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Scalar central elements in an algebra 
over a principal ideal domain 

L. O. C H U N G and J IANG L U H 

1. Introduction. Let A be an algebra (not necessarily associative) over a com-
mutative ring R. A is called scalar commutative if, for each л:, y£A, there exists 
af_R depending on x, у such that xy=ayx. RICH [3] proves that if A is scalar com-
mutative and if J? is a field then A is either commutative or anticommutative. Кон, 
LUH, and PUTCHA [1] prove that if A is scalar commutative with 1 and if R is a 
principal ideal domain then A is commutative. Recently, LUH and PUTCHA [2] 
generalized these results by proving that if A is an algebra with 1 over a principal 
ideal domain R such that for each x, y€A there exist a, such that (a, P) = 1 
and axy=fiyx, then Л is commutative. 

In this paper a "local" scalar commutativity will be studied. We shall call 
an element x£A scalar central if for each у в A, there exist a, fi€R depending on 
у such that (a, /?) = 1 and axy=Pyx. We shall prove that if A is an associative 
algebra over a principal ideal domain R and if x£A is scalar central then there 
exists a positive integer n such that x?y=x?~1yx=x?~2yx2 = ...=yx" for all у в A. 
If, in addition, A has 1 then x2y=xyx=yx2. Therefore the results of Rich, Koh, 
Luh and Putcha for associative algebras immediately follow. 

Throughout this paper A will denote an associative algebra over a principal 
ideal domain R, C will denote the center of A, Z + the set of all positive integers 
and N the set of natural numbers. If a,b£A then [a, b]=ab—ba. If a, then 
(a, Д) denotes the greatest common divisor of a and p. If a£A then the order of a, 
denoted by o(a), is the generator of the ideal 7= {<x|a€7?, aa=0} of R. o{a) is 
unique up to associates. 

2. Main results. Throughout this section x will denote a scalar central element 
in A. Let у be an arbitrary element in A. We assume a, P, a1, P^R to be such that 
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(a,/*)=(«!, and 
(1) axy = Pyx, 

(2) axx(x + y) = P1(x + y)x. 
From (1) and (2), we obtain 

(3) (a J - a pjxy = p^-oijx*, 

(4) K j S - a fijyx = «(ft-oc,)x\ 
We begin with 

Lemma 2.1. If (a1 — P1)qxk =0, vt-Zzere k£Z+, a«*/ then 
q[x?y, x*~']=0 /or i=0 , 1, 2, ..., fc-1. 

P roo f . By (2), <x1qxi+1(x+y)xk~i~1=P1qxi(x+y)xk~' which is reduced to 

(5) <x1qxi+1yxk~i+1 = P1qxiy^~i. 

In particular, P\qx?Y=OL\q^Y = [i\qyx?—OL\qyxk. Since , p1) = l, qxky = qyxk. 
Thus, by (5), <x[qxiyx/'~i=pi

1qyxk=pi
1qxky=a.i1qxky, and P[qx'yx*~'=oi[qx*y= 

= P[qxky. Consequently, q (xiyxk ~1 — x* j ) = P[ q (x'yxk — xky) = 0. Since 
(a[, Pi

1) = l,q(xiyxk~i-xky)=0. That is, q[x''y, x*- ' ]=0 as required. 
It is clear that there exists an integer n^3 such that o(x") = o(x"+1). 

Lemma 2.2. Suppose o(x")=pm, where p is a prime element in R and m£Z+. 
Ifplxny — 0 for some /€N, then [x'y, x"~']=0 for i=0, 1, 2, . . . , « - 1 . 

P roof . We proceed by induction on /. Suppose 1=0. Then xn_y=0. By (3) 
and (4), we get 0 = (aip-ap,)xny = p(p1-a1)xn+1 = (aip-xp1)xyx"-1, and 
0 = (aip — af t ) xyx"~1 = a (fi1—cc1)xn+1. Since (a,0)= 1, (P1-a])x"+1 = 0 and 
pml(P1-oc1). So (P1-a1)xn=0. Thus, by Lemma 2.1, [x'y, x n _ i ]=0 for / = 0 , 1 , 
2, ..., n-1. 

Now we assume / > 0 and ^P — P^—p'd, where (p,5)= 1, t£N. 
Suppose / S / . Then, by (3), Q=p'Sxny = P(P1-a1)xn+1=.p'Sxyx", and hence 

by (4), 0=p'5xyxn=a(p1-<x1)xn+1. Since (oc, p) = l,(p1-ot1)x"+1=0. Again by 
Lemma 2.1, [x ' j , x n - ' ] = 0 for i=0 , 1, 2, .. . , n-1. 

