-m

§=

and this proves (1.15).
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§ 2. Proof of the theorems

Proof of Theorem 1. It is enough to prove the theorem for convex Q,
namely if Q is concave, then (2) implies

Zise—| <=,
k=0

and if we apply the second part of Theorem 1 to the convex function Q(x)=x
we get that '

. s Py
| w(f,é)—O(df;dx]—O(é)
ie feLipl.
Let thus Q be convex. First we prove (7). Let us denote by 6,(f)=0,(f; X)
" the n-th (C, 1)-mean of the Fourier series of f, and let

S s
2,(f) = 0(f; %) = 2055 1(f; X)— 0,1 (f; x) = =2,

n
From (2), using the convexity of  we get

S Is— 11

@1 Ia..(f).—fl = ﬁ(ﬂ(lanU)ffli) =0 [9 (%——]} =

n

(=) -ofels)

With the notation :
f=a.() = 8.(f)

we have L
22 0,.()~f = (04(0,(f N~ .(f)) (04 (8. (f)) — 2.(1)).

We can writel(2.-1.) in the form g,(f )=O [!‘2(%)], from whiéh o.(8.(f))=
=0[!_2A[%]], and so (2.2) implies .

@3 | er(ontn)=ort) = 0(a(3]].

If we keep in view the expression of o,(f), it is easy to see that

s

a4(04 () —0a(f) =_%)_'



Structural properties of functions 241

so (2.3) implies 6,(f)=0 [nf_) [niJ]’ and together with this

~ ’ “\\7 S 1

24 @0y =@y =o ().

Now (2.1) gives E,(f)=0 [Q [ni}] , from which by Lemma 2 (ii) it follows

1/n .
E,(f)= O[f Q(x) dx] It is known (see e.g. Lemma 8) that |7,(g)—g|=
=KE,(g); and hence also using the prev1ous estimation, we get '
) B 1/n S_)(x)

ey m=0[f Z2a).

Now we are ready to prove (7). If lhlé%, then (2.4) and (2.5) give .

/00 —=fGx+ 1) = 1709 = (2 Ol + 03 ) =0 (fs x + D] + [0, x+ ) —Fx+ B)| =

~0 (j'/"ggdxﬂht;(f; x+9h)|] -

0

:—.0[0‘/1,/" Q(x)d +|h|n§2( )} .O[j/"—r);()gdx),

0

and this is equivalent to (7).
By Lemma 4, (2) is satisfied by the function

folx) = —Q{i)sin nx.
Then, .

fox) = Z' 81n 5_2( : ] cos nx,

(for the (C, 1) means of this series must then be‘bounded), and this is the same
as (6). The statement, that in case (6) f is continuous is a direct consequence of
(7), proved above.

Let h =L _. then

2k+1 4

iw-io =3 ca()- 3

16
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It is easy to see that

o 1(2
n

n=2+18

(l) cosnh =0,
n

and so

n=2%+18n X

< 1 (1 Y2 B(x)
-H@= > —9[7] = coj dx,

and hence (8) follows by a standard argument.

We have completed our proof.

Proof of Theorem 2. We have to consider two cases separately

Case I: Q is convex. Let

kg; le(ﬂk |sk(x)_f(x)|) =K.

We have

= B

Q(”nE2n) = Q[

n n

3 mls—f] > QUuls—1)
— Q[ =n+1 ] = H k=n+1 H =
n n
2 )kQ(#klsk—fl)l
= ’ ni lé ni,’

ie.

| E———
-

(1 _( 1 ]
E2n(f) - 0 [”n Q nl,,
and hence, using the inequality (1.16),

n

SE, 3 By
1 _ XK=0 _ k=0 _ i "_1— 1
“’(f’I)‘O[nH ]‘0[ 1 ]‘O[néuk‘?[‘“kak)]
and this is (12).
Let

1o = 3 g8 sinnx.
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By Lemma 4, f, satisfies (11). Now applying Lemma 1 to f, we get
1 _111 21 ( 1 ]
f"(?) f 0 =53 7,‘2 e ki)
and this proves (13).

