On a set-mapping problem of Hajnal and Máté

JOHN P. BURGESS

In the course of a wide-ranging survey of combinatorial set theory, A. Hajnal and A. Máté prove by a forcing argument the consistency of the following combinatorial principle with the Generalized Continuum Hypothesis GCH, and ask whether if follows from the Axiom of Constructibility V=L (see [4], Thm. 5.4 and Problem 8).

(HM) There is a function $f: \{(\alpha, \beta, \gamma): \alpha < \beta < \gamma < \omega_2\} \rightarrow \omega_2$ such that for any uncountable $A \subseteq \omega_2$ there exist $\alpha < \beta < \gamma$ in A with $f(\alpha, \beta, \gamma) \in A$. (We are using the same standard set-theoretic notation as [4], except that we use ω_{α} rather than \aleph_{α} for the α th transfinite cardinal.) We present here a proof that V = L implies HM by a metamathematical method which we feel has interest beyond this particular problem.

- 1. Jensen's Absoluteness Principle. The language $L[Q_1, Q_2]$ is just like ordinary first order logic, except for the presence of two generalized quantifiers:
 - $Q_1 x \varphi(x)$ meaning: There exist uncountably many x such that $\varphi(x)$.
- $Q_2x\varphi(x)$ meaning: There exist at least ω_2 many x such that $\varphi(x)$. As is explained in some detail in the final paragraphs of [3], R. B. Jensen's work on model theory establishes the following principle:
 - (*) Let φ be a sentence of $L[Q_1, Q_2]$. Suppose there is a Boolean-valued extension $V^{\mathscr{B}}$ of the universe of set theory in which GCH holds, such that in $V^{\mathscr{B}}$ it is true that φ has a model. Then already in the constructible universe L it is true that φ has a model.

This principle provides a method for turning a consistency proof for a combinatorial principle ψ into a derivation of ψ from V=L. Namely, it suffices to find a sentence φ of $L[Q_1, Q_2]$ for which we can prove, using GCH if needs be, that φ has a model if and only if ψ holds. Unfortunately this method does not seem to

Received May 15, 1978.

apply directly to the principle HM. What we will show here is that it applies to a certain principle which implies HM.

2. Quagmires. The principle we have in mind is just a bit complicated. A tree is a partial order $\mathcal{T}=(T,<)$ in which the predecessors of any element are well ordered. The order type of the predecessors of $t\in T$ is called the rank |t| of t. The α th level T_{α} of the tree is the set of t with $|t|=\alpha$, and its height the least α with $T_{\alpha}=\emptyset$. For present purposes a Kurepa tree may be defined as a tree of height ω_1+1 in which T_{ω_1} has cardinality ω_2 , distinct elements of T_{ω_1} have distinct sets of predecessors, and T_{α} is countable for $\alpha<\omega_1$.

A quagmire $(T, <, \lhd, Q)$ is a Kurepa tree (T, <) equipped with a binary relation \lhd and a trinary function Q such that:

- (1) \triangleleft holds only between elements of equal rank, and linearly orders each level T_{α} of the tree.
- (2) Q is defined on those triples (y', x', x) with $y' \triangleleft x' < x$, and for any such, $y' < Q(y', x', x) \triangleleft x$.
- (3) (Commutativity) If $y'' \triangleleft x'' < x' < x$, then Q(Q(y'', x'', x'), x', x) = Q(y'', x'', x).
 - (4) (Coherence) If $z' \triangleleft y' \triangleleft x' < x$, then Q(z', y', Q(y', x', x)) = Q(z', x', x).
- (5) (Completeness) If $y \triangleleft x \in T_{\omega_1}$, then for some $\alpha < \omega_1$, $Q(P_{\alpha}(y), P_{\alpha}(x), x) = y$. Here P_{α} is the projection function which assigns to any t with $|t| \ge \alpha$ the unique u < t with $|u| = \alpha$. Note that the condition $Q(P_{\alpha}(y), P_{\alpha}(x), x) = y$ implies $P_{\alpha}(y) \triangleleft P_{\alpha}(x)$, else Q would not be defined on this triple.

