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Hyperinvariant subspaces of weak contractions 

PEI Y U A N W U 

Introduction 

The aim of this paper is to study Hyperlat T, the hyperinvariant subspace 
lattice, of a completely non-unitary (c.n.u.) weak contraction T with finite defect 
indices. The work here is a continuation of the investigations of Hyperlat T which 
we made in [14] and [15]. There we only considered c.n.u. C'u contractions with 
finite defect indices. Now we shall generalize the results of [14] and [15]. Among 
other things, we shall show that for the contractions considered, (i) if is quasi-
similar to T2, then Hyperlat T1 is (lattice) isomorphic to Hyperlat T2 (Corollary 3.4) 
and (ii) Hyperlat T is (lattice) generated by subspaces of the forms ran S and ker V 
where S, V are operators in {7"}", the double commutant of T (Theorem 3.8). We 
also give necessary and sufficient conditions, in terms of the characteristic function 
and the Jordan model of T, that Lat T, the invariant subspace lattice of T, be 
equal to Hyperlat T. 

Preliminaries and results 

We follow the notations and terminologies used in [14] and [15]. Only the 
concepts concerning weak contractions will be reviewed here. 

A contraction T is called a weak contraction if (i) its spectrum a(T) does not 
fill the open unit disc, and (ii) I— T* T is of finite trace. Examples of weak con-
tractions are C0(N) contractions and c.n.u. C u contractions with finite defect 
indices. The characteristic function 0T of every weak contraction T admits a scalar 
multiple, that is, there exist a contractive analytic function Q and a scalar valued 
analytic function ô^O such that Q0T = 0TQ=â. For a c.n.u. weak contraction 
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T on H we can consider its C0 — Cn decomposition. Let H0, HlQH be the in-
variant subspaces for J such that T0=T\H0 and T1 = T\H1 are the C0 and C n 

parts of T, respectively. Indeed, T0 and 7\ are equal to those appearing in the 
triangulations 

on H=H0®Hand H— H1 © H ^ corresponding to the »-canonical factoriza-
tion &T = &*e@*i a r | d the canonical factorization 0T = 0i0e, respectively. H0 

and H, are even hyperinvariant for T and satisfy H0WH1 = H and H0C\Hl = {0}. 
For the details the readers are referred to [4], Chap. VIII. 

* * 

It was shown in [4], p. 334 that / / 0 = ker m(T) and //x = ran m(T), where in 
is the minimal function of T0. Note that m(T)£{T}". Now we have the following 
supplementary result. 

T h e o r e m 1. If T is a c.n.u. weak contraction on H and H0, H1 are subspaces 
of H such that T0=T\H0 and T1 = T\H1 are the CQ and C^ parts of T, respectively, 
then there exists an operator S in {T}" such that H0 = ran S and H1 = ker S. 

P r o o f . We consider T being defined on H=[Hl@ALl}Q{0Tw®Aw:w£Hl) 
by T(J®g) = P(e"f©e"g) for f(Bg£H, where 0T is the characteristic function 
of T, A(t)=(lT>—0T(t)*0r(0)1/2 and P denotes the (orthogonal) projection onto 
H. Since 0T admits a scalar multiple, the same is true for its outer factor 0e and 
inner factor 0 , (cf. [4], p. 217). Let <53^0 and be their respective scalar 
multiples, and let Ql and Q2 be contractive analytic functions such that Q10e = 
= 0eQ1=S1IT) and Q20i = 0iQ2 = 52IT>. We may assume that <5X is outer and 
d2 is inner (cf. [4], p. 217). Let <5 = <5l(52 and Q = Q1Q2. Then Q0T = 0TQ = 6IT). 