Case II: Q is concave. By Lemma 3 we have

-1
2.6) E,(f) = 0[1ogn[n2,1‘;‘yng(l"’j”]] ]
Let m, resp. n, the least and the greatest n (if any), for which
1 [log n) 1
@D CE T en B

Q is concave, so there is a ¢=>0 for which

log k] logk 1
Q[ ki

T T Ekh
if k is large enough. From this and (2.7) it follows at once for k=k, that

(28) my = k+1’ 'Imk = )'k+1= ﬂm,‘ = Hy
logm, _ ( 1 ) ]ognk>_[ 1 )
@9 miim = R i, = G DAL
We shall show that for k=k,
(2.10)

..Zm',‘ logn [nzl,,/l,. (lzf n]] 1— 0[(k+1)( [kfl ] ”klﬂ Q((k-k]l))uk,,l ]]]

n

First we consider the case n,=m,=n. Using the inequalities

Q((_kill)zT] = Q((k—l—ll),lk] = kfl Q[‘lclz_k) %(i) =

coming from the concavity of 2, we obtain for k=z=k,
logn] -1 [ 1 ) (logn] 1 ( 1]
272 — —— = [ —_— =
ogn [t (222)) = 0 72) = 0 (0B = o 2l
D ()2 (o))
=0 Q——1-Q|—1l] =
[ Hy k2, (k+1) 2441

e (ole) - g[(kﬂlum))}'

16*
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If, however, n,>m, and k=k,, then

< -t ) P
2 lOgn[;ﬂlﬁﬂnQ[k;#]] — 0((k+1))k+1 lognJ _

n=nm, ‘n )“mk/lmk
_ 0[ (k+1) logx—1 dx] =0[(k+1) (logmk B lognk]] _
)'mk”mk my, x2 lmk”mk mk nk
(k+1) [logmk lognk)] [(k—l—l) [_( ) _[ 1 ))]
=0 - Q 1l =
[ M Myl Ml M ki KR+ 1) sq

_0[("“)( [k; ] uklﬂ Q((k+11)).k+1 ])]

Thus we have proved (2.10) for k=k,.
Let now m;=m=n,. Using (2.6) and (2.10) we get

ofri ) =0(5 ZE0)=0( 2 Eun) =

m

5.3 wnlrane(52) ) =055+ 2)) -

=0

‘n

=0 %*Wl,‘;,, ("“)( [kL]—ka ((k+1))k+1J]] =

(&) =03 2es)

fox) = "2“’; #1 Q( 22"2 ] sin nx.

Ql

=0

i1
gl'ﬂk

l
m g

which proves (12). Let

By Lemma 5, f, satisfies (11). Applying again Lemma [ (it is easy to see that it is
applicable), we obtain

o= 53 Seealen) = e S o)
)= 57 2nols)

and this is (13). — The proof of Theorem 2 is thus completed.

It

Proof of Theorem 3. We shall consider only the case when r is odd, the
other case could be treated similarly.
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If we apply Lemma 6 r-times, we gett hat (14) implies

|2 ke-ratsor-ron|| <

and hence, using the assertion (i) of Theorem 1, we get f:'(’ =f®¢Lipl, while
using Corollary 2 of Theorem 2 we obtain

1 =
_ O(x1+8-r
o (f; 8) = 0(5 f ixz——)dx]
J -
as it was proposed in (16).
Let

oo

fix)=23@ [ 2+t,)sinnx.

n=1

If we run through the proof of Lemma 5 we can see that its proof equally works
for f,, so f, satisfies (14). Keeping in mind that & is convex, we have

nﬂ+29( 1 ] (n+1)ﬂ+29(ﬁ-+—:)—,,ﬁ],

2) = (n+1y*'Q (m;)pw)

and this implies that
ntl Q (nﬁl-}-

so we can apply Lemma 1 to f§7, and this gives

@.11) lfé')(g)—f}(o)lzi%Z"k'“fz(—l—J; L foey

L S(yl+B-r
_ oL 2(“__)@,
N 53 u?
n 1+8-r
where
_ 1+ﬂ—r[ 1+r )>
Y= 2+ﬁ r+3+'1—_*7-_—r- = 2.
2+8
Also -1—4-_13:7:1’ so we get from (2.11) that

n

which was to be proved.
Thus we have completed our proof.
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Proof of Theorem 4. Let f(x)~ S’Ak(x) and
k=0

