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Scalar central elements in an algebra
over a principal ideal domain

"L. O. CHUNG and JIANG LUH

1. Introduction. Let 4 be an algebra (not necessarily associative) over a com-
mutative ring R. A is called scalar commutative if, for each x, y€A4, there exists
o€ R depending on x, y such that xy=ayx. RICH [3] proves that if 4 is scalar com-
mutative and if R is a field then A is either commutative or anticommutative. KoH,
LuH, and PutcHA [1] prove that if 4 is scalar commutative with 1 and if Ris a
principal ideal domain then 4 is commutative. Recently, Lun and PUTCHA [2]
generalized these results by proving that if 4 is an algebra with 1 over a principal
ideal domain R such that for each x, y€ A4 there exist «, f€ R such that (x, f)=1
and axy=Pfyx, then 4 is commutative.

In this paper a ‘“local” scalar commutativity will be studied. We shall call
"an element x€4 scalar central if for each y€A, there exist a, f€R depending on
y such that («, f)=1 and axy=pfyx. We shall prove that if 4 is an associative
algebra over a principal ideal domain R and if x€A is scalar central then there
exists a positive integer n such that x"y=x""lypx=x""2yx?=...=yx" for all y€ A.
If, in addition, 4 has 1 then x2y=xyx=yx2 Therefore the results of Rich, Koh,
Luh and Putcha for associative algebras immediately follow.

Throughout this paper 4 will denote an associative algebra over a principal
ideal domain R, C will denote the center of 4, Z* the set of all positive integers
and N the set of natural numbers. If a, b€ A4 then [a, b]=ab—ba. If a, BER then
(2, B) denotes the greatest common divisor of « and . If a€ 4 then the order of a,
denoted by o(a), is the generator of the ideal I={u|x€R, aa=0} of R. o(a) is
unique up to associates.

2. Main results. Throughout this section x will denote a scalar central element
in A. Let y be an arbitrary element in 4. We assume «, f, @;, f;€R to be such that
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(as ﬁ) =(a1: ﬁl): 1 and

() axy = Byx,

@ ax(x+y) = Bi(x+y)x.
From (1) and (2), we obtain

A3) (f—ap)xy = B(fr—a)x?
) (e B—af)yx = a(fy—oy) x>

We begin with

-

Lemma 2.1. If (t;—B,)gx*=0, where keZ*, k=2 and q€R, then
g{x'y, X**~=0 for i=0,1,2,...,k—1.

Proof. By (2), o;qx ™ (x+y)x* " "1=8,gx'(x+y)x*! which is reduced to
Q) oy qx 1 yxk =it = By gt yxcki,

In particular, Bigxty=ofgxty=pqyx*=ckqyx*. Since (u,p)=1, gx*y=gyx*.
Thus, by (5), oigx'yx*"'=pigyx*=Ppig*y=aigxFy, and Bigx'yx*~=algx*y=
=pigx*y. Consequently, o) g(x'yx*"'—x*p)=piq(x'yx*"*—xy)=0.  Since
(o, B)=1, g(x'yx*~'—x*y)=0. Thatis, g[x'y, x*~']=0 as required.

It is clear that there exists an integer n=3 such that o(x")=o(x"*1).

Lemma 2.2. Suppose o(x")=p™, where p is a prime element in R and meZ*.
If p'x"y=0 for some IEN, l<m, then [x'y, x"~']=0 for i=0,1,2,...,n—1. )

Proof. We proceed by induction on /. Suppose /=0. Then x"y=0. By (3)
and (4), we get O=(nf—af)x"y=F(B—a)x""'=(f—af)xyx""", and
0=(o, f—aB) xyx" r=a(By—a) L. Since (¢, f)=1, (B,—a)x"*'=0 and
"By —ay). So (Bi—a)x"=0. Thus, by Lemma 2.1, [x'y, x* =0 for i=0,1,
2, ...,n—1.

Now we assume />0 and o, f—Ba,=p'5, where (p, 6)=1, tEN.

Suppose ¢=/. Then, by (3), 0=p'dx"y=B(B; —o)) X" =p'dxyx", and hence
by (4), O=p'éxyx"=ua(f,—o)x"*1. Since (a, f)=1, (f;—,)x"*1=0. Again by
Lemma 2.1, [xiy, X"~ =0 for i=0,1,2,...,n—1.

