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On the concentration of distribution of additive functions

P. ERDOS and L. KATAI

1. We say that g(n) is additive if g(mn)=g(m)+g(n) holds for every coprime
pairs m, n of positive integers. If, moreover, g(p*)=g(p)* for every prime power
p% then g(n) is called strongly additive. By p,py,ps, ..., 4.1, ¢qs, ... we denote
prime numbers, ¢, ¢;, ¢, ... are suitable positive constants. P(n) and () denote
the largest and the smallest prime factor of n. The symbol << is used instead of
0; % { }is the counting function of the set indicated in brackets {.}. For a distri-
bution function H(x) let ¢,(7) denote its characteristic function. Let

Q(h) = Qu(h) = sup (H(x + h)— H(x))

be the continuity module — concentration — of H. We say that H satisfies a Lip-
schitz condition if Q(h)<h as h—0.
We assume that g(n) is strongly additive and that

an g _
(LD ? IR

The theorem of Erd6s—Wintner [1] guarantees that the function g(n)—A4,,
where

a3 4= 350

p<n P
bas a limit distribution, i.e. the relation
1
(L4 N#{né Nlg(n)—A, < x} — F(x)

holds at every continuity point of F(x), where F(x) is a distribution function. If,
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moreover, Xg(p)/p converges, then the values g(n) have a limit distribution too, i.e.

(1.5) %#{néng(n)< x} - G(x),

at every continuity point of the distribution function G(x).
We have the relations

1 '—it?@- 1 i; l—l a(p)
(16) ww=gﬂu7y ”+;e(J }
1 e
&) %m=gﬁ—;+p ).

From these forms we can see that both Fand G can be represented as the distribu-
tion of the sum of infinitely many mutually independent random variables having
purely discrete distributions. By the well-known theorem of P. LEvy [2] G and F
are continuous if '

(1.8) B 2 l/p=q, where Z, = {plg(p) # 0}.

r€Z,

Furthermore, assuming the validity of (1.3) we have that F and G are of pure type,
either absolutely continuous or singular (see E. LukAcs [3]). To decide the question
if a distribution function were absolutely continuous or singular seems to be quite
difficult. The first result upon this has been achieved by P. ErRDOs [4]; namely it
was proved that if g(p)=0(p~?%),5 being any positive constant, then G(x) is
singular. Recently JoGesH BABU [5] has proved that G(x) is absolutely continuous
if g(n) is generated by g(p)=(logp)~® (0<a<2). The main idea of the proof is
that ¢;(7) is square-integrable in ( —oo, ), and so by using Plancherel’s theory
of Fourier integrals it must have an inverse in L2(—ee, o) that is the density func-
tion of G(x).

It is known that a distribution function H satisfies Lipschitz condition if ¢y (7)|
is integrable in (—ee, o), and so it is absolutely continuous. The method of Jogesh
Babu gives that G satisfies Lipschitz condition if g(p)=(ogp)~® (0<a<1).

The aim of this paper is to investigate the singularity or absolute continuouity
of distribution functions for some classes of additive functions.

We shall prove the following theorems.

Theorem 1. Let g(n) be a strongly additive function,

(1.9 b= 3 @l
p>y P
and suppose that the inequalities

(1.10) D(t4) < 1/t,
(1.11) g(p)—g@)| =1/t if py=p, <1’

[}
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hold, with suitable positive constants A and 6, for every large t. Then

(1.12) (log ) ' < Qg(1/t) < (logt)=* (¢ —<o),

where the constants involved by < may depend on g.
This result was aéhieized by TiaN [7] and P. ErDOGs [8] for log <pfzn) , and for
a(n)

log l resp.

Theorem 2. Let g(n) be strongly additive satisfying (1.1). Then for the con-
centration Q(h) of F(x) or G(x) (if it exists) we have

4

(1.13) © Q@Dy) = TogR (Rz=2),
¢ being an absolute positive constant, and
2 1/2
(1.14) .= (> £2J".
p>R P

Remarks.
1) This assertion is non-trivial only if Dglog R~0 (R-<), since Qg(l/t)=1/t
(t—><=) for every H(x).

