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On a set-mapping problem of Hajnal and Máté 

J O H N P. BURGESS 

In the course of a wide-ranging survey of combinatorial set theory, A. Hajnal 
and A. Máté prove by a forcing argument the consistency of the following combinat-
orial principle with the Generalized Continuum Hypothesis GCH, and ask whether 
if follows from the Axiom of Constructibility V=L (see [4], Thm. 5.4 and 
Problem 8). 

(HM) There is a function / : {(a, /?, 7): a a > 2 such that for any 
uncountable A Q a>2 there exist in A with /'(a, /?, y)£A. 

(We are using the same standard set-theoretic notation as [4], except that we use 
cox rather than for the ath transfinite cardinal.) We present here a proof that 
V=L implies HM by a metamathematical method which we feel has interest beyond 
this particular problem. 

1. Jensen's Absoluteness Principle. The language L [gx, g2] is just like ordinary 
first order logic, except for the presence of two generalized quantifiers: 

Qxx(p{x) meaning: There exist uncountably many x such that <p(x). 
Q%x(p(x) meaning: There exist at least co2 many x such that <p(x). 

As is explained in some detail in the final paragraphs of [3], R . B . JENSEN'S work 
on model theory establishes the following principle: 

(* ) Let cp be a sentence of L[Q1, Q2], Suppose there is a Boolean-valued 
extension Vm of the universe of set theory in which GCH holds, such that 
in Vs6 it is true that q> has a model. Then already in the constructible universe 
L it is true that <p has a model. 

This principle provides a method for turning a consistency proof for a combin-
atorial principle 1p into a derivation of from V=L. Namely, it suffices to find 
a sentence <p of L\QX, Q2] for which we can prove, using GCH if needs be, that 
cp has a model if and only if \j/ holds. Unfortunately this method does not seem to 
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apply directly to the principle HM. What we will show here is that it applies to 
a certain principle which implies HM. 

2. Quagmires. The principle we have in mind is just a bit complicated. A tree 
is a partial order < ) in which the predecessors of any element are well 
ordered. The order type of the predecessors of t£T is called the rank |r| of t. The 
ath level Ta of the tree is the set of t with \t)=a, and its height the least a with 
r a =0 . For present purposes a Kurepa tree may be defined as a tree of height £ox +1 
in which T has cardinality co2, distinct elements of T^ have distinct sets of pre-
decessors, and Ta is countable for a<cOj. 

A quagmire (T, Q) is a Kurepa tree (T, < ) equipped with a binary 
relation <i and a trinary function Q such that: 

(1) <3 holds only between elements of equal rank, and linearly orders each 
level Tx of the tree. 

(2) Q is defined on those triples ( / , x', x) with and for any such, 
/<2(/> X',X)~=3X. 

(3) (Commutativity) If y"<ix"<x'-=:x, then Q{Q(y", x", x'), x', x) = 
=Q(y", x", x). 

(4) (Coherence) If z '<i/<ue'-=x, then Q{z',y',Q(y',x',x)) = Q(z',x',x). 
(5) (Completeness) If yox£T , then for some cc^^, Q(Pa(y), Pa(x), x)=y. 

Here Px is the projection function which assigns to any t with \t]=a the unique 
with \u\—a. Note that the condition Q(Px(y), Pa(x), x)=y implies Pa(y)<i 

< ^ ( 4 else Q would not be defined on this triple. 
What we are going to show, assuming GCH, is that: 
(A) The existence of a quagmire implies HM. 
(B) There is a sentence of L[QX, g.J which has a model if and only if there 

exists a quagmire. 
(C) There is a Boolean-valued extension V® of the universe of set theory 

in which GCH holds and there exists a quagmire. 

3. Proof of (A). We will show, assuming CH, that //there exists a quagmire (T 
«3, Q), then HM holds. We begin by deriving from these assumptions the following 
combinatorial principle, due to Silver. (For its consequences, cf. [5].) 

(W) There exists a Kurepa tree (T, < ) equipped with a function W defined 
on col5 such that: 
For a r<coi, W(a) is a countable family of subsets of the level Ta. For any 
countable S ^ T a there exists a<ai1 such that for any a 
{P„(x): x£S}iW(fi). 
Indeed, to derive W given CH and a quagmire, note that for each a<et>l5 

the ath level Tx of the quagmire is countable, so its power set can be enumerated 
in an o)i-sequence Xa p for p^co1. For x£ T and a, P<\x\ let S(a, ft, x) be the 
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image {{?(/, P*(x), x): / < P , ( i ) & of the /3th subset of Ta under the 
map Q(-,Px(x),x). For y^o^, let W{y) = {S{a, fi, x): a, & a count-
able family of subsets of T7. 