Suppose t</. Then, by (3), 0=p'dx"y=p'"*B(B,—a,) x***. So p™|p'~'B(B; — ).
By (3), p'~'p'6xyx"~'=0 and, by (4), p'~a(f;—a)x" 1=p'dxyx"1=0. Hence,
we have p'~'(f;—o)x"*'=0 and p™|p'~'(B,—). Since I<ni, p'|(f;—a,) and
By —a;=p'y, where y€R. Thus, by (3), p'ox"y=Bp'yx"*L, ie. p'x"(dy—Byx)=0.
Since ¢/, [x'(§y —Byx), x"~]=0 for i=0,1,2,...,n—1, by the induction hypo-
thesis. This implies that 6[x’y, x"~{=0. On the other hand, since (x; —f,)p"x"*1=0,
Pmlx'y, x"~1=0 for i=0,1,2,...,n—1, by Lemma 2.1. Since (p™, §)=1, we
obtain [x'y, x»~Y]=0 for i=0, 1,2, ..., n—1. This completes the proof.
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Lemma 2.3. Suppose o(x")=p™, where p is a prime element in R and meN.
Then [x'y, x"~1=0 for i=0,1,2,...,n—1.

Proof. Again we let o f—af,=p's. Suppose r=m. Then, by (3) and (4)

respectively, we have

0=p'6x"y = B(B;—a)x"*t and 0= p'Syx" = a(B—oy)x" L.
Since (a, f)=1, (B;—op)x"**=0. By Lemma 2.1, [x'y,x"" =0 for i=
=0,1,2,...,n—1.

Now suppose t<m. Then by (3), O=p™éx"y=p"'B(B,—a)x"**. So
P'|B(By—a). Let B(B;—ay)=p'y, where y€R. Then, by (3), p'x"(0y—yx)=0. By
Lemma 2.2, [x'(dy—yx), x" ]=0. So d[x'y, x"~]=0. On the other hand, since
(0, —B)p"x"+t1=0, p™[x'y, x* ]=0 by Lemma 2.1. Thus, [x’y, x*~]=0 since
(", 9)=1 ‘

Lemma 24. Suppose o(x")=plipy:...pYs, where pi,p.,...,ps are non-
associate primes in R, and my,m,, ...,mEZ*. Then [x'y,x"~'1=0 for i=
=0,1,2,...,n—1.

Proof. Let g;=pi...p7s3p7iy...pfs, j=1,2,...,5. Then g¢;x is scalar
central, o((g;%)")=o0((g;x)"*"), and hence, by Lemma 2.3, gj[x'y, x" =
=[(g;%)'y, (¢;x)""1=0 for j=1,2,...,s; i=0,1,2,...,n—1. Since the g;’s are
relatively prime, we obtain [x'y, x"~]=0 for i=0,1,2,...,n—1.

Theorem 2.1. Suppose x€A is scalar central and o(x")=0(x"*Y)=0, where
n=3. Then x€C. .

Proof. Clearly o(x®)=0. By (3), and (4) respectively, we obtain
(p—aB)xyx = B(By—a)x® and (o f—afy)xyx = a(fy—a)x>.
Hence (f—a)(fy—oy)x3=0. This implies that f=a or f,=o,. In either case,
we have xy=yx. Since y is an arbitrary element in 4, x€C.
Theorem 2.2. If x€ A is scalar central then there exists n€ L™ such that
xty=x""lyx =x""2yx2=...=yx" for all ycA.
Proof. This is an immediate consequence ‘of Lemma 2.4 and Theorem 2.1..
3. Algebras with unity elements. We assume throughout this section that A4 is.

an algebra with 1 over a principal ideal domain R, and x is a scalar central element.
in 4. Let y be an arbitrary element in 4 and «, 8, &, f,€ R be such that (e, f)=
=(xg, B2)=1,

1) ’ axy = Byx,

@) % x(1+y) = B (1+y)x.
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Then
3) (2B —af)xy = B(B—ar)x,
) (a2 B—apfp) yx = a(Br—ap) x.