- 2)If g(p)=(ogp)~? (y=1 constant), then DR=(1+0(1))M and so

. 2y
‘ Qc(l/f)>>7m-

Theorem 3. If the strongly additive g(n) is generated by g(p)=(logp)~?, then

1 loglog t)?
(1.15) 71,7<<QG(1/z)<<(_gtlT%l
if y=1, while for y=1
log t)?
(1.16) —1-<<QG(1/t)<<(lﬁ%llLy-.
Remarks. v

1) We guess that QG(I/t)<<—t1% for y>1 but we are unable to prove it.

2) We also guess that G(x) is singular if 0=g(p)=(logp)~’, y>2. This seems
not to be known even if g(p)=(logp)~".

3) By our method we could estimate the concentration for other functions if g(p)
is monotonic. The following assertion holds. Let #(x)=0 to monotonically
decreasing in (1, =), g(p)=t(p) for primes p. Let y(7), z(zr) be defined by the
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y(7)'*
T

relations 7(y(1))= ; t(z(r))=1/r. Suppose that for large 7, y(1)<1",

z(t)>e" " (¢=0 constant), and that the integral
= cos 1t (u)

oy Y log u

is bounded as t-e. Then Qp(h)<1/h. These conditions hold if g(p) decreases

regularly and

20 __ 580 _
25 T 25

Theorem 4. There exists a monotonically decreasing function t(u) satisfying
the conditions

1) _
Z’P

E b

*(p)
—_— <
2 p
for which the distribution function F(x) of the strongly additive g(n) defined by g(p)=
. =t(p) is singular.

2. Proof of Theorems 2 and 4. We shall prove Theorem 2 for F(x) only. The
proof is almost the same for G(x).
F(x) can be represented as the distribution function of 8; 0,= 3 &,, where
. 4 p>R

£, are mutually independent random variables with the distribution

1 1 1

for the mean value M0y and variance DOy we have MOr=0, D=Dg. Con-
sequently, by the Chebyshev inequality,

P(l0g] < ADg) = 1 ——.
So by

we have

F(—d+ ADg)— F(—d— ADg) = P(«:,_ ~80) (yp < R APl = ADR)]

= (1——] [T A=1p)>(1~1]a) - (R=D).

R

By putting A=2 our assertion. follows immediately.
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To proﬁe Theorem 4 we define our g(p) as follows. Let 'R1= 1, R,,, be defined

1 .
by R=logloglogloglog Ry, A,=exp (exp (exp Ry)), g(P)=5 if pE[R, Rip).
Then

. . ,..
> g(p) =, g_(P)<<—}—10glong+1 <

) -
p>R, P p>R, P h M

Let m run over the square-free integers all prime factor of which is less than R.
By Theorem 2, for fixed m.the number of integers »n with

' ‘ c ‘¢
nemo = N, w(m) = Ry 80)—(v—4)€[ -1 1]

is greater than a constant time of -
2 (-2)

m P<R; p
Summing up for m we have

#{n =my= ng(n)ELmJ [g(m)—AR,—%, g(m)—AR,+%]}

>N [ A-1/p) > %»N.

p<R, P(my=R,
So the intervals

Uetm—da—. gom-dnrg|

cover a positive percentage of integers. The whole length of these intervals is less
than ¢2™®)/J,. This quantity tends to zero as /—~co. By this the theorem is proved.

3. Lemmas. Let #(4) be an arbitrary set of distinct square free integers m
having the following properties:

(1) A =x(m),
. : m; my
Q) if pilmy, palmy, my=my€ F(A), then —z=—.
P P
Let o(n) be a multiplicative function such that 0=po(p)=1+0(1/p%) (§>0 con-

stant). Moreover, let

(1) = 3 20
meF(a) M
Lemma 1. For 2=A we have
c
2 =__ 1
62 )  TW=g

¢, being an absolute constant.

2
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Proof. We split the elements of % (4) according to P(m)c[4", A***"). Let
T,(A) denote the part of the sum (3.1) corresponding to this interval. From (2)
we have '

Th(A)éjlyTz%ﬂ

where the sum extends over the square free n with A=x(n)<P(n)=A4>"". So

o(m) o(p)y _ log A**
Z—m (1+ ]<< Togd "

» A<pSA5h+
Using this inequality for every A=0 we have (3.2).