Suppose *</. Then, by (3), 0=plSxny=p'-'fii^-ajx"*1. So />"V~7?(f t - a i ) -
By (3), pl-'p,5xyxR-1 = 0 and, by (4), pl-'a(P1-al)xn+1=pl8xyxn-1 = 0. Hence, 
we have / » ' " ' ( f t - a ^ ^ + ^ O and / > " V _ ' ( A - a i ) - Since / o ^ / r K f t - a O and 
P1-a1=p'y, where y£R. Thus, by (3), p'5xny = Pp'yxn+1, i.e. p'x"(5y-Pyx) = 0. 
Since [x'(5y —Pyx), x " _ i ]=0 for /=0, 1, 2, ..., n —1, by the induction hypo-
thesis. This implies that S[x'y, x n _ i ] = 0. On the other hand, since fa-P1)pmxn+1=0, 
pm[x'y,x?-l] =0 for i = 0 , 1 , 2 , ...,n-\, by Lemma 2.1. Since (/>'",<5) = 1, we 
obtain [x'y, y _ i ] = 0 for ¿=0, 1, 2, ..., n— 1. This completes the proof. 
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Lemma 2.3. Suppose o(x") =pm, where p is a prime element in R and m£N. 
Then [xiy,xn~i]=0 for i=0, 1, 2, ..., n-1. 

Proof . Again we let aip — ap1=p'd. Suppose igm. Then, by (3) and (4) 
respectively, we have 

0 = p'Sx"y = J6(j81-a1)x"+1 and 0 = p'dyx" = a(pi^a1)xn+1. 

Since (a,j8) = l, (jS1-a1)x"+ 1=0. By Lemma 2.1, [;t'>, 0 for i= 
= 0, 1,2, . . . , « - 1 . 

Now suppose ton. Then by (3), 0=pmdx"y=pm-'P(P1-oiJ)x"+l. So 
p'Wi^-oiJ. Let P(P1-oc1)=p'y, where y£R. Then, by (3), p'x"(5y-yx)=Q. By 
Lemma 2.2, [x'(6y — yx),xn~i] = 0. So ¿Wy, x"_i] = 0. On the other hand, since 
(*i-Pi)pmxr,+1 = 0, pm[xiy,^'~i]= 0 by Lemma 2.1. Thus, [x'>, 0 since 
(Pm,3) = 1. 

Lemma 2.4. Suppose o(x") =p™rp™-•••P™s, where px,p2, ... ,ps are non-
associate primes in R, and m1} m2, ..., ms£Z+. Then [x'y,x"~'] — 0 for i= 
= 0, 1,2, . . . , « - 1 . 

Proof . Let qj=p^...pji_-1
1pjpi

x...p"s, j-^-,2, ...,s. Then qjX is scalar 
central, o((qjX)n) = o((qjX)n+1), and hence, by Lemma 2.3, q][x'y, x"~l] = 
= [(qjx)'y> = 0 for j — 1, 2, ..., s; i=0, 1, 2, ..., n — 1. Since the q/s are 
relatively prime, we obtain [x'y, x"~']=0 for /=0, 1, 2, ..., n — 1. 

Theorem 2.1. Suppose x£A is scalar central and o(x") = o(x"+1)=0, where-
Hg3. Then x£ C. • 

Proof . Clearly o(x3)=0. By (3), and (4) respectively, we obtain 
(ajjS —a fii)xyx = P(Pl — al)x3 and (ajjS —a P^xyx = ci(P1 — c/.1)xi. 

Hence (p—a)(pi — a1)x3=0. This implies that jS"=a or P1=V-1. In either case,, 
we have xy=yx. Since y is an arbitrary element in A, x£C. 

Theorem 2.2. If x£A is scalar central then there exists n£Z+ such that 
x"y — x"~xyx = xn~2yx2 =...= yx" for all y£A. 

Proof . This is an immediate consequence of Lemma 2.4 and Theorem 2.1.. 

3. Algebras with unity elements. We assume throughout this section that A is-
an algebra with 1 over a principal ideal domain R, and x is a scalar central element-
in A. Let y be an arbitrary element in A and a, fi, a2, P^dR be such that (a, P)= 
= (a2, J?2) = l, 
(1') ' axy — Pyx, 
(2') a2x{\+y) = p2{\+y)x. 
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Then 
(30 (<x2p-<xp2)xy = P(P2-a2)x, 

(4') (a2p-ap2)yx = u(p2-txjx. 

