Hyperinvariant subspaces of weak contractions

PEI YUAN WU

Introduction

The aim of this paper is to study Hyperlat T, the hyperinvariant subspace lattice, of a completely non-unitary (c.n.u.) weak contraction T with finite defect indices. The work here is a continuation of the investigations of Hyperlat T which we made in [14] and [15]. There we only considered c.n.u. C_{11} contractions with finite defect indices. Now we shall generalize the results of [14] and [15]. Among other things, we shall show that for the contractions considered, (i) if T_{1} is quasisimilar to T_{2}, then Hyperlat T_{1} is (lattice) isomorphic to Hyperlat T_{2} (Corollary 3.4) and (ii) Hyperlat T is (lattice) generated by subspaces of the forms ran S and ker V where S, V are operators in $\{T\}^{\prime \prime}$, the double commutant of T (Theorem 3.8). We also give necessary and sufficient conditions, in terms of the characteristic function and the Jordan model of T, that Lat T, the invariant subspace lattice of T, be equal to Hyperlat T.

Preliminaries and results

We follow the notations and terminologies used in [14] and [15]. Only the concepts concerning weak contractions will be reviewed here.

A contraction T is called a weak contraction if (i) its spectrum $\sigma(T)$ does not fill the open unit disc, and (ii) $I-T^{*} T$ is of finite trace. Examples of weak contractions are $C_{0}(N)$ contractions and c.n.u. C_{11} contractions with finite defect indices. The characteristic function Θ_{T} of every weak contraction T admits a scalar multiple, that is, there exist a contractive analytic function Ω and a scalar valued analytic function $\delta \not \equiv 0$ such that $\Omega \Theta_{T}=\Theta_{T}^{\prime} \Omega=\delta$. For a c.n.u. weak contraction

[^0]T on H we can consider its $C_{0}-C_{11}$ decomposition. Let $H_{0}, H_{1} \sqsubseteq H$ be the invariant subspaces for T such that $T_{0} \equiv T \mid H_{0}$ and $T_{1} \equiv T \mid H_{1}$ are the C_{0} and C_{11} parts of T, respectively. Indeed, T_{0} and T_{1} are equal to those appearing in the triangulations
\[

T=\left[$$
\begin{array}{cc}
T_{0} & X \\
0 & T_{1}^{\prime}
\end{array}
$$\right] \quad and \quad T=\left[$$
\begin{array}{cc}
T_{1} & Y \\
0 & T_{0}^{\prime}
\end{array}
$$\right]
\]

on $H=H_{0} \oplus H_{0}^{\perp}$ and $H=H_{1} \oplus H_{1}^{\perp}$ corresponding to the *-canonical factorization $\Theta_{T}=\Theta_{* e} \Theta_{* i}$ and the canonical factorization $\Theta_{T}=\Theta_{i} \Theta_{e}$, respectively. H_{0} and H_{1} are even hyperinvariant for T and satisfy $H_{0} \vee H_{1}=H$ and $H_{0} \cap H_{1}=\{0\}$. For the details the readers are referred to [4], Chap. VIII.

It was shown in [4], p. 334 that $H_{0}=\operatorname{ker} m(T)$ and $H_{1}=\overline{\operatorname{ran} m(T)}$, where m is the minimal function of T_{0}. Note that $m(T) \in\{T\}^{\prime \prime}$. Now we have the following supplementary result.

Theorem 1. If T is a c.n.u. weak contraction on H and H_{0}, H_{1} are subspaces of H such that $T_{0}=T \mid H_{0}$ and $T_{1}=T \mid H_{1}$ are the C_{0} and C_{11} parts of T, respectively, then there exists an operator S in $\{T\}^{\prime \prime}$ such that $H_{0}=\overrightarrow{\operatorname{ran} S}$ and $H_{1}=$ ker S.