Remark. Since T()=1+T(2), therefore by Lemma 1, 7(1) is bounded.
We shall use the following Esseen type inequality due to A. S. FAINLEIB [6]
which we quote as

Lemma 2. For an arbitrary distribution function H(x) we have .

1/ ‘
(33) Qu()=Csup — [ loy(D)| dr.
: t=1h L §
Lemma 3. Let y=0 be fixed,

(3.4) | s= 5 costlogp™

110<p<e-:1/7 p
" Then S is bounded as t—<o.
Proof. First of all we shall prove that .

E= 3

W=p=<er

cos 7 (logn)~7
1y nlogn

is bounded as 7-<-. Indeed,

1y —y
cos 7 (log u) du
30 ulogu

E—

TR BAE
atz, nlogn\(logn)”  (log (n+1))

A T

To estimate the integral we substitute y=t/(logu)?, and we get 1mmed1ately
that

e' 1 1/(10log )Y

Y
" cost (Iog u)~ - . coily dy = 0(1).
b " ulogu Yo y .

So it is enough to prove that S—E=0(1) as t—e.
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Let t=M=¢""; Ny=M+jN* (j=0,1,...,[M™]), N=M?" N,=N,+N,
and consider the quantity -

S(Ny, N,) = 2

Ny=p<N,. D Nysn<N, nlogn

cost(logp)~? _ cos 7 (log n)"y ,

To estimate it we use the prime number theorem for short intervals in the form

(3.5) Ay, () = "=Z' (4 (n) 1) << 1)10 (Ni=u=N,).
Since .
1 1 Y Jogx+1 2(n—N,)
- = — f sdx = —3
N;logN, nlogn 4 x2(log x)~ Nilog NV,

for N;=n=N,, therefore

' | . o 'L(Nl’ N2)|
3.6 S(Ny, Np) < 1/p? +—,
(3.6) (N1, N) Nlé%; N, /p*+ N2 N, log N,

where

L(N,, N,) = Z’ (A(m)— l)cos 7 (logn)~7.

By using partial summation, -

-1
T
L(Ny, Ny) = Ay, (Ny) cos T (log Ny)~ 7+ 2' Ay, (n) (cos oz n)AV —

n=N, 1

0s t ] .
(log(n+1)y
T T A J
(logn)’ cos (log (n+1))1)"

Since t/(log n)” is monotonic and cosine satisfies Lipschitz condition, the last sum
is majorated by

Hence, by (3.6) we get

Ny—1
L(N,, N,) << )10 [ 2>

n=N,

COosS

_r T
logN, logh,’
Consequently,
- 1 M3RppL/e 1
A ol ey ) Ly

+ M- ( T T ]
(logM)°\log M~ log2M )}’
By putting M=2"¢1°, h=0,1,2, ..., upto M=e""” we have S—E=0(1).
By this Lemma 3 has been proved.
4, Proof of Theorem 3. Let

’ eir(logp)-‘/_ 1
o0 =7 1+
P P

2*
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be the characteristic function of the limit distribution of g(n) defined by g(p)=

=(log p)~". First we observe that
eitllogp) -7 _ |

“.1) ) log [p(z)] = Re 2‘1/ —p—+0(1).
pse
Lemma 3 and the relation
1
A 2;= loglog y+0(1)
gives that -
1 eit(logp)-Y
4.2 logle(7)| = —710gt+0(1)+Re > ’
p=1l0
Consequently, f |@(t)|<eo for y<1. Let y=1. From (4.2) we have
0
@3) lo @] < [ (@)],
where ' : '
elt(logp) k4
4.4 Y(r) = (1-{-——], R=1t=2R
p_S_RIIZ p
Let Y (2)=y,(v) - Yo(r), where
‘/’1= U y Y= .
p=(log R)* (log R)*< p=R1/2
So we have :
2R
dr < —(Bi(R)+ B,(R)
4.5) Rf ()| dt < 27 (Bi(R) + By (R)),
where
2R.
“4.6) BR = [ W@kd (=1,2).
R

First we estimate B,(R). We have

Yo (1) = 1+Z

eitg(m)

where the summation is extended for the square-free m’s satisfying (log R)=
=x(m)=P(m)=RY*. We have

éz(R)<<R+Z%min( l m )|] mZ"m min(R, W)l—gmj’

n runs over the same set as m.
i Let
@7 K(I/R) =sup > 1/m.