R .10 = 3 [1-(r5) | 4o

Usi'ng an Abel rearrangement we get from (18)

k+1)ﬁ+1 k[l+1)
n+1) (n+1)F sk(( ]
Q[zﬁ(ﬂ+1) KB +1.D11) = [2ﬂ(ﬂ+1) CESYa—
< +1_ B+l _ S 1B |5, —
=Q[(n+1)ﬁ k;;(sk O(k+1) K )A]§Q[|So f|+k§k Ik f|]§
2B+ (n+ 1) +7 n+l
Q05—+ 3 0WIs~f)
- k=1 =
= n+1 T n+1’
which implies :
1 (1
1) mG+1n-1=o0(5a(L)).
Now R,(B+1, f) is a trigonometric polinomial of order at most #, so (2.12) implies
2.13) E(f)=0 [nl—l,ﬁ[%)]

We shall treat after that the cases (i)—(iii) separately.

Case (i). By Lemma 2 (iii) from (2.13) it follows that E,(f®)= O[ 1 5 (—]-]) ,
and this, connecting with inequality (1.16) gives "

“’[f('); %) - 0[%,‘2"1 K= Q(k]] [: O(i’ nfl?ﬁ-(—;??d")]'

From the concavity of @ it follows that Q(i]ékﬁﬁ(ni] (nzk) and so

ofrmid) =l

and this proves (19).

3| -
t o

1M
=~

uh—l
1]

x| =
i
p—
:I-—
N’
N—
il

Q
—
R
—_—
3| —
N—
Ne———

Case (i) According to Lemma 2 (iv), (2.13) implies

£ -ofLa(2)
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and so

ol ) -oft S ta(t) ~oft £ 224

1/n

from which (20) already follows. .
Let r e.g. even, and

s 1
fO(x) ="=1 n +1

Q (—12] cos nx
n

(if r is odd then we must take sin x in place of cos X). f, satisfies (18):

é:‘?["' =§1n_1+1_§(n_12] °°S""] § [ (k-:l)' Q((kilﬁ]] = 5’@ 11)2

fEr-I(x) = (—1)72 Z’ Q( 1]sm nx, -

and so using Lemma 1 we get

P11 (1) 11 = 1 (1
(r-1) (r-1) > . — —_ = —— —_— =
lf []f (O)l—2nk§k9[k2]—6nk§1(2k+1)k29[k2)—
117571 (1) 1 8
=573 tolg) = e [ 5 2an

and thxs ‘proves that (20) is best possible in general.
"Lémma 2 (1) and the above proofs show that all of the above statements are
true for the conjugate function, too.

Case (iii). We shall consider the case when r is even. Let

f=R(r+1,f)+g.(f)

With this notation V
(2.14) |
Rn(r+1’f)_f = (Rn(r+1’ R,,(r+1,f))—R,,(r+l,f))+(R,,(r+l, gn(f))_gn(f))

By (2.12) g f)=0[i§_z(71]], and this implies by Lemma 7 that

Ry(r+1,(/)= 0{1 Q[;)] and so from (2.14) it.follows that

14

2 15) R(r+1, R+ 1,N)=R,(+1,/)=0 [nis‘z[%]]
Let

R,(r+1,f) ~ ZAk(x)
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Then
Ry(r+1, R,(r+1, )= R,(r+1, ) =ké: [1 k

r+1 n
() - A=

1 & 141 (=1y=+ o (r+1)
=~y S KA =y R+ 1)

This equality together with (2.15) gives
ReOe+1,£)=0 ["‘—’ (%)J

from which
216)  FOC+, ) = O +1, ) = 150 +1,7P) = 0 ["‘—’ [‘,1,‘))
follows at once (7,(r, f) was defined in Lemma 8).
(2.13) implies by Lemma 2 (i) and (v) and by Lemma § that
1/n

2.17) [ta(r+1, fO) =@ = 0 (f %(i)dx].

0

Now we get (22) from (2.16) and (2.17) as we got (7) in Theorem 1 from (2.4)
and (2.5).