Now it follows by the Completeness condition in the definition of quagmire 
that any x£T has at most a>1 <3-predecessors. Hence given a countable SQT0)i, 
there must exist an x with y<\ x for all y£ S. Again by Completeness, for each y£ S 
there is then an a(y)<coj with y-Q(Px(y)(y), Px(y)(x), x). Let a=sup {x(y): 
ydS}. By Commutativity, for any a^¿-CCÜJ and y6S, the element y' = Q(PxW(y), 
i . w W . n W ) satisfies / )

l W ( y ) < / < i ,
s ( x ) and y'^Q{y', Pb{x), x) = Q{Px(y){y), 

Px(y)(x), x)=y. Hence y' = Pd(y) and Q(Pó(y), Ps(x), x)=y. 
If now we fix a ft such that {Px{y): y€S}=Xx^ and let y be > a and /3, then 

for any ysá-e®! it is readily verified that y£S}=S(a, p, Ps(x))eW(5), 
which suffices to prove Silver's principle W above. This established, we go on, still 
assuming CH and the existence of a quagmire, to derive the following combinatorial 
principle, due to Hajnal and Máté: 

(HM') There exists a sequence of, functions Hx: a>2-~co2, for a<0^, such 
that for any infinite SQ co2 there exists a v-=a)i such that for any •y=á<co1 

there exists an x£ S with Hs(x)£ S. 
Towards proving this, we first note that we may assume without loss of general-

ity that in our quagmire no level Tx has a o -least element. (Otherwise we can con-
struct a new quagmire with this property by taking: 

T' = a>XT, 

(m, x) (n, y) —• m = n & x < y, 

(m, x)<i'(n, y) —• x<iy or (x = y & m > n), 

Q%m, / ) , (n, x'), („, x)) = (in, Q(y', x', x)), 

i.e. by replacing each element x of the original quagmire by a sequence 
, . . (2,x),( l ,x) , (0,x).) 

This settled, we go on to construct for each a c a ^ a map hx: Tx^*Ta such 
that hx(x)-cix for each x£Tx, and for any infinite S£ W(a) there exists with 
hx(y)£ S. Since W(a) is countable, this can be accomplished by a simple diagonal 
construction in (o stages, whose details are left to the reader. Having the hx, we 
define maps ffa: by Ha(x) = Q(hx(Px(x)), Px(x), x). 

Now for any denumerably infinite S Q T , our arguments above establish 
two things. First, there is an x£T and an cc<a>1 such that for all y£S and 
a § ¿ < 0 ! , Q(Pi(y), Pi(x), x)=y<ix. Second, there is a /?<(«! such that for all 
P^ő^o)!, {Ps(y): y£S}£W(S). If y = max (a,/?), then for any by 
construction there exist;', S with íi6(Ps(y))=:Pö(z). Now by Coherence Hs(y) = 
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= Q(hs{Ps(y)), Ps{y), y)=Q(Pi(z), Ps(y),y) = Q(Pi(z), Ps(x), x)=z, i.e. there is a 
yiS with //aOO€S. 

If we assume, as we may without loss of generality, that T consists precisely 
of the ordinals <<a2> then this is precisely what is required to establish the principle 
H M ' above. Now as HAJNAL and MÁTÉ [4] show that H M ' and the existence of 
a Kurepa tree imply HM, our proof that CH and the existence of a quagmire imply 
HM is complete. 

4 . Proof oí (B) . VAUGHT [6] long ago proved that the existence of a Kurepa 
tree is equivalent to the existence of a model for a certain sentence (p of L[Q1} g2]. 
For completeness we recall his argument here: q> will involve two singulary pre-
dicates T, O, plus two binary predicates < T , < 0 , plus a singulary function symbol 
r, plus a constant w. <p is the conjunction of the sentences (whose precise formaliza-
tion we leave to the reader) expressing: 

(1) partially orders T in such a way that the predecessors of any element 
are linearly ordered. 