Proof. We consider T being defined on $H \equiv\left[H_{\mathfrak{D}}^{2} \oplus \overline{\Delta L_{\mathfrak{D}}^{2}}\right] \ominus\left\{\Theta_{T} w \oplus \Delta w: w \in H_{\mathfrak{D}}^{2}\right\}$ by $T(f \oplus g)=P\left(e^{i t} f \oplus e^{i t} g\right)$ for $f \oplus g \in H$, where Θ_{T} is the characteristic function of $T, \Delta(t)=\left(I_{\mathbb{D}}-\Theta_{T}(t)^{*} \Theta_{T}(t)\right)^{1 / 2}$ and P denotes the (orthogonal) projection onto H. Since Θ_{T} admits a scalar multiple, the same is true for its outer factor Θ_{e} and inner factor Θ_{i} (cf. [4], p. 217). Let $\delta_{1} \neq 0$ and $\delta_{2} \neq 0$ be their respective scalar multiples, and let Ω_{1} and Ω_{2} be contractive analytic functions such that $\Omega_{1} \Theta_{e}=$ $=\Theta_{e} \Omega_{1}=\delta_{1} I_{\mathfrak{D}}$ and $\Omega_{2} \Theta_{i}=\Theta_{i} \Omega_{2}=\delta_{2} I_{\mathfrak{D}}$. We may assume that δ_{1} is outer and δ_{2} is inner (cf. [4], p. 217). Let $\delta=\delta_{1} \delta_{2}$ and $\Omega=\Omega_{1} \Omega_{2}$. Then $\Omega \Theta_{T}=\Theta_{T} \Omega=\delta I_{\mathcal{D}}$. Consider the operator $S=P\left[\begin{array}{cc}\delta_{1} & 0 \\ \bar{\delta}_{2} \Delta \Omega & 0\end{array}\right]$. We prove $H_{1}=\operatorname{ker} S$ and $H_{0}=\overline{\operatorname{ran}} \bar{S}$ in the following steps. In each step the first statement is proved.
(1) $S \in\{T\}^{\prime \prime}$. Let $V=P\left[\begin{array}{ll}A & 0 \\ B & C\end{array}\right]$ be an operator in $\{T\}^{\prime}$, where A is a bounded analytic function while B and C are bounded measurable functions satisfying the conditions $A \Theta_{T}=\Theta_{T} A_{0}$ and $B \Theta_{T}+C \Delta=\Delta A_{0}$ a.e., where A_{0} is another bounded analytic function (cf. [5]). An easy calculation shows that

$$
S V=P\left[\begin{array}{cc}
\delta_{1} A & 0 \\
\delta_{2} \Delta \Omega A & 0
\end{array}\right] \quad \text { and } \quad V S=P\left[\begin{array}{cc}
A \delta_{1} & 0 \\
B \delta_{1}+C \delta_{2} \Delta \Omega & 0
\end{array}\right]
$$