What we are going to show, assuming GCH, is that:

- (A) The existence of a quagmire implies HM.
- (B) There is a sentence of $L[Q_1, Q_2]$ which has a model if and only if there exists a quagmire.
- (C) There is a Boolean-valued extension $V^{\mathfrak{B}}$ of the universe of set theory in which GCH holds and there exists a quagmire.
- 3. Proof of (A). We will show, assuming CH, that if there exists a quagmire (T, <, <, Q), then HM holds. We begin by deriving from these assumptions the following combinatorial principle, due to Silver. (For its consequences, cf. [5].)
 - (W) There exists a Kurepa tree (T, <) equipped with a function W defined on ω_1 , such that:

For $\alpha < \omega_1$, $W(\alpha)$ is a countable family of subsets of the level T_{α} . For any countable $S \subseteq T_{\omega_1}$ there exists $\alpha < \omega_1$ such that for any $\alpha \le \beta < \omega_1$,

 ${P_{\beta}(x): x \in S} \in W(\beta).$

Indeed, to derive W given CH and a quagmire, note that for each $\alpha < \omega_1$, the α th level T_{α} of the quagmire is countable, so its power set can be enumerated in an ω_1 -sequence $X_{\alpha,\beta}$ for $\beta < \omega_1$. For $x \in T$ and $\alpha, \beta < |x|$ let $S(\alpha, \beta, x)$ be the

image $\{Q(y', P_{\alpha}(x), x): y' \lhd P_{\alpha}(x) \& y' \in X_{\alpha, \beta}\}$ of the β th subset of T_{α} under the map $Q(\cdot, P_{\alpha}(x), x)$. For $\gamma < \omega_1$, let $W(\gamma) = \{S(\alpha, \beta, x): \alpha, \beta < \gamma \& x \in T_{\gamma}\}$, a countable family of subsets of T_{γ} .

Now it follows by the Completeness condition in the definition of quagmire that any $x \in T_{\omega_1}$ has at most $\omega_1 \lhd$ -predecessors. Hence given a countable $S \subseteq T_{\omega_1}$, there must exist an x with $y \lhd x$ for all $y \in S$. Again by Completeness, for each $y \in S$ there is then an $\alpha(y) < \omega_1$ with $y = Q(P_{\alpha(y)}(y), P_{\alpha(y)}(x), x)$. Let $\alpha = \sup \{\alpha(y): y \in S\}$. By Commutativity, for any $\alpha \le \delta < \omega_1$ and $y \in S$, the element $y' = Q(P_{\alpha(y)}(y), P_{\alpha(y)}(x), P_{\delta}(x))$ satisfies $P_{\alpha(y)}(y) < y' \lhd P_{\delta}(x)$ and $y' < Q(y', P_{\delta}(x), x) = Q(P_{\alpha(y)}(y), P_{\alpha(y)}(x), x) = y$. Hence $y' = P_{\delta}(y)$ and $Q(P_{\delta}(y), P_{\delta}(x), x) = y$.

If now we fix a β such that $\{P_{\alpha}(y): y \in S\} = X_{\alpha,\beta}$ and let γ be $>\alpha$ and β , then for any $\gamma \le \delta < \omega_1$ it is readily verified that $\{P_{\delta}(y): y \in S\} = S(\alpha, \beta, P_{\delta}(x)) \in W(\delta)$, which suffices to prove Silver's principle W above. This established, we go on, still assuming CH and the existence of a quagmire, to derive the following combinatorial principle, due to Hajnal and Máté:

(HM') There exists a sequence of functions H_{α} : $\omega_2 \rightarrow \omega_2$, for $\alpha < \omega_1$, such that for any infinite $S \subseteq \omega_2$ there exists a $\gamma < \omega_1$ such that for any $\gamma \leq \delta < \omega_1$ there exists an $x \in S$ with $H_{\delta}(x) \in S$.