Q , 

5 AQ 0 ' P r o v e ^ i = k e r S ar>d H0 = ran S 
in the following steps. In each step the first statement is proved. 

(1) S e f r } " . Let be an operator in {T}', where A is a bounded 

analytic function while B and C are bounded measurable functions satisfying the 
conditions A0T = 0TAo and B0T+CA=AA0 a.e., where A0 is another bounded 
analytic function (cf. [5]). An easy calculation shows that 

SV= P 
[ M 01 = f AS, 01 
lS2AQA OJ A N {Bd^C^AQ 0 J 
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We have S2AQAd = S2AQA0TQ = 52AQ0TAOQ = 52AdA0Q = SltdA0Q = 
=S](B0T+CA)Q = B51S + CS2AQS=(BS1 + CS2AQ)S. Since <5^0, we conclude 
that S2AQA=B51 + C52AQ. Hence SV=VS and we have Se{T}". 

(2) / / j ^ k e r 5. It was shown in [6] that Hx={f®gZH\ / € 0 , / / ^ } . For 
OiU^gtH^ S(0iu@g) = P{bi0iu®Z2AQ0iu)=P{0i0eQ1u®B2AQiQ20iu) = 
=P,{0Q1u@AQ1u)=Q, which shows that / / ^ k e r 5. 

(3) ker SQHt. For / © ¿ r ^ k e r S , S(f®g)=P(S1f®S2AQf)=(61f-0Tw)® 

@(52AQf-Aw)=Q for some w£H*. Hence 51f=0Tw. Note that -^-0ew=0jf 
1 1 

is an element of However — 0ew is also analytic in the open unit disc, and 
1 1 

therefore belongs to We conclude that / = 0 , w ' , where w' =-— 0ew£Hl. 
i 

This shows that / © g € # i , and hence ker SQH1. 
(2) and (3) imply that / T a k e r s ' . Next we prove that H0=SH. 
(4) SHQH0. It was shown in [6] that H„-= {f®g£H: QTg = AJ), where 

J* = <Jz-&T&i)V 2- For any f@geB, S(f®g) = (S1f-0Tw)®(52AQf-Aw) for 
some Note that (Iz-0$0T)Q = Q-0$d = Q(IJ)-0T0*), whence AQ = 
= QA^. Similarly, 0TA=A^0T. Thus 0T(52AQf-Aw)=52A^0rQf-A^0Tw= 
= l2AJfdf—A^0Tw = A^(31f—0Tw), which shows that S(f®g)£H0, and 
hence SHQH0. 

(5) S\ H(i=S1(Tn). Since H0 is the invariant subspace corresponding to 0,= 
= ®*e0*i a n d i s ¡ n n e r from both sides, H0= {0.Jfeu®Z-1(A2u): U£HQq 
© {0 th>© Aw: w£H%), where A2={I^ — 0 ife* 0*e)1/2 and Z is the unitary operator 
from i Z | onto A J l such that Z(Av)=A20^v for v£L% (cf. [4], p. 288). For any 
0^eu®Z-1 (A2u)eH0, we have S(0^u®Z-1(A2u))=^(d10ifeu-0Tw)® 
©(3 2 J i20 + e w —Aw) for some w^H^. Since 0 r , along with 0 ^ and 0 t i , admits 
a scalar multiple, 0T(O~1 — @*i(i)~1@*e(i)~1 exists for almost all t. Therefore, 
O = ^ 0 - 1 = 5 0 - . 1 0 - 1 a.e. We have Z(52AQ0^u) = A^Q ^QQ „u^ 
= A 2 0 ^ i d 2 d 0 - > 0 - j © J f e u = 5 1 A 2 u , and it follows that S ( 0 ^ e u e Z - 1 ( A 2 u ) ) = 
= (S10;t:eu-0Tw)®(S1Z-1(A2u)-Aw). This shows that S\H0 = d1(T0). 

(6) SH=H0. Since <5j is outer, ¿ j (T 0 ) is a quasi-affinity-(cf. f4], p. 118). Hence 
d ^ f J J T ( t = H„. By (4) and (5), this implies that SH=H«. 

The next lemma is needed in the proof of Theorem 3.3. 

