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On the concentration of distribution of additive functions 

P. ERDOS and I. KATAI 

1. VVe say that g(n) is additive if g(mn)=g(m)+g(n) holds for every coprime 
pairs m, n of positive integers. If, moreover, g(pa)=g(p)a for every prime power 
p", then g(n) is called strongly additive. By p,p1;p2, ..., q, q2, ... we denote 
prime numbers, c, cx, c2, ... are suitable positive constants. P(n) and x(n) denote 
the largest and the smallest prime factor of n. The symbol <sc is used instead of 
0 ; # { } is the counting function of the set indicated in brackets {.}. For a distri-
bution function H(x) let (pH{T) denote its characteristic function. Let 

Q(h) = QH{h) = sup (H(x + h)-H(x)) 

be the continuity module — concentration — of H. We say that H satisfies a Lip-
schitz condition if Q(h)«h as /2— 0. 

We assume that g(n) is strongly additive and that 

/1 n ^ s2(p) , (1.1) 2 — 7 — 
p P 

The theorem of Erdos—Wintner [1] guarantees that the function g(n)—A„, 
where 

(1.3) A„= 
p-^n P 

has a limit distribution, i.e. the relation 

(1.4) J V | g ( n ) - / i „ < x } ~ F ( x ) 

holds at every continuity point of F(x), where F(x) is a distribution function. If, 
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moreover, Zg(p)lp converges, then the values g(n) have a limit distribution too, i.e. 

(1.5) I # { N S J V | G ( N ) < X } - ~ G ( X ) , 

at every continuity point of the distribution function G(x). 
We have the relations 

(1.6) M r ) = I I ( ( l e - ^ + l ^ H ) ^ ) , 

( 1 eirg(p)\ 

P
 v P P ' 

From these forms we can see that both F and G can be represented as the distribu-
tion of the sum of infinitely many mutually independent random variables having 
purely discrete distributions. By the well-known theorem of P. LEVY [2] G and F 
are continuous if 
(1.8) 2 l / p = ~ , where Zg - {p\g(p) * 0}. 

Pi zg 

Furthermore, assuming the validity of (1.3) we have that F and G are of pure type, 
either absolutely continuous or singular (see E . LUKÁCS [3]). To decide the question 
if a distribution function were absolutely continuous or singular seems to be quite 
difficult. The first result upon this has been achieved by P. ERDŐS [4]; namely it 
was proved that if g(p)=0(p~s), ö being any positive constant, then G(x) is 
singular. Recently JOGESH BABU [5] has proved that G(x) is absolutely continuous 
if g(n) is generated by #(/>)=(logp)~a (0<a<2) . The main idea of the proof is 
that cpG(T) is square-integrable in (-<»,<»), and so by using Plancherel's theory 
of Fourier integrals it must have an inverse in L2(—°°, that is the density func-
tion of G(x). 

It is known that a distribution function H satisfies Lipschitz condition if \(pH(f)\ 
is integrable in ( — « . , a n d so it is absolutely continuous. The method of Jogesh 
Babu gives that G satisfies Lipschitz condition if g(p)=(logp)~a ( 0 < a < 1). 

The aim of this paper is to investigate the singularity or absolute continuouity 
of distribution functions for some classes of additive functions. 

We shall prove the following theorems. 

T h e o r e m 1. Let g(ri) be a strongly additive function, 

(1.9) D ( Y ) = 2 ^ , 

and suppose that the inequalities 
(1.10) D(f*) < l / t , 

(1.11) [g(Pi)-gO>2)| > l/t if 
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hold, with suitable positive constants A and 3, for every large t. Then 

(1.12) (log t ) - 1 « e G ( i / o « ( l o g o - 1 

where the constants involved by <s may depend on g. 

This result was achieved by TJAN [7] and P. ERDOS [8] for log ^ ^ , and for 

log — —, resp. n 

Theorem 2. Let g(n) be strongly additive satisfying (1.1). Then for the con-
centration Q(ti) of F(x) or G(x) (if it exists) we have 

(1-13) Q(*DR) S J ^ ( ^ 2 ) , 

c being an absolute positive constant, and 

0.149 
Remarks. 

1) This assertion is non-trivial only if Z^log-R—0 since QH{l/t)»\/t 
(/—oo) for every H(x). 