Towards proving this, we first note that we may assume without loss of generality that in our quagmire no level T_{α} has a \triangleleft -least element. (Otherwise we can construct a new quagmire with this property by taking:

$$T' = \omega \times T,$$

$$(m, x) <'(n, y) \leftrightarrow m = n \& x < y,$$

$$(m, x) \lhd'(n, y) \leftrightarrow x \lhd y \text{ or } (x = y \& m > n),$$

$$Q'((m, y'), (n, x'), (n, x)) = (m, Q(y', x', x)),$$

i.e. by replacing each element x of the original quagmire by a sequence $\dots(2, x), (1, x), (0, x)$.

This settled, we go on to construct for each $\alpha < \omega_1$ a map h_α : $T_\alpha \to T_\alpha$ such that $h_\alpha(x) \lhd x$ for each $x \in T_\alpha$, and for any infinite $S \in W(\alpha)$ there exists a $y \in S$ with $h_\alpha(y) \in S$. Since $W(\alpha)$ is countable, this can be accomplished by a simple diagonal construction in ω stages, whose details are left to the reader. Having the h_α , we define maps H_α : $T_{\omega_1} \to T_{\omega_1}$ by $H_\alpha(x) = Q(h_\alpha(P_\alpha(x)), P_\alpha(x), x)$.

Now for any denumerably infinite $S \subseteq T_{\omega_1}$, our arguments above establish two things. First, there is an $x \in T_{\omega_1}$ and an $\alpha < \omega_1$ such that for all $y \in S$ and $\alpha \le \delta < \omega_1$, $Q(P_{\delta}(y), P_{\delta}(x), x) = y < x$. Second, there is a $\beta < \omega_1$ such that for all $\beta \le \delta < \omega_1$, $\{P_{\delta}(y): y \in S\} \in W(\delta)$. If $\gamma = \max(\alpha, \beta)$, then for any $\gamma \le \delta < \omega_1$, by construction there exist $y, z \in S$ with $h_{\delta}(P_{\delta}(y)) = P_{\delta}(z)$. Now by Coherence $H_{\delta}(y) = P_{\delta}(z)$.

= $Q(h_{\delta}(P_{\delta}(y)), P_{\delta}(y), y)$ = $Q(P_{\delta}(z), P_{\delta}(y), y)$ = $Q(P_{\delta}(z), P_{\delta}(x), x)$ =z, i.e. there is a $y \in S$ with $H_{\delta}(y) \in S$.

If we assume, as we may without loss of generality, that T_{ω_1} consists precisely of the ordinals $<\omega_2$, then this is precisely what is required to establish the principle HM' above. Now as Hajnal and Máté [4] show that HM' and the existence of a Kurepa tree imply HM, our proof that CH and the existence of a quagmire imply HM is complete.

- 4. Proof of (B). VAUGHT [6] long ago proved that the existence of a Kurepa tree is equivalent to the existence of a model for a certain sentence φ of $L[Q_1, Q_2]$. For completeness we recall his argument here: φ will involve two singulary predicates T, Q, plus two binary predicates q, q, plus a singulary function symbol q, plus a constant q, q is the conjunction of the sentences (whose precise formalization we leave to the reader) expressing:
- (1) $<_T$ partially orders T in such a way that the predecessors of any element are linearly ordered.
 - (2) $<_{o}$ linearly orders O, with last element w.
- (3) r maps T onto O in such a way that for any $t \in T$ and $u \in O$, $u <_O r(t)$ if and only if there exists $t' <_T t$ with u = r(t').
 - $(4) \ Q_1 u O(u) \& \ \forall u (u <_O w \to \neg Q_1 u'(u' <_O u))$
- (5) $Q_2t(T(t) \& r(t)=w) \& \text{ distinct } t \text{ with } r(t)=w \text{ have distinct sets of } <_T$ -predecessors.
 - (6) $\forall u (u <_O w \rightarrow \neg Q_1 t (T(t) \& r(t) = u))$