We have $\bar{\delta}_{2} \Delta \Omega A \delta=\bar{\delta}_{2} \Delta \Omega A \Theta_{T} \Omega=\bar{\delta}_{2} \Delta \Omega \Theta_{T} A_{0} \Omega=\bar{\delta}_{2} \Delta \delta A_{0} \Omega=\delta_{1} \Delta A_{0} \Omega=$ $=\delta_{1}\left(B \Theta_{T}+C \Delta\right) \Omega=B \delta_{1} \delta+C \bar{\delta}_{2} \Delta \Omega \delta=\left(B \delta_{1}+C \bar{\delta}_{2} \Delta \Omega\right) \delta$. Since $\delta \not \equiv 0$, we conclude that $\bar{\delta}_{2} \Delta \Omega A=B \delta_{1}+C \delta_{2} \Delta \Omega$. Hence $S V=V S$ and we have $S \in\{T\}^{\prime \prime}$.
(2) $H_{1} \subseteq$ ker S. It was shown in [6] that $H_{1}=\left\{f \oplus g \in H: f \in \Theta_{i} H_{\mathfrak{D}}^{2}\right\}$. For $\Theta_{i} u \oplus g \in H_{1}, \quad S\left(\Theta_{i} u \oplus g\right)=P\left(\delta_{1} \Theta_{i} u \oplus \bar{\delta}_{2} \Delta \Omega \Theta_{i} u\right)=P\left(\Theta_{i} \Theta_{e} \Omega_{1} u \oplus \bar{\delta}_{2} \Delta \Omega_{1} \Omega_{2} \Theta_{i} u\right)=$ $=P\left(\Theta \Omega_{1} u \oplus \Delta \Omega_{1} u\right)=0$, which shows that $H_{1} \subseteq \operatorname{ker} S$.
(3) ker $S \subseteq H_{1}$. For $f \oplus g \in \operatorname{ker} S, \quad S(f \oplus g)=P\left(\delta_{1} f \oplus \delta_{2} \Delta \Omega f\right)=\left(\delta_{1} f-\Theta_{T} w\right) \oplus$ $\oplus\left(\bar{\delta}_{2} \Delta \Omega f-\Delta w\right)=0$ for some $w \in H_{\mathbb{D}}^{2}$. Hence $\delta_{1} f=\Theta_{T} w$. Note that $\frac{1}{\delta_{1}} \Theta_{e} w=\Theta_{i}^{*} f$ is an element of $L_{\mathfrak{D}}^{2}$. However $\frac{1}{\delta_{1}} \Theta_{e} w$ is also analytic in the open unit disc, and therefore belongs to $H_{\mathfrak{F}}^{2}$. We conclude that $f=\Theta_{i} w^{\prime}$, where $w^{\prime}=\frac{1}{\delta_{1}} \Theta_{e} w \in H_{\mathfrak{D}}^{2}$. This shows that $f \oplus g \in H_{1}$, and hence ker $S \subseteq H_{1}$.
(2) and (3) imply that $H_{1}=\operatorname{ker} S$. Next we prove that $H_{0}=\overline{S H}$.
(4) $\overline{S H} \subseteq H_{0}$. It was shown in [6] that $H_{0}=\left\{f \oplus g \in H: \Theta_{T} g=\Delta_{*} f\right\}$, where $\Delta_{*}=\left(I_{\mathbb{D}}-\Theta_{T} \Theta_{T}^{*}\right)^{1 / 2}$. For any $f \oplus g \in H, \quad S(f \oplus g)=\left(\delta_{1} f-\Theta_{T} w\right) \oplus\left(\bar{\delta}_{2} \Delta \Omega f-\Delta w\right)$ for some $w \in H_{\mathfrak{D}}^{2}$. Note that $\left(I_{\mathfrak{D}}-\Theta_{T}^{*} \Theta_{T}\right) \Omega=\Omega-\Theta_{T}^{*} \delta=\Omega\left(I_{\mathfrak{D}}-\Theta_{T} \Theta_{T}^{*}\right)$, whence $\Delta \Omega=$ $=\Omega \Delta_{*}$. Similarly, $\Theta_{T} \Delta=\Delta_{*} \Theta_{T}$. Thus $\Theta_{T}\left(\bar{\delta}_{2} \Delta \Omega f-\Delta w\right)=\bar{\delta}_{2} \Delta_{*} \Theta_{T} \Omega f-\Delta_{*} \Theta_{T} w=$ $=\delta_{2} \Delta_{*} \delta f-\Delta_{*} \Theta_{T} w=\Delta_{*}\left(\delta_{1} f-\Theta_{T} w\right)$, which shows that $\quad S(f \oplus g) \in H_{0}$, and hence $\overline{S H} \subseteq H_{0}$.
(5) $S \mid H_{0}=\delta_{1}\left(T_{0}\right)$. Since H_{0} is the invariant subspace corresponding to $\Theta_{T}=$ $=\Theta_{* e} \Theta_{* i}$ and $\Theta_{* i}$ is inner from both sides, $H_{0}=\left\{\Theta_{* e} u \oplus Z^{-1}\left(A_{2} u\right): u \in H_{\mathbb{D}}^{2}\right\} \ominus$ $\ominus\left\{\Theta_{T} w \oplus \Delta w: w \in H_{\mathfrak{D}}^{2}\right\}$, where $\Delta_{2}=\left(I_{\mathbb{D}}-\Theta_{* e} * \Theta_{* e}\right)^{1 / 2}$ and Z is the unitary operator from $\overline{\Delta L_{\mathfrak{D}}^{2}}$ onto $\overline{\Delta_{2} L_{\mathfrak{D}}^{2}}$ such that $Z(\Delta v)=\Delta_{2} \Theta_{* i} v$ for $v \in L_{\mathfrak{D}}^{2}$ (cf. [4], p. 288). For any $\Theta_{* e} u \oplus Z^{-1} \quad\left(\Delta_{2} u\right) \in H_{0}, \quad$ we have $\quad S\left(\Theta_{* e} u \oplus Z^{-1}\left(\Delta_{2} u\right)\right)=\left(\delta_{1} \Theta_{* e} u-\Theta_{T} w\right) \oplus$ $\oplus\left(\delta_{2} \Delta \Omega \Theta_{* e} u-\Delta w\right)$ for some $w \in H_{\mathbb{D}}^{2}$. Since Θ_{T}, along with $\Theta_{* e}$ and $\Theta_{* i}$, admits a scalar multiple, $\Theta_{T}(t)^{-1}=\Theta_{* i}(t)^{-1} \Theta_{* e}(t)^{-1}$ exists for almost all t. Therefore, $\Omega=\delta \Theta_{T}^{-1}=\delta \Theta_{* i}^{-1} \Theta_{* e}^{-1} \quad$ a.e. We have $Z\left(\bar{\delta}_{2} \Delta \Omega \Theta_{* e} u\right)=\Delta_{2} \Theta_{* i} \delta_{2} \Omega \Theta_{* e} u=$ $=\Lambda_{2} \Theta_{* i} \delta_{2} \delta \Theta_{* i}^{-1} \Theta_{* e}^{-1} \Theta_{* \mathrm{e}} u=\delta_{1} \Delta_{2} u$, and it follows that $S\left(\Theta_{* e} u \oplus Z^{-1}\left(\Lambda_{2} u\right)\right)=$ $=\left(\delta_{1} \Theta_{* e} u-\Theta_{T} w\right) \oplus\left(\delta_{1} Z^{-1}\left(\Delta_{2} u\right)-\Delta w\right)$. This shows that $S \mid H_{0}=\delta_{1}\left(T_{0}\right)$.
(6) $\overline{S H}=H_{0}$. Since δ_{1} is outer, $\delta_{1}\left(T_{0}\right)$ is a quasi-affinity. (cf. [4], p. 118). Hence $\overline{\delta_{1}\left(T_{0}\right) H_{0}}=H_{0}$. By (4) and (5), this implies that $\overline{S H}=H_{0}$.