X  g(m)€[x,x+1/R)

Let x be fixed. We observe that the set of m’s standing in the right hand side satisfies
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the conditions of Lemma 1 with -4 =(log R)%, ¢=1. Indeed, if |g(m)—g(my)|=1/R,
D1/my, po/m,, then

()< 5:)

= |g(p)—g(po)l—lg(m)—g(my)| =

1 1
= — —1/R =0,
(Gozpy ogpy |/
and so ﬂ¢ﬂ. So we have
D P2 .
loglog.R
K(I/R) <& W.

Furthermore, the contribution of the pairs m, n for which |g(m)—g(n)|[=R? is
majorated by

1 (log R)?

— I 2 BN

7 L, P <

pP=R
Consequently

@8) Bz(R)<<R+2i[ s R { : > ]l/m})+

n Srej+1 i
n M lo=j=rt) tg(m) —g(n)| € [j/R. o

> —R~[ ' > l/m];<<'R.

< il )
osjsRe) Iy(M)IE[jIR, %]

Since Y, ()|= ]I ((1+1/p)<loglogR, therefore B;(R)<«(loglog R)2R. So
p=(log R)* . .

we have
2R

' f lp ()] dr < R*-17 (loglog R)®.

Applying this inequality for R=T/2" (h=1,2,...) we get
(loglog T)?

P b
= J le@ldr <
T 1‘/. (loglog T)?10g T

T - ’

. From Lemma 2 our theorem immediately follows.

if y=1.

5. Proof of Theorem 1. First we prove the second inequality in (1.12). Let
gn; )= 2 g(p) -

pln, px=y

Since from (1.10)

3 Ig(n; 0] = NDG) =0y,
n=N
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‘we have

.1 sn=N; |gln; 124) = 1/1}§¥

For a natural number n let e(n) denote the product of those prime: factors
of n that are less than t34; let f(n)=nfe(n). From (5.1) we get that with the ex-
ception of at most N/t integers if n=N and g(n)€[x, x+1/¢], then g(e(n))e[x—1/t,
x+1/t]. Let x and ¢ be fixed, and a,<a,<...<ay be the sequence of those square-
free integers all prime divisors of which is less than ¢*4 and g(a;)€[x—1/t, x+1/1],
Let E(a;) be the number of those n=N for Wthh ajle(n) and (a;, e(n))=a; holds
By using the Eratosthenian sieve we have

(-2) E(a)=1+0()——+ Neoa,) HA[I_%] (N = =),

J p<l2

where o(m)= [[? Since [] (1-1/p) < (log )71,
plm / p<t4

we have

1 A
5.3) - 0, (1/1) <<—+L sup o@)
logt =" gepet=Tn,x+1m G

It has only remained to prove that

G4 | u,= > 2@

glapelx,x+1  4;

uniformly for x€(—co, ) as t—+co.
We write every a; as mv where P(m)<t?d, x(v)=t%, or v=1. So

U

X,

50 em).

v U {g(m>erx—g(v),x+1/z—g(v)1 m

The set of m’s satisfies the conditions of Lemma | (see (l.ll)) so the inner

sum is bounded, and we have
< JI [l + Q(pp)) 1.

6= p§t2A

U

x,t

We shall prove that
G(/1)-G(- 1/1)—1 v t =),

and by this the proof will be finished.
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Let P= ][ p. It is obvious that

| | e
CORNN. i 11—(<1+o(1))Np<1]l(1-1/p)=—@  ~o9),

¢, 1s an absolute constant. Furthermore,

> kel= Sk@l > t=san Jf(1-1] 3L

n=N,(n, P)=1 g>tc1 qm=N,(m, P)=1 p=stey g=tc1 q
13

By choosing ¢;=24, from (1.9) we have

1 lg(p)l _ N

1=1¢ Z n étNH(l-—) Z —_—

n§11~(1,§r,1;)l=1 néN,(n,P):llg( )l plP D/ p>rta P tlogt
q(n)| =1/t

This and (5.5) gives that -

€s _ G
tlogt ~ logt’

FAt)~F(=1/t) = 2Af;gt -

By this the proof of our theorem is finished.
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