L e m m a 2. Let T be a c.n.u. weak contraction on H and let H0, Hl be subspaces 
of H such that T0 = T\H0 and T1 = T\H1 are the C0 and C n parts ofT, respectively. 
If H'0, H'0QH are invariants subspaces for T such that H'0\/H[ = H and T\H'0£C0, 
T\H'X£CU, then H0 = H'0 and H^H'^. 



262 Pei Yuan Wu 

P r o o f . The maximality property of H0 and H, implies that H'0QH0 and 
H'1QH1 (cf. [4], p. 331). Now we show that H0QH'0. Since HQ=ran 5 where 
S is the operator defined in Theorem 1, for any h£H0 and £ > 0 there exists 
some k in H such that ||/i — <e. The hypothesis H=H'0\JH[ implies that 

— < e holds for some k0£H'0 and k^H[. Hence \\Sk-Sk0-Sk^ = 
= || SA: — Sk0\\ < | | S|| e, and it follows that | |/*-SA:0 | |<(l + ||S||)e. Since Sk0 = 
=51(T0)k0=51(T)k0£H'0 and E is arbitrary, we conclude that h£H'0 and hence 
H'0=H0. H'1 = H1 can be proved in a similar fashion by noting that = ran m(T) 
and Hu = ket m{T), where m denotes the minimal function of T0. 

Now we have the following main theorem. 

T h e o r e m 3. Let T be a c.n.u. weak contraction on H and let H0, H1 be sub-
spaces of H such that T0=T\H0 and T1 = T\H1 are the C0 and Cu parts of T, re-
spectively. Then the following lattices are isomorphic: 

Hyperlat T, Hyperlat T0 © Hyperlat Ty, and Hyperlat (T^TJ. 

P r o o f . Since T0 and T, are of class C00 and of class Cn, respectively, Hyperlat 
TQ © Hyperlat T1 ^ Hyperlat (T 0 © T t) follows from Prop. 3 and Lemma 4 of [2]. 

Next we show that a subspace KQH is hyperinvariant for T if and only if 
K = K0\/K1 where K0^H0 and are hyperinvariant for T0 and 7",, re-
spectively. To prove one direction, let KQH be hyperinvariant for T arid let 
K0=Kr\H0, K1=K(~)H1. Note that o(T\K)Qo(T) [1] and hence T\K is also 
a weak contraction. Thus K0 and Kr are subspaces of K on which the C0 and C u 

parts of T\K act (cf. [4], p. 332). We have K=K()\JKx. Now we show the hyper-
invariance of K0 and K1. Note that H0 = SH, where S is the operator defined 
in Theorem 1. For any Sdd {7"0}', consider the operator S0S on H. It is easily 
seen that S0S€{T}'. Since K0=KC\H0 is hyperinvariant for T, S0SK0QK0. 
As proved in Theorem 1, 5 1 ! = ( T 0 ) for some outer function Thus SK0= 
= d1(T\K ( i)KQ=K ( i. It follows that SqK^Kq and hence K0 is hyperinvariant 
for T0. That Kx is hyperinvariant for Tx can be proved similarly by noting that 
Hl=m(T)H where m is the minimal function of T0 and m(T'IA'j), being an analytic 
function of a c.n.u. Cn contraction, is a quasi-affinity (cf. [4], p. 123). 

To prove the converse, let S£{T}' and S0=S\HQ, S1 = S\H1. It is obvious 
that S 0€{J 0}' and S j C W . If and are hyperinvariant for 
T0 and Tx, respectively, then S0K0QK0 and S,K^K,. Hence S(K0V/ST^g 
^KQVK ! , which shows that KnWK1 is hyperinvariant for T and proves our 
assertion. 

That K0 and K1 are uniquely determined by K follows from Lemma 2, and 
it is easily seen that Hyperlat T ^ Hyperlat T0© Hyperlat 7 \ . 
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In [11] a specific description of the elements in Hyperlat T for a special class 
of c.n.u. weak contractions is given. 