The next lemma is needed in the proof of Theorem 3.3.
Lemma 2. Let T be a c.n.u. weak contraction on H and let H_{0}, H_{1} be subspaces of H such that $T_{0}=T \mid H_{0}$ and $T_{1}=T \mid H_{1}$ are the C_{0} and C_{11} parts of T, respectively. If $H_{0}^{\prime}, H_{0}^{\prime} \subseteq H$ are invariants subspaces for T such that $H_{0}^{\prime} \vee H_{1}^{\prime}=H$ and $T \mid H_{0}^{\prime} \in C_{0}$, $T \mid H_{1}^{\prime} \in C_{11}$, then $H_{0}=H_{0}^{\prime}$ and $H_{1}=H_{1}^{\prime}$.

Proof. The maximality property of H_{0} and H_{1} implies that $H_{0}^{\prime} \subseteq H_{0}$ and $H_{1}^{\prime} \subseteq H_{1} \quad$ (cf. [4], p. 331). Now we show that $H_{0} \subseteq H_{0}^{\prime}$. Since $H_{0}=\overline{\operatorname{ran} S}$ where S is the operator defined in Theorem 1 , for any $h \in H_{0}$ and $\varepsilon>0$ there exists some k in H such that $\|h-S k\|<\varepsilon$. The hypothesis $H=H_{0}^{\prime} \vee H_{1}^{\prime}$ implies that $\left\|k-k_{0}-k_{1}\right\|<\varepsilon$ holds for some $k_{0} \in H_{0}^{\prime}$ and $k_{1} \in H_{1}^{\prime}$. Hence $\left\|S k-S k_{0}-S k_{1}\right\|=$ $=\left\|S k-S k_{0}\right\|<\|S\| \varepsilon$, and it follows that $\left\|h-S k_{0}\right\|<(1+\|S\|) \varepsilon$. Since $S k_{0}=$ $=\delta_{1}\left(T_{0}\right) k_{0}=\delta_{1}(T) k_{0} \in \cdot H_{0}^{\prime}$ and ε is arbitrary, we conclude that $h \in H_{0}^{\prime}$ and hence $H_{0}^{\prime}=H_{0} . H_{1}^{\prime}=H_{1}$ can be proved in a similar fashion by noting that $H_{1}=\overline{\operatorname{ran} m(T)}$ and $H_{0}=$ ker $m(T)$, where m denotes the minimal function of T_{0}.