If $(T, <_T)$ is a Kurepa tree, we get a model of this sentence φ by interpreting O as the set of ordinals $\leq \omega_1$, $<_O$ as the usual order on this set, w as ω_1 , and r as the rank function. Conversely, if $(T, <_T, O, <_O, w, r)$ is a model of φ , then using (4) above one easily sees that there is a $<_O$ -cofinal subset Z of $\{u \in O: u <_O w\}$ which is well ordered by $<_O$ in order type ω_1 . Then restricting $<_T$ to $\{t \in T: r(t) = w \text{ or } r(t) \in Z\}$ we get a Kurepa tree.

To get a formula φ' which has a model if and only if there exists a quagmire, simply take new symbols \lhd and Q and conjoin the above φ with the sentences expressing conditions (1)—(5) in the definition of quagmire in § 2 above.

5. Proof of (C). It remains only to prove, assuming GCH, that some suitable set of forcing conditions gives rise to a Boolean-valued extension of the universe of set theory in which GCH holds and there exists a quagmire. The proof is so similar to the proof of the consistency of HM' in [4] and the proof of the consistency of Silver's W in [2], that we leave most details to the reader.

As our forcing conditions we take the set \mathscr{P} of all sixtuples $p=(\alpha_p, T_p, <_p, <_p, Q_p, \Lambda_p)$ such that:

- (0) T_n is a countable subset of ω_1 .
- (1) $(T_p, <_p)$ is a tree of height $\alpha_p + 1 < \omega_1$.
- (2)—(5) in the definition of quagmire in § 2 above hold for \triangleleft_p and Q_p .
- (6) Λ_p maps a subset of ω_2 onto the α_p th level of the tree $(T_p, <_p)$, and is order preserving in the sense that for $\xi < \eta$ in dom Λ_p , we have $\Lambda_p(\xi) \lhd_p \Lambda_p(\eta)$. Note that the requirement that Λ_p be order preserving means that Λ_p is completely determined by its domain.

We partially order \mathcal{P} by setting p < q if and only if:

- (7) $\alpha_p > \alpha_q$ and $T_p \supseteq T_q$ and $<_p, <_p, Q_p$ extend $<_q, <_q, Q_q$ respectively and dom $\Lambda_p \supseteq \text{dom } \Lambda_q$.
- (8) For all $\xi \in \text{dom } \Lambda_q$, $\Lambda_q(\xi) <_p \Lambda_p(\xi)$; and for $\xi < \eta$ in dom Λ_q , $Q_p(\Lambda_q(\xi), \Lambda_q(\eta), \Lambda_p(\eta)) = \Lambda_p(\xi)$.

In order to show that \mathcal{P} does what it should, we need the following:

Lemma. (a) \mathcal{P} is σ -closed; i.e. whenever $p_n \in \mathcal{P}$ for $n \in \omega$ and $p_{n+1} < p_n$ for all n, then there exists $p \in \mathcal{P}$ with $p < p_n$ for all n.

- (b) \mathcal{P} has the ω_2 -chain condition; i.e. no set of pairwise incompatible elements of \mathcal{P} has cardinality ω_2 .
 - (c) For each $\alpha < \omega_1$ and $\xi < \omega_2$, $\{p: \alpha_p > \alpha \& \sup \text{dom } \Lambda_p > \xi\}$ is dense in \mathscr{P} .

The proof of the easy parts (a) and (c) will be left to the reader. As for part (b), let $A \subseteq \mathcal{P}$ have cardinality ω_2 . Assuming CH, there must exist an $A' \subseteq A$ of cardinality ω_2 and fixed α , T, \prec , \prec , and Q such that for all $p \in A'$, $\alpha_p = \alpha$, $T_p = T$, $\prec_p = \prec$, $Q_p = Q$. For assuming CH there are only ω_1 possibilities for these items.