2) If g(p)=(logp)-1 ' ( y ^ l constant), then ^ = ( 1 + 0 ( 1 ) ) ^ — ^ and so 
\2 y 

Qom»-¿7-

Theorem 3. If the strongly additive g(n) is generated by g(p)=(logp)~y, then 

(1.15) A - < < Q G m < J } 2 M ^ t r 

if while for y=\ 

Remarks. 
1) We guess that CgO/O^-^"^ for y > l but we are unable to prove it. 
2) We also guess that G(x) is singular if p)~y, This seems 

not to be known even if g{p)=i)ogp)~~y. 
3) By our method we could estimate the concentration for other functions if g(p) 

is monotonic. The following assertion holds. Let f(w)>0 to monotonically 
decreasing in (1,°°), g(p)—t(p) for primes p. Let y(z), z(t) be defined by the 
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v(T)1/4 

relations — ; t(z(t))=1/t. Suppose that for large r, ^ ( t ) < t c , 

z( i)>e t l +° (e>0 constant), and that the integral 
COSTt(u) , 

/ — i — — d u 
y f r ) M l ° g " 

is bounded as x— <». Then QF{h)<ss:\jh. These conditions hold if g(p) decreases 
regularly and 

^ g2(p) , • y g(p) 
2J =oo> 2i =°°-P p 

Theorem 4. There exists a monotonically decreasing function t(u) satisfying 
the conditions 

v t(p) v t2(p) 2, = Zj 00 5 
p p 

for which the distribution function F(x) of the strongly additive g(n) defined by g{p) = 
' = t ( f ) is singular. 

2. Proof of Theorems 2 and 4. We shall prove Theorem 2 for F(x) only. The 
proof is almost the same for G(x). 

F(x) can be represented as the distribution function of 61; dR= 2 £P,> where 
p> R 

¿_p are mutually independent random variables with the distribution 

P (i, = g(p) [l - } ) ) = j , P(tP = ~g(p)/p) = l ~ j , 

for the mean value M6R and variance D9R we have M0R =0, DQR=DR. Con-
sequently, by the Chebyshev inequality, 

So by 

d= 2*® 
pSR P 

we have 

F(-d + ADR)-F(-d-ADR) S f ( i p = (\fp S ^ ADj\ 

By putting A—2 our assertion follows immediately. 
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To prove Theorem 4 we define our g(p) as follows. Let i?i = l, Rl+1 be defined 

by i?,=logloglogloglogi?,+ 1 > A,=exp (exp (exp R,)), g(p)=j^ if p£[R,,R,+J. 

Then 

P>R, P P>R, P AL 

Let m run over the square-free integers all prime factor of which is less than R. 
By Theorem 2, for fixed m. the number of integers n with 

n — mv ^ N, x(m) ^ R,, g(v)-(AN-AR)e[-^~, ^-J 

is greater than a constant time of • 

m pt?Rl\ p) 
Summing up for m we have 

# {n = mv^N\g(n)eU [,?(m)-ARlg(m)-ARl+£]} 

»N п (I-Vp) 2 

So the intervals 

U \g(m)-AR,~, g(m)-ARl+jJ 

cover a positive percentage of integers. The whole length of these intervals is less 
than c2"(J?')/A,. This quantity tends to zero as /—oo. By this the theorem is proved. 

3. Lemmas. Let £f(A) be an arbitrary set of distinct square free integers m 
having the following properties: 

(1) A ^ x(m), 
TYI M 

(2) if Pil«!, p2\m2, m1?±m2€&'(A), then — . 
Pi Pi 

Let Q(n) be a multiplicative function such that O^Q(p)S1 + О ( l / p s ) (¿=-0 con-
stant). Moreover, let 

(3.1) T(A)= 2 
ш£УМ m 

Lemma 1. For A we have 

Cj being an absolute constant. 



300 P. Erdős, I. Kátai 

Proof . We split the elements of Sf{A) according to P(m)£[A2", A2"*1). Let 
Th(A) denote the part of the sum (3.1) corresponding to this interval. From (2) 
we have 

where the sum extends over the square free n with A ^x(n)<P(n)^A2"*\ So 

e(m) ^ „ , e ^ ) ^ < i o g ^ " + 1 

n f i + — V m p J 

Using this inequality for every /isO we have (3.2). 