Now we have the following main theorem.
Theorem 3. Let T be a c.n.u. weak contraction on H and let H_{0}, H_{1} be subspaces of H such that $T_{0}=T \mid H_{0}$ and $T_{1}=T \mid H_{1}$ are the C_{0} and C_{11} parts of T, respectively. Then the following lattices are isomorphic:

Hyperlat T, Hyperlat $T_{0} \oplus$ Hyperlat T_{1}, and $\operatorname{Hyperlat}\left(T_{0} \oplus T_{1}\right)$.
Proof. Since T_{0} and T_{1} are of class C_{00} and of class C_{11}, respectively, Hyperlat $T_{0} \oplus$ Hyperlat $T_{1} \cong$ Hyperlat $\left(T_{0} \oplus T_{1}\right)$ follows from Prop. 3 and Lemma 4 of [2].

Next we show that a subspace $K \subseteq H$ is hyperinvariant for T if and only if $K=K_{0} \vee K_{1}$ where $K_{0} \subseteq H_{0}$ and $K_{1} \subseteq H_{1}$ are hyperinvariant for T_{0} and T_{1}, respectively. To prove one direction, let $K \subseteq H$ be hyperinvariant for T and let $K_{0}=K \cap H_{0}, K_{1}=K \cap H_{1}$. Note that $\sigma(T \mid K) \subseteq \sigma(T)$ [1] and hence $T \mid K$ is also a weak contraction. Thus K_{0} and K_{1} are subspaces of K on which the C_{0} and C_{11} parts of $T \mid K$ act (cf. [4], p. 332). We have $K=K_{0} \vee K_{1}$. Now we show the hyperinvariance of K_{0} and K_{1}. Note that $H_{0}=\overline{S H}$, where S is the operator defined in Theorem 1. For any $S_{0} \in\left\{T_{0}\right\}^{\prime}$, consider the operator $S_{0} S$ on H. It is easily seen that $S_{0} S \in\{T\}^{\prime}$. Since $K_{0}=K \cap H_{0}$ is hyperinvariant for $T, S_{0} S K_{0} \subseteq K_{0}$. As proved in Theorem 1, $S \mid H_{0}=\delta_{1}\left(T_{0}\right)$ for some outer function δ_{1}. Thus $\overline{S K_{0}}=$ $=\overline{\delta_{1}\left(T \mid K_{0}\right) K_{0}}=K_{0}$. It follows that $S_{0} K_{0} \subseteq K_{0}$ and hence K_{0} is hyperinvariant for T_{0}. That K_{1} is hyperinvariant for T_{1} can be proved similarly by noting that $H_{1}=\overrightarrow{m(T) H}$ where m is the minimal function of T_{0} and $m\left(T \mid K_{1}\right)$, being an analytic function of a c.n.u. C_{11} contraction, is a quasi-affinity (cf. [4], p. 123).

To prove the converse, let $S \in\{T\}^{\prime}$ and $S_{0}=S\left|H_{0}, S_{1}=S\right| H_{1}$. It is obvious that $S_{0} \in\left\{T_{0}\right\}^{\prime}$ and $S_{1} \in\left\{T_{1}\right\}^{\prime}$. If $K_{0} \subseteq H_{0}$ and $K_{1} \subseteq H_{1}$ are hyperinvariant for T_{0} and T_{1}, respectively, then $S_{0} K_{0} \subseteq K_{0}$ and $S_{1} K_{1} \subseteq K_{1}$. Hence $S\left(K_{0} \vee K_{1}\right) \subseteq$ $\sqsubseteq K_{0} \vee K_{1}$, which shows that $K_{0} \vee K_{1}$ is hyperinvariant for T and proves our assertion.

That K_{0} and K_{1} are uniquely determined by K follows from Lemma 2 , and it is easily seen that Hyperlat $T \cong$ Hyperlat $T_{0} \oplus$ Hyperlat T_{1}.

In [11] a specific description of the elements in Hyperlat T for a special class of c.n.u. weak contractions is given.

Corollary 4. Let T_{1}, T_{2} be c.n.u. weak contractions with finite defect indices. If T_{1} is quasi-similar to T_{2}, then Hyperlat T_{1} is isomorphic to Hyperlat T_{2}.

Proof. Let T_{10}, T_{20} be the C_{0} parts of T_{1}, T_{2} and T_{11}, T_{21} be their C_{11} parts, respectively. If T_{1} is quasi-similar to T_{2}, then T_{10}, T_{11} are quasi-similar to T_{20}, T_{21}, respectively (cf. [10]). Since T_{1}, T_{2} have finite defect indices, T_{10}, T_{20} are of class $C_{0}(N)$ and the defect indices of T_{11}, T_{21} are also finite. Thus Hyperlat $T_{10} \cong$ Hyperlat T_{20} and Hyperlat $T_{11} \cong$ Hyperlat $T_{\varepsilon 1}$ (cf. [7] and [14], resp.). Now Hyperlat $T_{1} \cong$ \cong Hyperlat T_{2} follows from Theorem 3 .