Lemma 3.1. If (ay—B,)qx=0, where g€ R, then qxy=gqyx.

Proof. By (3) and (4), (azf—aB)gxy=(xzf—aBr)qyx=0. By (1),
%(B—a)gxy=P,(B—a)gxy=0. Since (%, fz)=1, (B—a)qxy=0. So fgxy=
=agxy=PBqyx. It follows that B(gxy —qyx)=0. Similarly, a(gxy —gyx)=0. Thus,
qxXy =qyx. :

Similarly to the arguments in Section 2 but using identities (1), (2), (3"), (4")
instead of (1), (2), (3), (4), we can readily prove the following

Lemma 3.2. Suppose o(x®)=p™, where p is a prime element in R and mcZ*.
If p'x2y=0 for some IEN, I<m, then x2y=xyx=yx>

Lemma 3.3. Suppose o(x*)=p™, where p is a prime element in R and meZ*.
Then x*y=xyx=yx2.

Lemma 3.4. Suppose o(x®)=pyrpye...pTs, where py,PDs, ..., ps are non-as-
sociate prime elements in A and my, ms, ..., m€Z*. Then x:y=xyx=yx2.

Theorem 3.1. If x€ A is scalar central and if 0(x?)=0, then x€C. '

Theorem 3.2. If x€ A is scalar central then x*y=xyx=yx2 for all yc A.
We should note that under the hypothesis of Theorem 3.2, one could not €x-
pect x€C.

Example. Let A={[a b]
0o c

a, b, cEZz} be the algebra of all upper triangular

matrices over the ring Z, of integers modulo 2. Let x=[g (1)] . Then A has a unity
-clement, x is scalar central, but x¢ C. '
4. Some special cases. We noted in passing that in an algebra over a principal

ideal domain, scalar central elements need not lie in the centre of the algebra. How-
-ever, we have the following

Theorem 4.1. Suppose A is a semi-prime algebra (with or without 1) over a
principal ideal domain R. Then all scalar central elements in A are in the centre C of A.

Proof. Let x be a scalar central element. By Theorem 2.2, there is a least
positive integer n such that x"y=x""lyx=x""2yx2=...=yx" for all yc 4.
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Suppose n=1. For y€Ad, let a, B€ R be such that (o, f)=1 and axy=Pyx.
Noting that ax®2p=Bx*"2y and oayx®* " 2=fpx*~2 we have for any z€4
and i=0,1,2,...,n—2,

2 ("t y —xF yxt =Y zai (01 y — X pxnmiol) =
— a2i(xn—1yzxn—ly_xiyxn—i—1an—ly_xn—lyzxiyxn—i—l_l_xiyxn—i—lzxiyxn-i—l) —
— a2ix2n—2yzy_aiﬁiyxn—lan—ly_aiﬂixn—lyzyxn—l+32iyxn—lzyxll—1 :

— a2ix21l—2yzy_aiﬁiyx%—2Zy_aiﬂix2n—2yzy+ﬂ2iyx2n—2zy — O.
Thus, by the semiprimeness of A4, o'(X" ly—x'yx""""1)=0. Likewise,
By —xTyx" =0, Since (o}, BN =1, x"ly—xiyx"~i"1=0 for
i=0,1,2,...,n=2. So X" ly=x""tyx=x""3yx®=..=yx""' for all yeA4. This
contradicts the minimality of n. Hence =1 and xy=yx for all y€4.

Theorem 4.2. Let A be an algebra with 1 over a principal ideal domain R. If
x and 14-x are both scalar central then x€C.

Proof. By Theorem 3.2, for any y€4, xpx=x2y and (1+x)y(1+x)=(1+x)?2y
which imply that xy=yx. :
As a corollary we have the following result due to Lur and PuTcCHA [2].

Corollary 4.1. Let A be an algebra with 1 over a principal ideal domain R.
If every element in R is scalar central then A is commutative.

Remark. To generalize the concept of scalar central element one may call
an element x€ 4 scalar power central if for each y€ A4 there exist a, BER and ncZ™,
depending on y, such that ax’y=pyx" and (a, f)=1. It would be interesting to
know whether analogous results remain true.
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