C o r o l l a r y 4. Let 7\ , T? be c.n.u. weak contractions with finite defect indices. 
If 7\ is quasi-similar to T2, then Hyperlat Tx is isomorphic to Hyperlat T2. 

Proof . Let T10, T20 be the C0 parts of T1, T2 and T21 be their C n parts, 
respectively. If 7\ is quasi-similar to T2, then T10, Tn are quasi-similar to T20, T21, 
respectively (cf. [10]). Since 7 \ , T2 have finite defect indices, T19, T20 are of class 
C0(N) and the defect indices of Tu, T21 are also finite. Thus Hyperlat T10^ Hyperlat 
T20 and Hyperlat TlY ss Hyperlat Ta (cf. [7] and [14], resp.). Now Hyperlat Tl ^ 
ss Hyperlat T2 follows from Theorem 3. 

Recall that a c.n.u. weak contraction T is multiplicity-free if T admits a cyclic 
vector and that T is multiplicity-free if and only if its C0 part and C n part 
are (cf. [12]). 

C o r o l l a r y 5. Let T be a c.n.u. multiplicity-free weak contraction on H with 
defect indices «<+<». Let KQH be an invariant subspace for T with the corre-
sponding regular factorization 0T = 0201. Then the following are equivalent to 
each other: 

(1) K£ Hyperlat T; 
(2) the intermediate space of 0T=020i is of dimension n. 

Proof . (1)=>(2). If Hyperlat T, then, as proved before, T\K is a weak 
contraction. Hence its characteristic function admits a scalar multiple, which implies 
that the intermediate space of 0T~0201 is of dimension n. 

(2)=>(1). The hypothesis implies that T\K has equal defect indices. It is easily 
seen that a c.n.u. contraction 5 with finite equal defect indices is a weak contrac-
tion if and only if det 0 S ^ O . Since det 0 T ^ O implies that det 0 ^ 0 , it follows 
that T\K is a weak contraction. Let K0, K1 be subspaces of K on which the Co 
and C u parts of T\K act. We have K=K0\JK1. It follows from the proof of 
Theorem 3 that we have only to show that K0 and K1 are hyperinvariant for 
T0=T\H0 and T1 = T\H1, the C0 and C n parts of T, respectively. Since K0^H0 

is invariant for the multiplicity-free C0(N) contraction T0, it is hyperinvariant for 
it (cf. [8], Corollary 4.4). On the other hand, 7\ is a multiplicity-free C n contrac-
tion on H1 with finite defect indices and Kx ^ H1 is such that T-^K^C^. It 
follows easily from Theorem 1 of [14] that K, is hyperinvariant for 7\ , completing 
the proof. 

The next corollary gives neces sary and sufficient conditions that Lat T be 
equal to Hyperlat T for the operators we considered. 
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C o r o l l a r y 6. Let T be a c.n.u. weak contraction on H with defect indices 
+ oo. Let T0=T\H0 and Tl = T\Hi be its C0 and Cn parts, respectively, and 

let 0e be the outer factor of the characteristic function 0T of T. Then the following 
conditions are equivalent: 

(1) Lat r = Hyperlat T; 
(2) Lat 7"0 = Hyperlat Tn and Lat Tj = Hyperlat Tx; 
(3) T0 and Tx are multiplicity-free and 0e(t) is isometric on a set of positive 

Lebesgue measure; 
(4) T is multiplicity-free and 0T{t) is isometric on a set of positive Lebesgue 

measure. 

P r o o f . (1)=>(2). We only show that Lat r 0 = Hyperlat T0\ Lat 7\ = Hyperlat 
Tx can be proved similarly. To this end, let K0QH0 be an invariant subspace for 
T0. It is obvious that K0 £ Lat T= Hyperlat T. Let S be the operator defined in 
Theorem 1. Then H0=SH and S | //0=51(7"0) for some outer function <5L. 
For any 50€{T0}', S0S is an operator in {T}'. Hence S0SK0=S051(T\K0)K0 = 
= S0K0^K0, which shows that K0£Hyperlat T0 and proves our assertion. 

