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On Fong and Sucheston's mixing property of operators 
in a Hilbert space 

C H A R N - H U E N KAN 

1. Introduction 

Let T be a bounded linear operator on a (real or complex) Hilbert space 
A matrix (ani) (n, i=0, 1, 2, ...) is said to be uniformly regular (U. R.) if ^ 

sup 2 K-l = fl<00> SVP k ; l = K - 0 (n and l i m 2 <*„i = 1-
» i • » i 

In this article we consider the problem of the equivalence of assertions (a) and (b) 
below, h is an element of 

(a) T"h converges weakly. 
(b) For every U. R. matrix (ani), 2amT'h converges strongly (to the weak 

i 
limit in (a)). 

In the more general context of a Banach space S , (b)=>(a) is always true ([8]), 
but (a)=>(b) may fail even if T is a contraction and (a) holds for every /¡6© ([3]). 
This equivalence (in a weaker form) was first proved for the special case where 
9)—L2 of a probability space and Th=hoT for an invertible, measure preserving 
transformation T on that space ([4]). This was recently generalized to an arbitrary 
contraction on § in [1], [13] and, in the form as stated above, FONG and SUCHESTON 
[8]. In this article we shall prove in Theorem 1 the equivalence for a much wider 
class of operators. This class contains all operators similar to contractions, and 
we shall give some sufficient conditions for such similarity to hold. By an application 
of the uniform boundedness principle, it is easy to show that conditions (2.0—1) 
in Theorem 1 imply that T is power-bounded, i.e. sup | |rn | |<oo, provided that 
the operator B is bounded. Whether the equivalence is true for a general power-
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bounded operator is an open question. Note that if (a) holds, then {T lh: / ^ 0 } is 
bounded and the expression in (b) is meaningful. For (b)=>(a) with T not power-
bounded, we require such expressions to be finite sums. With this modification, 
(b) implies that {Ph: / ^0} is bounded (see [1, p. 237]), and hence (a) ([8]). 

2. Main Theorem 

Theorem 1. Let T be an operator on a Hilbert space Assume that there 
exist Hilbert spaces ©, ft, a contraction C on ft, and operators A: ft — ©, R: (5—§ 
and B, S: © which are bounded except possibly B such that 

(2.0) 

and 
(2.1) 

RS=identity operator on § 

lim \\AC"A*Bh —ST"h\\ = 0 for all 

Then for any fixed h£5), the following conditions (a) and (b) are equivalent: 
(a) T"h converges weakly. 
(b) For every U. R. matrix (ani), 2 amTlh converges strongly (to the weak limit 

i 
in (a);. 

Proof. We only need to prove (a)=>(b). In (2.1), C can be assumed to be an 
isometry. In fact, there exists an isometry U on a Hilbert space £r>ft satisfying 
C"=PUn\$i, n^O, where P is the orthoprojector from 2 onto ft (see e.g. [18], p. 
11), thus implying ACnA*=(AP)U"(AP)*. Henceforth we shall replace C by an 
isometry U. 

Suppose (a) holds. Since the limit is a fixed point of T, we can and do assume 
that it is 0. Given e>0, there exists an integer N such that for all m=N, 
\\AUmA*Bh-STmh\\^e. Hence 

(2.2) 

(2.3) 

^b/z'wT'hW + m 2 amST'h 
i=N ! 

2 a«ST'h 
i=N 

~ as + 2 antAU'A*Bh 
i=N 

^as + \\A\\ 2 anlU'A*Bh 
i=N 

By the assumption, there exists a positive integer M ^ N such that for all ragM, 

(2.4) \(STmh, Bh)\ = |(Bh, STmh)\ = \(S*Bh, Tmh)\ e. 
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Hence for all m^M and i,j=0, we have 

(2.5) \(U'A*Bh, U'+mA*Bh)\ = \(Bh, AUmA*Bh)\ ^ \(Bh, STmh)\ + 

+ |(Bh, AUmA*Bh — STmh)\ ^ s + e\\Bh\\; 
and similarly, 

(2.6) < \(UJ+mA*Bh, UJA*Bh)\ s e + e\\Bh\\. 