 $\{\operatorname{dom} \Lambda_p \colon p \in A'\}$ forms a set of ω_2 countable subsets of ω_2 . By a well-known result of Erdős and Rado (cf. Thm. 2.3 of [4] or Lemma 3.6 of [2]) there exists a sequence p_{ν} , $\nu < \omega_2$ of elements of A' and a fixed $X \subseteq \omega_2$ such that for any $\mu < \nu < \omega_2$, $\operatorname{dom} \Lambda_{p_u} \cap \operatorname{dom} \Lambda_{p_v} = X$ and sup $\operatorname{dom} \Lambda_{p_v} = \operatorname{inf} (\operatorname{dom} \Lambda_{p_v} - X)$.

Let $p=p_0$, $q=q_0$, $Y=\text{dom }\Lambda_p$, $Z=\text{dom }\Lambda_q$. Note $\Lambda_p|X=\Lambda_q|X$. To establish part (b) of the Lemma it will suffice to construct an $r\in \mathcal{P}$ with r< p and r< q. This may be accomplished by taking:

 $\alpha_r = \alpha + 1$

 $T_r = T \cup \{t_{\xi}: \xi \in Y \cup Z\}$ where the t_{ξ} are distinct elements of $\omega_1 - T$,

-- the extension of < defined so that $\Lambda_p(\eta) <_r t_\eta$ for $\eta \in Y$ and $\Lambda_q(\zeta) <_r t_\zeta$ for $\zeta \in Z$,

 \triangleleft_r =the extension of \triangleleft defined so that $t_{\eta} \triangleleft_r t_{\zeta}$ for $\eta < \zeta$ in $Y \cup Z$,

 Q_r =the extension of Q defined so that $Q_r(\Lambda_p(\xi), \Lambda_p(\eta), t_\eta) = t_\xi$ for $\xi < \eta$ in Y, and $Q_r(\Lambda_q(\xi), \Lambda_q(\xi), t_\xi) = t_\xi$ for $\xi < \zeta$ in Z,

 Λ_r = the function $\Lambda_r(\xi) = t_{\xi}$ for $\xi \in Y \cup Z$.

Details are left to the reader.

With the Lemma established, we let \mathscr{B} =the complete Boolean algebra of regular open subsets of \mathscr{P} . Parts (a) and (b) of the above Lemma and standard forcing lemmas (for which see e.g. [2]) imply that, assuming GCH, in the Boolean-valued extension $V^{\mathscr{B}}$ all cardinals are preserved and GCH holds.

Moreover if $G \in V^{\mathfrak{B}}$ is a generic subset of \mathcal{P} , then the $p \in G$ can be fitted together to produce a quagmire. Again details are left to the reader. This completes the proof that V = L implies HM.

Bibliography

- [1] K. J. BARWISE, ed., Handbook of mathematical logic, North Holland (Amsterdam, 1977).
- [2] J. P. Burgess, Forcing, in [1], 403-452.
- [3] Consistency proofs in model theory: A contribution to Jensenlehre, Annals Math. Logic, 14 (1978), 1—12.
- [4] A. Hajnal—A. Máré, Set mappings, partitions, and chromatic numbers, in H. E. Rose & J. C. Shepherdson, eds., Logic Colloquium '73, North Holland (Amsterdam, 1975).
- [5] I. Juhász, Consistency results in topology, in [1], 503-522.
- [6] R. L. VAUGHT, The Löwenheim—Skolem theorem, in Y. Bar-Hillel, ed., Logic, Methodology, and Philosophy of Science, North Holland (Amsterdam, 1965), 81—89.

DEPARTMENT OF PHILOSOPHY PRINCETON UNIVERSITY 1879 HALL PRINCETON, NEW JERSEY 08540, USA