(2)=>(3). This follows from Corollary 4.4 of [8] and Theorem 4.3 of [15]. 
(3)=>(4). This follows from the remark before Corollary 5 and the fact that 

0T(t) is isometric if and only if 0 e ( / ) is. 
(4)=>(1). Let K£ Lat T with the corresponding regular factorization 0T = 020X. 

In light of Corollary 5 it suffices to show that the intermediate space of 0T = 
= 020x is of dimension n. Note that rank A ( O ^ r a n k J 1 ( / ) + r a n k A2{t) a.e., 
where AU)=(l-0T(t)*0T(t))V2 and A}(t)={l-0¡{t)*0}{t))w, 7 = 1 , 2 . The 
hypothesis implies that z l ( f )=0 on a set of positive Lebesgue measure, say a. 
It follows that Ax(t) = J 2 ( i ) = 0 on a, and hence 0X(/) and 02(t) are isometric 
for t in a. Therefore, the intermediate space of 0T=020X is of dimension n, 
as asserted. 

We remark that the preceding corollary generalizes part of the main result in [9]. 

C o r o l l a r y 7. Let T be a c.n.u. multiplicity-free weak contraction with finite 
defect indices. If K2£ Hyperlat T and T\KX is quasi-similar to T\K2, 
then KX=K2. 

P r o o f . Since Kx, K2 £ Hyperlat T, T\KX, T\K2 are weak contractions. Con-
sidering the C0 and C u parts of T\ Kx and T\K2 and using the corresponding results 
for multiplicity-free C0(N) contractions and C n contractions, we can deduce that 
KX = K2 (cf. [3], Theorem 2 and [14], Corollary 3). We leave the details to the 
interested readers. 

The next theorem, being another application of Theorem 3, is interesting 
in itself. 
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T h e o r e m 8. Let T be a c.n.u. weak contraction on H with finite defect indices. 
Then Hyperlat T is (lattice) generated by subspaces of the forms ran S and ker V, 
where S, V£ {T}". 

P r o o f . Let T0=T\H0 and T1 = T\H1 be the C0 and C n parts of T, respect-
ively, and let Hyperlat T. Since T\K is a c.n.u. weak contraction, we may 
consider its C0 part T\K0 and Cn part T\Kt. By Theorem 1, H0=SH for some 
S£ {T}". Since K0QH0 is hyperinvariant for the Cn(N) contraction T0 

(by Theorem 3), it follows from [13] that K0=\J [ker 4/i(T0)r)£i(T0)Hl)] = 
n ' = 1 

= V [ker \ l / i (T 0)C\^i(T)SH], where i]/n are inner functions, i=\,...,n. On ¡=1 
the other hand, since K^H, is hyperinvariant for Tx (by Theorem 3 again), 
Theorem 3.6 of [15] implies that K1=VH1 for some V£ {Tx}". Hence Kx= Vm(T)H, n 
where m denotes the minimal function of T0. We claim that K= \/ [ker 1^,(7")D 

;=i 
r)Zi(T)SH]VVm(T)H. Indeed, this follows from K=K0\JK1 and the fact that 
ker (T0) = ker (T) for any \j/£.H°°. Since it is easily seen that i¡/¡{T), 
ii(T)S£{T}" for all i and Vm(T)£{T}", the proof is complete. 

C o r o l l a r y 9. Let T be a c.n.u. multiplicity-free weak contraction on H with 
finite defect indices and let K be a subspace of H. Then the following are equivalent: 

(1) Hyperlat T; 
(2) K=ran S for some SfE {T}"; 
(3) A:=ker V for some V£ {T}". 

P r o o f . The equivalence of (2) and (3) is easily established by considering 
T* and Kx. (2)=>(1) is trivial. 

(1)=>(2) is proved by following the same line of arguments in the proof of 
Theorem 8 and noting that any hyperinvariant subspace for a multiplicity-free 
C0(N) contraction T is of the form ran £(T) for some inner function 
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