Remark . Since T(l)^l+T(2), therefore by Lemma 1, T(l) is bounded. 
We shall use the following Esseen type inequality due to A. S. FAINLEIB [6] 

which we quote as 

Lemma 2. For an arbitrary distribution function H(x) we have 

(3.3) QH(h)^C s u p | f'\cpH(z)\ dr. 
tsllh t X 

Lemma 3. Let y>0 be fixed, 

(3.4) S = 2 C 0 S T ( l 0 g ^ 
P 

Then S is bounded as T ->-=>. 

Proof . First of all we shall prove that 

COST ( log n)~y 

E = 2 
Tiosnse^v n log n 

is bounded as T . Indeed, 

E _ /• COST ( l o g u)-y ^ 1 ( 
J0 u l o g U tio^„ n l o g n I tioS„ n log n v(log n)' (log (n +l))' 

T10(logT)1+5' • 

To estimate the integral we substitute y=z/(\ogu)y, and we get immediately 
that 

E T COST (log U)-? , 1 r/(101ogr)v c o s 
/ , —du = — / — Yj -dy = 0 ( 1 ) . 

J "log u y J y1" ^ 

So it is enough to prove that S—£'=0(1) as T— 
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Let T 1 0 S L M ^ E Z L H ; N^M+JN31* 0 = 0, 1, ...,[M1/4]), N=M3,I, + 

and consider the quantity 

S(N1,NJ= 2 C Q S T ( l o g p ) " y - 2 c ° S T î l o ë w ) y . 
iVjSp^ATj p N^n-^Nz n\Ogn 

To estimate it we use the prime number theorem for short intervals in the form 

(3.5) ANl(u) = j t y l ( n j - 1 ) « ( i ^ T o ( N ^ u * N2). 

Since 

1 L _ = _ f l o g * + l
 d x ^ 2(n-N,) 

N1logN1 n log n J^ x2 (log x)- ~~ yVflogA^ 

for N ^ n ^ z N n , therefore 
(3.6) s(Nl,N2)« , 2 W + l + M , 

N1 log N1 

where 

L(N1,N2)= 2 (A(N)-1)COST ( log 

By using partial summation, 

L(NLT N2) = ANI(N2.) cos x (log A g - + ^ , N i ( n ) ( C 0 S _ I _ _ c o s ^ I ^ ) . 

Hence, by (3.6) we get 

L(iVl' ^ (i^kr il + X ICOS(ïôg^y ~C 0 S(log(w + 1))?I) • 

Since t/(log n)Y is monotonie and cosine satisfies Lipschitz condition, the last sum 
is majorated by 

T T 

log N± log N2 ' 
Consequently, 

2 I S ( N 1 , N 2 ) ^ 2 — + TT2 + N 77ÛÏ + 

0 M S P S 2 M P 2 M 2 ( log M ) 1 1 

M ~ 1 ! I ( T 
p I _ l 

' Uog M log 2 M J (log M)10 Uog M log 2M J 

By putting M = 2 V ° , H=0, 1,2, ..., up to M^E*1/Y we have S-E=0(L). 
By this Lemma 3 has been proved. 

4. Proof of Theorem 3. Let 

<P(R) = Il[l+-p v 
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be the characteristic function of the limit distribution of g(n) defined by g(p) = 
=(logp)~y. First we observe that 

e i t ( log p ) - v _ 1 
(4.1) log l<pC0| = Re 2 +0(1). 

P S / V P 
Lemma 3 and the relation 

2 - = log log y+0(l) 
PSy P 

gives that 
1 piz(.logp)-y 

(4.2) log |cp(T>| ^ logr + 0 ( l ) + R e 2 • 
7 PS t" P 

Consequently, J for y < l . Let y s l . From (4.2) we have 

(4.3) ° |<P(T)|«T-^|<KT)|, 
where 

(pitdog p)-y \ 

1+ , i = 2R. P ' 

Let ip (T) = ij/1 (T) • ij/2 (T), where 

•Ai= n , <1*2= n • pS(logR)4 (logi?)4«=pS.R1/1! 

So we have 
2 R , 

(4.5) f \(p(x)\dz«-m{B1(R) + B2(<R)), 
R 

where 
2R 

(4.6) Bj(R)= f # , . ( r ) | ^ r 0 - 1 , 2 ) . 