Hence 
2 • 

(2.7) 2 aniU'A*Bh = 2 2 anianJ(UiA*Bh, UJA*Bh) S 
i=N i=N j=N 

si (2M+l)abn\\A*Bhp + a2s(l+\\Bh\\), 

as can be seen by dividing the double sum into parts where | /—y|sM and 
\i-j\=~M, respectively, and using (2.5) and (2.6). Finally (2.2), (2.3) and (2.7) 
imply l i m a n i T l h \ \ = 0 . 

i 

Remarks . (1) The proof actually shows that (c) (T"h,S*Bh)^0 implies (b). 
This together with (b)=>(a) shows that (c) is equivalent to Tnh—0 weakly. In 
fact, we have for all k, lim sup \{Cnk, z)\^\\z\\ -lim sup \{C"k, £)|1/2 ([6], 
Lemma 2.1). Applying this to k=A*Bh, z = A*R*y for any y£§> and utilizing 
(2.0) and (2.1), it is.not hard to show that lim sup \{T"h, y)\^\\A* R* y\\ - lim sup 
|(T"h, S*Bh)|1/2. In the case of T being a contraction, (c)=>-(b) was implicitly proved 
in [8] by a somewhat different method. We can also prove the general case from this 
by observing that (c) implies, by (2.1), (C"A*Bh, A*Bh)^0, and hence, applying the 
contraction case and using (2.1) again and (2.0), (b). 

(2) An operator T on § is said to be similar to a contraction C on it if there 
exists a (boundedly) invertible operator A: such that T=ACA~1. Then 
r"=AC"A-1=AC"A*(A*-1A-1), nS0, and the condition (2.1) is satisfied. 

(3) Theorem 1 applies to operators of the CA classes of H . LANGER (see [18], 
p. 55) and the now classical Ce=CgI classes, G > 0 , of SZ.-NAGY and FOIA§ ([17]). 
They are those operators T o n § satisfying Tn=AmPS)UnAm, n s l , for a posi-
tive and (boundedly) invertible operator A on § and a unitary operator U on a Hil-
bert space Note also that CA(zCnA^ ([12]) and that the union of all Ce 

classes is dense (in the norm topology) in the set of power-bounded operators ([10]). 
(b) is valid for all in case of operators with their spectra lying inside the open 
unit disc. This foll'ows from the fact that lim ||rB|| 1 / n< 1 implies lim \\Tnh\\ = 0 for 
all /z€§. We should also mention that the operators considered here are all similar 
to contractions (see a general theorem in [11]), and that some power-bounded, 
operators are not similar to any contraction ([7]). , 
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3. Similarity to contractions 

We shall give three sufficient conditions for T on § to be similar to a contrac-
tion. The Corollary below generalizes a result of SZ.-NAGY [16]. The special case 
where T is power-bounded and lim sup \\Tnh\\ ^m ||A||, is tacitly contained 
in [1, p. 238]. In [1] and [16] Banach limits are used as the main tool. Our proof 
is of a more constructive nature. Theorem 2 will also be used in the proof of Theo-
rem 3. 

Theorem 2. Let T be an operator on § satisfying, for a positive number M, 

(3.1) n - ^ Z W T ' h V ^ M ^ W h r ( n ^ i . h e s ) . 
«=0 

Then there exists a positive operator R on § such that 

(3.2) T*RT =R and R ^ M2I. 

I f , in addition, there exists a positive number m such that 

(3.3) m*\\hr ^ n ' 1 2 WT'hW* ( n s l , 
i =0 

then R and its positive square root P are invertible and 

(3.4) PTP-1 is anisometry and ml^P^MI. 

Corol lary . If T is an operator on and there exist positive numbers m, M, p 
such that 

(3.5) m'||fc||' lim sup n'1 WT'hW" S M"| | / ip (/i€§), 
¡=0 

then 
(3.6) (mlM)\\h\\ ^ \\T"h\\ ^ (M/m)\\h\\ (n S 0, h€§), 

and T is similar to a contraction. 
The same conclusion holds if we replace in the middle term of (3.5) lim sup by 

lim inf and even if we replace this middle term by lim sup [| Tnh\\" or by lim inf || T"h\\p. 

Proof of Corol lary . The middle term in (3.5) is unchanged if we. change 
h to T'h, for any Hence mp||r'7!||p^Mp||7 ,-''/;||p, for any The first 
conclusion then follows. Theorem 2 applies now to give the second conclusion. 
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Proof of Theorem 2. Consider first the separable case. So assume that there 
n-i 

is a countable dense subset {h1,h2,...} of Let R„=n~1 £ T*'T\ R„ is 1 i=o 
positive and (3.1) implies R„^M2I, n ^ l . Hence for each . / s i , {R„hj: n ^ l } 
is bounded and so weakly sequentially compact ([5,-11.3.28]). Using the diagonal 
process, we can extract a subsequence {i?^} such that R'nh} converges weakly for 
each j. It follows that R'n converges in the weak operator topology to a positive 
operator R^M21. T*R'„T converges to T*RT. On the other hand, T*RnT-Rn= 
=n~1(T*" T"-I), We claim that n~xT*"T" converges weakly to 0. This 
then implies that T*R'nT has to converge to R, and thus T*RT=R. For the 
claim, observe that for each and each positive integer n, 

j=i 

^ n-1 2 (M2\\Tn-J+1h\\2) = M2«-1 \\T'Th\\2 s M4||rh||2, 
j=1 i = 0 

n 
by applying (3.1) twice. But 2 J 1 diverges, and hence n-1 | |r"A||2—0. Now for 

any h,k£§>, \n^(T*nTnh, k)\%(n-1\\Tnh\\2)ll2(n-1\\Tnk\\2)1/2^0, proving the claim. 
Thus (3.2) is proved. 