Before proving (23) we show that £ is the sum of its Fourier series. Because
of the continuity of f® it is enough to prove that its Fourier series everywhere
convergent. With the usual notations

FO®) ~ (~1y? 3k (),
k=0
(2.18) kg" K A4, (%) =:§_1 (K — (K 4+ 1) 5, () — M5y () 415, (%) =
n—1
= S K S+ 17 sy 2 =S 715,09~/ 00

Lemma 9 shows by (18) that

5 s ~f 0] ~0 as mm oo,

k=m

moreover Q(n"|s,(x)—f(x))~0 (n—<<), and this implies #'ls,(x)—f(x)|~0 as
n—o. Thus (2.18) gives the convergence of S’k'Ak(x), and so '
k=0

FOG) = =1y 3 KA ().



Structural properties of functions 249

On this account the following transformations are legitimate, and (2.12), as
well as Lemma 9 give

e -10) = 2 (1- =5 kA SA= R+ D)

(k’ (n+1)) 4, = (n+ 1Y (R, (r+1, f)—f)+ Z Sy =K —(k—1)) =

k=n+1

(1) . (1
—0[(n+1)'—§2[ ]+ Z’ I$g_1—f| k=1~ 1] [Q(—-)+Q* (—]] =
k=n+2 ) n n
=0 [Q*[‘IIT]], from which E,(f®)=0 [Q* [—’11—]] follows at once. Now we can
apply Lemma 10, and we get (23).

To prove (24) let
- _.( 1] .
[ (%) -—ng; P Q — ) sin nx.
By Lemma 4, f, satisfies (18). Now

21 _( l)
(r) — (__1y/2+1 . .
FOx)=(-1) ,.=Z1 ™ Q) cos nx

and in the proof of Theorem 1 we have already seen that for this function (24) is true.
The proof of Theorem 4 is thus completed.

Proof of Remark. Let r be, for example, an odd number.
We separate the proof into two cases.

- v

1. 6 J Qx(zx )dx;éO(w(é)). In this case by the aid of the above defined
function

1 1y .
fi(x) = Z—F Q|—|sinnx
the proof can be easily carried out.
I Q(x) .
2. If & f g dx=0(w(d)), then there is a sequence of natural numbers
J

{1}, for whicl.

(2.19) w[%] - 4—1,,, o* [5:—}
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Let 1 be a fixed natural number, and g=¢ = Z’ g=1. Let ¢,=8 (—)
if 2*n=m<2**pn, and k=0

oo

S =feg.(x) = (—1)’;l me—lrﬁ ¢;, COS MX.

m=n

With the aid of (21) we get that f@ exists, and less than a bound mdependent
from {g} and n. We show that f satisfies (18).

(2.20) kgg(k'|sk(x)—f(x)|)§;j:g[ Szmr+1 ]+ SQ( ko3 ml,Hc)

k=n =k+1 2

IiA

- Y _ S 1 - l S —(&]
ﬂngw%%éywﬂﬂJ:hﬂQ&n]+

< €k & k§) &
§ [GﬂF7+z§L

NI

Now

F(r r T _
70070 (5) =

—
N—
E]
DMs
3|
Eﬁ
i
Mt
Eﬂ
(o]
Q
w
3
S

and from the monotonicity of {c,} it follows that

= ¢
2 —cosme—=0,
men M 2
and so
2k+in—1 | 1

ro-m(z) = Sol)

2|

m=2%n
Consequently, by a suitable choice of {¢} one can attain that the above defined

function f,, .(x)=/f,(x) satisfies

@.21) J9(0) f"’( ]%%Q (l)z%ﬁ [27:1]

for in the definition of @* we could have supposed that {¢} is monotone.
Let now

@ = S5 fu .



Structural properties of functions 251

This function f satisfies (18); indeed, using the convexity of Q, we get from
(2.20)

Zo(K1s U ) = 3 a(k 3 i 5 9~ ) =

3 0K i D11, W) =

A
DM

k

Zo 20K Ui D) = S =1

Il
"[\48

From the remark made after the definition of the functions f(e ),n(%), it follows
that /@ exists; and using (2.19), (2.21) we obtain
2 el)
20 "\2n,)°

7O —F© (2 ,,,] = [f‘(r) ©0)— (’)(Zn,,.] = 2#,,710-{2‘* (2_;‘:]

SO

v

o(f; 8) # O(w(©)),
which proves our Remark.
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