First we estimate B2(R). We have 
gi t g(m) 

M r ) = 1+2- m 

where the summation is extended for the square-free m's satisfying (log/?)4S 
We have 

jB2(.R)« J i - l - Z - m i n i ^ r - r ^ T l + minf/ t , . 1 ) , m \ \g(m)\J ¿imn \ |g(m)-g(n) | ) 

n runs over the same set as m. 
Let 

(4.7) K(l/R) = s u p 2 ! /» ' • 

Let x be fixed. We observe that the set of m's standing in the right hand side satisfies 
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the conditions of Lemma 1 with A= (log R f , g = l . Indeed, if \g(m^) — g(m2)\^l/R, 
pjm1, p2/m2, then 

g ( 7 7 ) f e l l - = 
- 1 / Ä > 0 , 

< Pi > V Pi • 
1 1 

(log ft)7 (log p2y 

'-. So we ha 
Pi P2 

K ( l / * ) « l 0 g l ° g * 

m, m2 and so — — . So we have 

(log*)4 " 

Furthermore, the contribution of the pairs m, n for which \g(m)—g(ri)\^R2 is 
majorated by 

Consequently 

(4.8) 2 7 x r { ' 2 + 

+ 2 T^ri ' 2 Hm)«R. 
lg(m)l( 

Since №i( t ) | s 77 (1 +l /p)« loglog/? , therefore ^ ( ^ « ( l o g l o g R)2R. So 
pS(logR)4 

we have 
2 R 

f i/r <s= J?1-1^ (log log /?)2. 
R 

Applying this inequality for R = T\2h (/¡=1,2,. . .) we get 

(loglogTT i f , 
T „ I y l / y ' " ' 

Y f \<P(r)\dT TJ ( loglogT)2 logT 1 j— , it 7 = 1 . 

. From Lemma 2 our theorem immediately follows. 

5. Proof of Theorem 1. First we prove the second inequality in (1.12). Let 

g(n; y)= 2 s(p)-
p\n,psy 

Since from (1.10) 
N 
t2 2 \g(n- t2A)\^ ND(t2A)^ .. 
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we have 

(5.1) \g(n; 

For a natural number n let e(n) denote the product of those prime factors 
of n that are less than t2A; let f(n)=n/e(n). From (5.1) we get that with the ex-
ception of at most N/t integers if n^N and £(/!)€[*, x+l/t], then g{e(n))£[x—l/t, 
x+l/t]. Let x and t be fixed, and al^a2<...<aR be the sequence of those square-
free integers all prime divisors of which is less than t2A and g(aj)£[x— \/t, x+l/t], 
Let E(aj) be the number of those n^N for which aj\e(n) and (cij, e(n)) = aj holds. 
By using the Eratosthenian sieve we have 

(5.2) E(aJ* 1 + 0 ( 1 ) n f l - M X 
Oj P ) 

where g(m)= 77 , . • Since 77 (1 - 1/p) « (log t)~\ 
p\m i — l/P p^tA 

we have 

(5.3) • 2 , ( 1 / 0 « 1 + 1 sup 2 

t lOg t * g(aj)iU-l/l, x + l/t] a j 

It has only remained to prove that 
(5.4) " Ux,,= 2 - ^ - « 1 

9(oj)€U,Jt + l/(] a j 

uniformly for x€(—o°, as 
We write every aj as mv where P(m)<ts, x(v)^t>, or i> = l. So 

V V lg(m)£lx-g(v),x + l/t-g(v)] m ) 

The set of w's satisfies the conditions of Lemma 1 (see (1.11)) so the inner 
sum is bounded, and we have 

u x „ < < 7 7 
( F S P S I " V p J 

We shall prove that 

G(\lt)-G(-l/t)^j^j ( i - o o ) , 

and by this the proof will be finished. 
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Let P= JJ p. It is obvious that 
P < TCI 

(5.5) 2' 1=((1+*(1))2V ÏÏ (AT—), 
rSAf,(n,f)=l p<l'i Cx10gf 

c2 is an absolute constant. Furthermore, 

nsN,(n,P)=l qm^N,(.m,P) = 1 pStcl V pt q-*-t<=i 1 

By choosing q = 2 A , from (1.9) we have 

2 i s * 2 
nsN,(n,P)=l n&N,(.n,P)=l p\P V pf P tlOgr 

This and (5.5) gives that 

KIJ ' ' 2 A log T flog* logi 

By this the proof of our theorem is finished. 
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