(2) < 0 linearly orders O, with last element w. 
(3) r maps T onto O in such a way that for any t£T and u£0, iKQr(t) if and 

only if there exists t'<Tt with u = r(t'). 
(4) QxitO(u) & V«(w-=0»v-~iöi«'(" ,<ow)) 
(5) Q»t(T(t) & /-(0 = ^) & distinct t with r{t) = w have distinct sets of < r -

predecessors. 
(6) V « ( « < 0 w - n 2 ^ ( 7 X 0 & r (*)=«)) 

If (T, < r ) is a Kurepa tree, we get a model of this sentence q> by interpreting O 
as the set of ordinals < 0 as the usual order on this set, w as a a n d r as 
the rank function. Conversely, if (T, < T , O, -=0, w, r) is a model of cp, then using 
(4) above one easily sees that there is a <0-cofinal subset Z of {i/£0: «<„« '} which 
is well ordered by < 0 in order type o^. Then restricting < T to {t£T: r(t) = w or 
r(/)£Z} we get a Kurepa tree. 

To get a formula cp' which has a model if and only if there exists a quagmire, 
simply take new symbols <i and Q and conjoin the above cp with the sentences 
expressing conditions (1)—(5) in the definition of quagmire in § 2 above. 

5. Proof of (C). It remains only to prove, assuming GCH, that some suitable 
set of forcing conditions gives rise to a Boolean-valued extension of the universe 
of set theory in which GCH holds and there exists a quagmire. The proof is so 
similar to the proof of the consistency of HM' in [4] and the proof of the consistency 
of Silver's W in [2], that we leave most details to the reader. 

As our forcing conditions we take the set & of all sixtuples p = (ap, Tp, 
Cp. QP, AP) such that: 
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(0) Tp is a countable subset of cOj. 
(1) (Tp, < p) is a tree of height a p +l<coi-
(2)—(5) in the definition of quagmire in §2 above hold for <ap and Qp. 
(6) Ap maps a subset of co2 onto the apth level of the tree (Tp, <p) , and is 

order preserving in the sense that for in dom Ap, we have Ap(^)<ipAp(t}). 
Note that the requirement that Apbe order preserving means that Ap is completely 
determined by its domain. 

We partially order & by setting p<.q if and only if: 
(7) a p > a , and T p ^ T q and < p , < V Op extend , Qq respectively 

and dom /lpj2dom Aq. 
(8) For all tedom Aq, Aq(®^pAp(0; and for t, in domAq, Qp(At(&, 

AM Ap{t,)) = Ap(0. 
In order to show that & does what it should, we need the following: 

Lemma, (a) 2? is a-closed; i.e. whenever pniSP for n£a> and p„+1<pn for all 
n, then there exists p^SP with p<pn for all n. 

(b) 3? has the co2-chain condition; i.e. no set of pairwise incompatible elements 
of has cardinality a>2. 

(c) For each accoj and [p: a p > a & sup dom / l p >c} is dense in 0>. 

The proof of the easy parts (a) and (c) will be left to the reader. As for part 
(b), let have cardinality co2. Assuming CH, there must exist an A'QA of 
cardinality a>2 and fixed a,T, < , o , and Q such that for all pi A', ap—a, Tp = T, 
<p=<, o p = -ci, Q„ = Q. For assuming CH there are only possibilities for 
these items. 

{dom Ap: pi A'} forms a set of co2 countable subsets of co2. By a well-known 
result of Erdos and Rado (cf. Thm. 2.3 of [4] or Lemma 3.6 of [2]) there exists 
a sequence pv, v<ro2 of elements of A' and a fixed XQa>2 such that for any 
ju<v<ffl2, dom Ap n d o m / l p = X and sup dom Ap <inf (dom/lp —X). 

Let p=pa, q = q0, Y= dom Ap, Z—dom Aq. Note Ap\X=Aq\X. To establish 
part (b) of the Lemma it will suffice to construct an r^SP with r<p and r<q. 
This may be accomplished by taking: 

ar = a+1 , 
Tr-T{J{t4\ ££7UZ} where the ^ are distinct elements of ^ - T , 
< r = t h e extension of < defined so that for r j iY and 

for C€Z, 
< j r =the extension of o defined so that ? „ - < f o r q^C in YUZ, 
Qr = the extension of Q defined so that Qr(Ap(£), Ap(t]), = for in Y, 

and Qr(Aq(0, /1,(0, tc) = t( for in Z, 
yir = the function AR(0 = t( for Q£YUZ. 

Details are left to the reader. 
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With the Lemma established, we let ^?=the complete Boolean algebra of 
regular open subsets of SP. Parts (a) and (b) of the above Lemma and standard 
forcing lemmas (for which see e.g. [2]) imply that, assuming GCH, in the Boolean-
valued extension Vs3 all cardinals are preserved and GCH holds. 

Moreover if G£ V® is a generic subset of 0>, then thep£G can befitted together 
to produce a quagmire. Again details are left to the reader. This completes the 
proof that V=L implies HM. 
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