If in addition (3.3) is assumed, then m2I^R„, n^ 1. In particular m2I^R'n, 
« s i , whence m2MR. Thus m2I^R^M2I and so ml^P^MI, and R and 
P are invertible. From T*P2T=P2, we get (PTP-i)*(PTP~1) = J, showing that 
pjp-1 is a n isometry. 

When § is not separable, we proceed as follows. Given any the closed 
subspace generated by {/z}U {Si... S„h: «^1 , St=T or T*, 1 S / S n } is separable, 
contains h, and reduces T. Utilising this construction and employing transfinite 
induction, § can be decomposed into a direct sum of a family of mutually orthogonal, 
separable, closed subspaces, each reducing T. The construction for the separable 
case applies to each of these subspaces, and we get a positive operator R on 

satisfying (3.2) and, if (3.3) is assumed, m2IsR. The rest of the proof is as 
before. 

Theorem 3 below generalizes the result of G.-C. ROTA [15, Th. 2] that every 
operator T with spectral radius /•< 1 is similar to a proper contraction (one of 
norm <1). This is because r=lim [| T"^'" and so by the root test for series, 

.Z l]T™ll2<°°> implying the case 5=0 of Theorem 3. Another case, 5=1, was b = 0 
treated by HOLBROOK ([11]) under the assumption that T is power-bounded. 
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Theorem 3. Let T be an operator on O ^ s ^ l a fixed number, and 
Q = Q(T, s)=\I—sT*T\112 (by symbolic calculus). Assume that there exist positive 
numbers M, N such that (3.1) is satisfied and 

(3.7) 2 WQT-hr^ i V W 
n = 0 » 

Then there exists a positive operator P on § satisfying 

(3.8) I s PS (N2+sM2)1'2/ 

such that PTP~X is a contraction, and a proper one in the case 5=0. 

Condition (3.1) is redundant in the case 5=0, i.e., Q=I. 

Proof . Condition (3.7) implies that the increasing sequence of positive operators 
n — 1 

S„= 2 T*'Q2r, «^1 , converges in the weak operator topology to a positive 
¿ = 0 

operator S^N2I. In fact for any h,k£%>, and any n=»m^0, 

\((Sn-SJh, k)\ = I *2<&T% 07"FC>| S 
I i—m I n-1 ( n-1 V ' 2 / - " - 1 \1/2 

^ 2 WQT'hW • WQT'kW s 2 lie^ll2 2 WQT'm , 
i-m ^ i=m ' M = m ' 

whence the assertion follows. From the identities Q2+T* S„T=Sn+1, « S i , we get 
Q*+T*ST=S. 

For each positive integer n, 

S+sR„sz "2 s'T*iQ2Ti+n~1 "2 s'T*iTi = ( s ' * 2 2 + . 
¡=0 j=1 j=1 M=0 / 

Since Q2+sT* T= \I-sT*T\+sT* T^I, it follows by easy induction that the terms 
in the first summation form an increasing sequence of positive operators, each s / . 
Hence S+sR„^(l — lln)I. By Theorem 2, there exists a positive operator RsM2I 
on § with T*RT=R, and by the above inequalities, and considerations as in the 
proof of Theorem 2, S+sR^I. Summing up the results in this and the last para-
graphs, we get Q2+T*P2T=P2 and ISP2S(N2+sM2)I, where P is the posi-
tive square root of S+sR. Hence (3.8) follows and P is invertible. With C=PTP~\ 

(QP~1)*(QP~1) + C*C = P-1(&+T*I»T)P-1 = p-ip*p~1 = /. 

This shows that C*CsI and C is a contraction. In the case 5=0, we have Q=I, 
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and the above equality becomes P~2+C*C=I. Hence for each 

IICM* = </», c*ch) = (h, h)-(h, p-*h) = PII2-||JP-1/I||2 ^ PII2(1-I|/ ,I|-2). 
Thus C is a proper contraction. 