Lemma 3.1. If (a2 — P2)qx=0, where q£R, then qxy—qyx. 

Proof . By (30 and (40, (a 2P-ap 2 )qxy= (a 2 /?-ap 2 )qyx=Q. By (10, 
<x2(p — (x)qxy=p2(j} — <x)qxy=0. Since (a2, ft2)= I, (/?—a)qxy = 0. So Pqxy = 
=aqxy=Pqyx. It follows that P(qxy — qyx) =0. Similarly, a(qxy—qyx) = 0. Thus, 

•qxy=qyx. 
Similarly to the arguments in Section 2 but using identities (10, (20, (30, (40 

instead of (1), (2), (3), (4), we can readily prove the following 

Lemma 3.2. Suppose o(x2) =pm, where p is a prime element in R and miZ+. 
If p'x2y=0 for some /£N, l<m, then x2y=xyx=yx2. 

Lemma 3.3. Suppose o(x2)=pm, where p is a prime element in R and m£Z+. 
Then x2y=xyx=yx2. 

Lemma 3.4. Suppose o(x2)=p™1p%*...p™°, where p1,p2, •••,/?., are non-as-
sociate prime elements in A and mlt m2, ..., ms£Z+. Then x2y = xyx=yx2. 

Theorem 3.1. If x£ A is scalar central and if o(x2)=Q, then xiC. 

Theorem 3.2. If x£A is scalar central then x2y=xyx=yx2 for all yd A. 
We should note that under the hypothesis of Theorem 3.2, one could not ex-

pect x£C. 

Example . Let A = | Jg b, c6Z 2 j be the algebra of all upper triangular 

matrices over the ring Z2 of integers modulo 2. Let x = ^ . Then A has a unity 

•element, x is scalar central, but C. 

4. Some special cases. We noted in passing that in an algebra over a principal 
ideal domain, scalar central elements need not lie in the centre of the algebra. How-
ever, we have the following 

T h e o r e m 4.1. Suppose A is a semi-prime algebra (with or without I) over a 
principal ideal domain R. Then all scalar central elements in A are in the centre C of A. 

Proof . Let x be a scalar central element. By Theorem 2.2, there is a least 
positive integer n such that x"y=x"~1yx=x"~2yx2=... =yx" for all y£A. 
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Suppose и>1. For y€A, let a, P£R be such that (a, P) — l and axy=Pyx . 
Noting that ах2п~2у=Рхг"~2у and a.yx2n~'l = Pyx2n~2, we have for any z£A 
and i=0, 1, 2, ..., n-2, 

oti(xn~1y-xiyxn-i-1)zai(xn-1y-xiyxn-i_1) = 

— a2i(x"-1yzxn-1y-xiyxn-i-1zxn-1y-x"-1yzxiyxn-i-1 + xiyx"-i-1zxiyxn-i-1) = 

= a.2ix2n-2yzy-aipiyxn-1zxn-1y-aipixn-1yzyxn-1+p2iyxn-1zyx"-1 = 

= oL2ix2n~2yzy — aipiyx2"~2zy — aipix2n~2yzy+p2iyx2n~2zy = 0. 

Thus, by the semiprimeness of A, al(xn~ly—x,yxn~'~1)=0. Likewise, 
Pn~i~1(^'-1y—xiyxn~i-1)=0. Since (а',)3"-'-1) = 1, for 
г = 0, 1,2, ...,n-2. So x"-1y = xn-2yx=x"~3yx2 = ...=yxn-1 for all у£A. This 
contradicts the minimality of n. Hence w = l and xy=yx for all у в A. 

Theorem 4.2. Let A be an algebra with 1 over a principal ideal domain R. If 
x and 14-х are both scalar central then x£C. 

Proof . By Theorem 3.2, for any y£A, xyx=x2y and (1 +x)^( l + x ) = ( l +x)2y 
which imply that xy=yx. 

As a corollary we have the following result due to LUH and PUTCHA [2]. 

Coro l l a ry 4.1. Let A be an algebra with 1 over a principal ideal domain R. 
If every element in R is scalar central then A is commutative. 

Remark . To generalize the concept of scalar central element one may call 
an element x£A scalar power central if for each y£A there exist a, P£R and n£Z+, 
depending on y, such that их"у=Pyx" and (oc,P) = l. It would be interesting to 
know whether analogous results remain true. 
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ing discussions. The first named author also would like to acknowledge the support 
by the Engineering Foundation of NCSU. 
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