Recall that a c.n.u. weak contraction T is multiplicity-free if T admits a cyclic vector and that T is multiplicity-free if and only if its C_{0} part and C_{11} part are (cf. [12]).

Corollary 5. Let T be a c.n.u. multiplicity-free weak contraction on H with defect indices $n<+\infty$. Let $K \subseteq H$ be an invariant subspace for T with the corresponding regular factorization $\Theta_{T}=\Theta_{2} \Theta_{1}$. Then the following are equivalent to each other:
(1) $K \in$ Hyperlat T;
(2) the intermediate space of $\Theta_{T}=\Theta_{2} \Theta_{1}$ is of dimension n.

Proof. (1) $\Rightarrow(2)$. If $K \in$ Hyperlat T, then, as proved before, $T \mid K$ is a weak contraction. Hence its characteristic function admits a scalar multiple, which implies that the intermediate space of $\Theta_{T}=\Theta_{2} \Theta_{1}$ is of dimension n.
$(2) \Rightarrow(1)$. The hypothesis implies that $T \mid K$ has equal defect indices. It is easily seen that a c.n.u. contraction S with finite equal defect indices is a weak contraction if and only if $\operatorname{det} \Theta_{S} \not \equiv 0$. Since det $\Theta_{T} \not \equiv 0$ implies that $\operatorname{det} \Theta_{1} \not \equiv 0$, it follows that $T \mid K$ is a weak contraction. Let K_{0}, K_{1} be subspaces of K on which the C_{0} and C_{11} parts of $T \mid K$ act. We have $K=K_{0} \vee K_{1}$. It follows from the proof of Theorem 3 that we have only to show that K_{0} and K_{1} are hyperinvariant for $T_{0}=T \mid H_{0}$ and $T_{1}=T \mid H_{1}$, the C_{0} and C_{11} parts of T, respectively. Since $K_{0} \subseteq H_{0}$ is invariant for the multiplicity-free $C_{0}(N)$ contraction T_{0}, it is hyperinvariant for it (cf. [8], Corollary 4.4). On the other hand, T_{1} is a multiplicity-free C_{11} contraction on H_{1} with finite defect indices and $K_{1} \subseteq H_{1}$ is such that $T_{1} \mid K_{1} \in C_{11}$. It follows easily from Theorem 1 of [14] that K_{1} is hyperinvariant for T_{1}, completing the proof.

The next corollary gives necessary and sufficient conditions that Lat T be equal to Hyperlat T for the operators we considered.

Corollary 6. Let T be a c.n.u. weak contraction on H with defect indices $n<+\infty$. Let $T_{0}=T \mid H_{0}$ and $T_{1}=T \mid H_{1}$ be its C_{0} and C_{11} parts, respectively, and let Θ_{e} be the outer factor of the characteristic function Θ_{T} of T. Then the following conditions are equivalent:
(1) Lat $T=$ Hyperlat T;
(2) Lat $T_{0}=$ Hyperlat T_{0} and Lat $T_{1}=$ Hyperlat T_{1};
(3) T_{0} and T_{1} are multiplicity-free and $\Theta_{e}(t)$ is isometric on a set of positive Lebesgue measure;
(4) T is multiplicity-free and $\Theta_{T}(t)$ is isometric on a set of positive Lebesgue measure.