We now present a similarity theorem in a measure-theoretic setting. Let 
(X, g , n)=(X, /1) be a <r-finite measure space, and Lp=Lp(X, g, p), the 
usual Banach spaces of functions. Let M + be the set of extended-valued nonnegative 
measurable functions (modulo //-null functions) on ( X , fi). A linear operator T on 
M+ is monotone i f /„ , / € M + , / „ t / a.e. implies xfn\xf a.e. (cf. [2], p. 389). For such 
a r, its adjoint is uniquely defined as a (linear) operator t* on M+ satisfying 
J f ' x*g dfi = f g ' z f d f i , for all f,g£M+. It is easy to show that T* is also mono-
tone and that T * * = T . If for a fixed lS/?<°°, T is a positive (in the sense that 
TLptzLp), bounded linear operator on Lp, then it extends uniquely to a mono-
tone operatorzon A?+, according to the definition: T/=lim Tf„ a.e., where / f M + , 
fn£L+, and f„\f. For each / € M + , such a sequence/„ always exists and the defi-
nition of T/ is unambiguous. We shall simply write T for the extended T. 

T h e o r e m 4. Let x be a monotone operator on M+ and 1 ^<oo a fixed num-
ber. Assume that, for p = l,x*k^k; and for 1, 

(3.9) x*(k(xh)p~1) ^ kh"'1 for some functions 0 < h, k < 

Then (T, defined on M+ as af=k1/px(fk~llp), is a positive Lp contraction. Further, 

(3.9) is equivalent to 

(3.10) T ( F C 1 ( T * / I 1 ) P ' - 1 ) S FCI/IF'-1 for some functions 0 < ht, <<==>, with 

K1=K~P'+1 and l/p+llp'=l. 

Coro l la ry . Suppose T is a positive (in the sense that TL2 c i 2
+ ) , bounded 

operator on L2, and T*(kTh)skh or T(kT*h)^kh for some functions 0 
mSkS.M, where m, M are positive constants. Then T is similar to a positive con-
traction on L2. 

Proof of T h e o r e m 4. The case p = 1 is easy. Consider the case p > l . 
First we show (3.9)=>-(3.10). Suppose (3.9) holds. Then r/z<°o. For if xh=°° 
on a set E of positive measure, then for all positive numbers N, 

Nx*(klE) = x*(NklE) rs x*(k(xh)p~1) s kh"-1 

implying x*(fcl£)=0. So 0 = f h-x*(k\^)dp—jEk-xhdp—°=, a contradiction. Let 
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F— {тА=0}. Then / h-т* lFdfi=J тАф=0, and hence t * 1 f = 0 . D e f i n e - Л ^ 

=k(ih)p Then and (3.10) can be verified as follows: 
=т*(&(тй)р - 1)+0^&Лр - 1 by (3.9); consequently, (т*/21)"'-1=(т4Л)1 / (р~1)^ 
7S(khp~1)1Kp~1}=k1Kp~1)h=kï1h, and hence, T(£1(T*AJp '-1)STAS(A:-1A1)1/(p_1)= 
= M Î / ( p ~ ® = M i ' ~ \ ' which is (3.10). Implication (3.10)=>(3.9) can be proved 
similarly, by replacing (т ,h ,k ,p) by (т*,h 1 ,k 1 ,p ' ) . From the definition of a we 
can show that ffV=Ar1/pT*(/fc1/p/),/€M+. Hence (3.9) transforms into 

where u=hkllp. This implies that a is a contraction on Lp. In case of a 
Borel space, this implication follows from a dilation theorem in [2]. The general 
case is proved here by adapting the proof in [9] for the case <rl ̂  1, a* 1S1. In fact, 
we have <xw<°°, just as rA<°o. For f£M+ and any A=-0, 

== f a(J—Xu)+ '(ffu)p-1dfi = / V-kuY /1{/S,B}(/-A«)«pi/-V. 
Multiplying both sides by AP_2, and integrating with respect to A from 0 to we 
obtain, by the Fubini—Tonelli Theorem, 

showing that a is an Lp contraction. 

R e m a r k s (4). If a : M+(X,fi)—M+(Y,v) is monotone, 1 
0<u£Lq(X, p), and o*(ou)p~1^uq~1, then a extends to a bounded, positive linear 
operator from Lq(X, p) to Lp(Y, v) with norm S||M||(?

,/p)_1. Indeed, by the method 
of the proof of Theorem 4, we have for all f£L+{X,n), f (af)pdv^f fpifl~p dfi. 
(This is trivial when p= 1, for which case the condition on a reads <x*l s « ' " 1 . ) 
By the Schwarz inequality, the last integral is fdn)plq ( /u 9 d ix f q ~ p y l q . The con-
clusion follows. This generalizes a result in [14] for non-negative infinite matrices, 
as it can be easily shown that non-negative matrices are monotone. Analogous to 
Theorem 4, the inequality for a is equivalent to a(a*v)9 '^1^vp '~ l for some 
O^v^L^Y, v) when l</>, where l/p + l/p' = l and l/q+l/q'=l. 

F 
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