Proof. (1) \Rightarrow (2). We only show that Lat $T_{0}=$ Hyperlat T_{0}; Lat $T_{1}=$ Hyperlat T_{1} can be proved similarly. To this end, let $K_{0} \subseteq H_{0}$ be an invariant subspace for T_{0}. It is obvious that $K_{0} \in$ Lat $T=$ Hyperlat T. Let S be the operator defined in Theorem 1. Then $H_{0}=\overline{S H}$ and $S \mid H_{0}=\delta_{1}\left(T_{0}\right)$ for some outer function δ_{1}. For any $S_{0} \in\left\{T_{0}\right\}^{\prime}, S_{0} S$ is an operator in $\{T\}^{\prime}$. Hence $\overline{S_{0} S K_{0}}=\overline{S_{0} \delta_{1}\left(T \mid K_{0}\right) K_{0}}=$ $=\overline{S_{0} K_{0}} \subseteq K_{0}$, which shows that $K_{0} \in$ Hyperiat T_{0} and proves our assertion.
$(2) \Rightarrow(3)$. This follows from Corollary 4.4 of [8] and Theorem 4.3 of [15].
$(3) \Rightarrow(4)$. This follows from the remark before Corollary 5 and the fact that $\Theta_{T}(t)$ is isometric if and only if $\Theta_{e}(t)$ is.
$(4) \Rightarrow(1)$ Let $K \in \operatorname{Lat} T$ with the corresponding regular factorization $\Theta_{T}=\Theta_{2} \Theta_{1}$. In light of Corollary 5 it suffices to show that the intermediate space of $\Theta_{T}=$ $=\Theta_{2} \Theta_{1}$ is of dimension n. Note that rank $\Delta(t)=\operatorname{rank} \Delta_{1}(t)+\operatorname{rank} \Delta_{2}(t)$ a.e., where $\Delta(t)=\left(I-\Theta_{T}(t)^{*} \Theta_{T}(t)\right)^{1 / 2}$ and $\Delta_{j}(t)=\left(I-\Theta_{j}(t)^{*} \Theta_{j}(t)\right)^{1 / 2}, j=1,2$. The hypothesis implies that $\Delta(t)=0$ on a set of positive Lebesgue measure, say α. It follows that $\Delta_{1}(t)=\Delta_{2}(t)=0$ on α, and hence $\Theta_{1}(t)$ and $\Theta_{2}(t)$ are isometric for t in α. Therefore, the intermediate space of $\Theta_{T}=\Theta_{2} \Theta_{1}$ is of dimension n, as asserted.

We remark that the preceding corollary generalizes part of the main result in [9].
Corollary 7. Let T be a c.n.u. multiplicity-free weak contraction with finite defect indices. If $K_{1}, K_{2} \in$ Hyperlat T and $T \mid K_{1}$ is quasi-similar to $T \mid K_{2}$, then $K_{1}=K_{2}$.

Proof. Since $K_{1}, K_{2} \in$ Hyperlat $T, T\left|K_{1}, T\right| K_{2}$ are weak contractions. Considering the C_{0} and C_{11} parts of $T \mid K_{1}$ and $T \mid K_{2}$ and using the corresponding results for multiplicity-free $C_{0}(N)$ contractions and C_{11} contractions, we can deduce that $K_{1}=K_{2}$ (cf. [3], Theorem 2 and [14], Corollary 3). We leave the details to the interested readers.

The next theorem, being another application of Theorem 3, is interesting in itself.

Theorem 8. Let T be a c.n.u. weak contraction on H with finite defect indices. Then Hyperlat T is (lattice) generated by subspaces of the forms $\overline{\operatorname{ran} S}$ and ker V, where $S, V \in\{T\}^{\prime \prime}$.

Proof. Let $T_{0}=T \mid H_{0}$ and $T_{1}=T \mid H_{1}$ be the C_{0} and C_{11} parts of T, respectively, and let $K \in$ Hyperlat T. Since $T \mid K$ is a c.n.u. weak contraction, we may consider its C_{0} part $T \mid K_{0}$ and C_{11} part $T \mid K_{1}$. By Theorem 1, $H_{0}=\overline{S H}$ for some $S \in\{T\}^{\prime \prime}$. Since $K_{0} \subseteq H_{0}$ is hyperinvariant for the $C_{0}(N)$ contraction T_{0} (by Theorem 3), it follows from [13] that $K_{0}=\bigvee_{i=1}^{n}\left[\operatorname{ker} \psi_{i}\left(T_{0}\right) \cap \overline{\xi_{i}\left(T_{0}\right) H_{0}}\right]=$ $=\bigvee_{i=1}^{n}\left[\operatorname{ker} \psi_{i}\left(T_{0}\right) \cap \overline{\xi_{i}(T) S H}\right]$, where ψ_{i}, ξ_{i} are inner functions, $i=1, \ldots, n$. On the other hand, since $K_{1} \subseteq H_{1}$ is hyperinvariant for T_{1} (by Theorem 3 again), Theorem 3.6 of [15] implies that $K_{1}=\overline{V H_{1}}$ for some $V \in\left\{T_{1}\right\}^{\prime \prime}$. Hence $K_{1}=\overline{V m(T) H}$, where m denotes the minimal function of T_{0}. We claim that $K=\bigvee_{i=1}^{n}\left[\operatorname{ker} \psi_{i}(T) \cap\right.$ $\cap \overline{\xi_{i}(T) S H} \mathrm{~V} \vee \overline{V m(T) H}$. Indeed, this follows from $K=K_{0} \vee K_{1}$ and the fact that $\operatorname{ker} \psi\left(T_{0}\right)=\operatorname{ker} \psi(T)$ for any $\psi \in H^{\infty}$. Since it is easily seen that $\psi_{i}(T)$, $\zeta_{i}(T) S \in\{T\}^{\prime \prime}$ for all i and $\operatorname{Vm}(T) \in\{T\}^{\prime \prime}$, the proof is complete.

Corollary 9. Let T be a c.n.u. multiplicity-free weak contraction on H with finite defect indices and let K be a subspace of H. Then the following are equivalent:
(1) $K \in$ Hyperlat T;
(2) $K=\overline{\operatorname{ran} S}$ for some $S \in\{T\}^{\prime \prime}$;
(3) $K=$ ker V for some $V \in\{T\}^{\prime \prime}$.

Proof. The equivalence of (2) and (3) is easily established by considering T^{*} and K^{\perp}. (2) $\Rightarrow(1)$ is trivial.
$(1) \Rightarrow(2)$ is proved by following the same line of arguments in the proof of Theorem 8 and noting that any hyperinvariant subspace for a multiplicity-free $C_{0}(N)$ contraction T is of the form $\overline{\operatorname{ran} \xi(T)}$ for some inner function ξ.

References

[1] C. Apostol, Spectral decompositions and functional calculus, Rev. Roum. Math. Pures et Appl., 13 (1968), 1481 - 1528.
[2] J. B. Conway and P. Y. Wu, The splitting of $\mathscr{A}\left(T_{1} \oplus T_{2}\right)$ and related questions, Indiana Univ. Math. J., 26 (1977), 41—56.
[3] B. Sz.-Nagy and C. Foiaş, Opérateurs sans multiplicité, Acta Sci. Math., 30 (1969), 1-18.
[4] B. Sz.-Nagy and C. Foiaş, Harmonic analysis of operators on Hilbert space, North Holland/Akadémiai Kiadó (Amsterdam/Budapest, 1970).
[5] B. Sz.-NaGY and C. Foias, On the structure of intertwining operators, Acta Sci. Math., 35 (1973), 225-254.
[6] R. I. Teodorescu, Sur les décompositions directes $C_{0}-C_{11}$ des contractions, Acta Sci. Math., 36 (1974), 181-187.
[7] M. Uchiyama, Hyperinvariant subspaces of operators of class $C_{0}(N)$, Acta Sci. Math., 39 (1977), 179-184.
[8] P. Y. Wu, Commutants of $C_{0}(N)$ contractions, Acta Sci. Math., 38 (1976), 193-202.
[9] P. Y. Wu, On contractions satisfying Alg $T=\{T\}^{\prime}$, Proc. Amer. Math. Soc., 67 (1977), 260-264.
[10] P. Y. Wu, Quasi-similarity of weak contractions, Proc. Amer. Math. Soc., 69 (1978), 277-282.
[11] P. Y. Wu, Hyperinvariant subspaces of the direct sum of certain contractions,s Indiana Univ. Math. J., 27 (1978), 267-274.
[12] P. Y. Wu, Jordan model for weak contractions, Acta Sci. Math., 40 (1978), 189-196.
[13] P. Y. Wu, The hyperinvariant subspace lattice of contractions of class C.0, Proc. Amer. Math. Soc., 72 (1978), 527-530.
[14] P. Y. Wu, Hyperinvariant subspaces of C_{11} contractions, Proc. Amer. Math. Soc., to appear.
[15] P. Y. Wu, Hyperinvariant subspaces of C_{11} contractions. II, Indiana Univ. Math. J., 27 (1978), 805-812.

DEPARTMENT OF APPLIED MATHEMATICS
NATIONAL CHIAO TUNG UNIVERSITY
HSINCHU. TAIWAN

[^0]: Received October 14, 1977.
 This research was partially supported by the National Science Council of Taiwan.

