Mean ergodicity in G-semifinite von Neumann algebras

SÁNDOR KOMLÓSI

Introduction. Let A be a von Neumann algebra in a complex Hilbert space H, and let G be a semigroup of normal endomorphisms of A. Denote by A^G the set of all elements of A which are invariant with respect to each element of G. If the identity I belongs to A^G , then A^G is a von Neumann algebra too, but if this isn't so, then A^G is 'only' an ultraweakly closed involutive subalgebra of A, and hence there exists a largest projection $P \neq I$ in A such that for every element T of A one has PT=TP=T ([7], Chap. I. § 3, Théorème 2.).

Let Q denote the set of positive, normal, linear mappings of A into itself obtained from the elements of G by forming convex combinations. The operators in A of the form V(T), where $V \in Q$ and $T \in A$ are called the means of the operator T. For any $T \in A$ let $K_0(T, G)$ denote the set of all means of T. The investigation of the 'behaviour' of the means is one of the subjects of mean ergodic theory ([9], Kap. 1, § 2.). Concerning von Neumann algebras we refer only to the classical results of J. DIXMIER ([6]) and the paper of I. Kovács and J. Szűcs ([10]).

The purpose of this paper is to investigate a special class of von Neumann algebras.

§1 contains preliminary results without their proofs.

In $\S 2$ we define the notion of 'weak ergodicity in means' to express a 'good behaviour' of the means of an operator. This section is devoted to establishing the simplest consequences of this definition.

Let K(T, G) be the weak closure of $K_0(T, G)$. In § 3 we shall give sufficient conditions for T in order that $K(T, G) \cap A^G$ be nonempty (Theorem 3.1.), and that $K(T, G) \cap A^G$ consist of exactly one operator.

1. Definitions and preliminaries. Let us consider a pair (A, G) of a von Neumann algebra A and a semigroup G of normal endomorphisms of A. We shall denote by A^+ the positive portion of A.

Received September 15, 1977, in revised form January 8, 1979.

A non-negative, finite or infinite valued function φ defined on A^+ is called a weight on A^+ , if it has the following properties:

(i)
$$\varphi(T+S) = \varphi(T) + \varphi(S)$$
 for every $T, S \in A^+$; and

(ii)
$$\varphi(cT) = c\varphi(T)$$
 for every $c \ge 0$ and $T \in A^+$,

(with the convention that $0 \cdot \infty = 0$).

We call φ G-invariant if for every $T \in A^+$ and $g \in G$ we have $\varphi(T) = \varphi(g(T))$.

The notion of a G-invariant weight is a very natural generalization of that of a trace.

A weight φ on A^+ is said to be faithful if the conditions $T \in A^+$ and $\varphi(T) = 0$ imply T = 0; normal if, for every increasing directed set $\mathscr{F} \subset A^+$ with $\sup_{S \in \mathscr{F}} S = T \in A^+$, we have $\varphi(T) = \sup_{S \in \mathscr{F}} \varphi(S)$; semi-finite if, for every $T \in A^+$, $T \neq 0$ there exists $S \in A^+$, $S \neq 0$ such that $S \leq T$ and $\varphi(S) < \infty$.

A weight φ on A^+ is said to be non-infinite if there exists $S \in A^+$, $S \neq 0$ such that $\varphi(S) < \infty$.

For later purposes we state an important fact concerning weights.

Proposition 1.1. ([8], Lemma 1.5) For any weight φ on A^+ the following conditions are equivalent:

- (i) φ is normal,
- (ii) φ is ultraweakly lower semicontinuous,
- (iii) there exists a family of vectors $\{x_i\}$ in H such that

$$\varphi(T) = \sum_{i} (Tx_i, x_i)$$
 for every $T \in A^+$.

Now we shall define special subspaces of A. Denote by Γ the set of normal faithful G-invariant non-infinite and non-zero weights defined on A^+ .

Definition 1.1. A projection $E \in A$ is called *finite*, if there is a $\varphi \in \Gamma$ such that $\varphi(E) < \infty$. An operator in A is called *simple*, if it is a linear combination of finite projections. Denote the set of simple operators by M_0 .

Let $\varphi \in \Gamma$ and let $M_{\varphi}^+ = \{T \in A^+ | \varphi(T) < \infty\}$. Denote by M the smallest norm closed subspace of A that contains M_{φ}^+ for every $\varphi \in \Gamma$. Since φ defines a linear form $\dot{\varphi}$ on the linear span of M_{φ}^+ , it is not hard to see that the norm closure of M_0 is identical with M.

Let $N_{\varphi} = \{T \in A | \varphi(T^*T) < \infty\}$. N_{φ} is a left ideal in A. Denote by N the norm closed linear hull of all N_{φ} . It is obvious that $M_0 \subseteq N$ and hence $M \subseteq N$.

Definition 1.2. A pair (A, G) is said to have property Π if for every proper projection $P \in A$ such that $g(P) \leq P$ for every $g \in G$, we have that $P \in A^G$.

We classify the pairs (A, G) by their weights.

Definition 1.3. A pair (A, G) is called *finite* (resp. semifinite) if for every $T \in A^+$, $T \neq 0$ we can find a normal G-invariant finite (resp. semifinite) weight φ such that $\varphi(T) \neq 0$.

To facilitate the statement of the next proposition it will be convenient to introduce the following notations.

Definition 1.4. Let E be a projection in A^G . Let us consider the restricted von Neumann algebra A_E . Since $E \in A^G$, every element g of G induces a normal endomorphism g_E on A_E . These restricted endomorphisms form a semigroup. Let us denote this semigroup by G_E . The pair (A_E, G_E) is called a *restriction* of (A, G).

Proposition 1.2. ([5], Theorem 1) If a pair (A, G) has property Π , then there exists a maximal projection E in A^G such that the restricted pair (A_E, G_E) is finite.

For finite pairs the following theorem will play an important role in proving Theorem 3.3.

Theorem. (I. Kovács—J. Szűcs ([10])) Let the pair (A, G) be finite. For every $T \in A$ the convex set $K(T, G) \cap A^G$ contains exactly one element.

In the following paragraphs we shall deal with pairs (A, G) for which the set Γ is non-empty. This requirement is fulfilled for example in the classical case, when the group \natural of inner automorphisms of A plays the role of G, and A is semifinite. We do not know if this is the case in general for semifinite pairs, but we can state the following:

Proposition 1.3. If a semifinite pair (A, G) has property Π and $\natural \subset G$, then there exists a normal faithful G-invariant and semifinite weight on A^+ .

Property Π ensures that the support of any *G*-invariant weight defined on A^+ does belong to A^G . It follows from the condition $\natural \subset G$ that A^G is part of the center of *A* and hence DIXMIER's reasoning ([7], Chap. 1, § 6, Proposition 9.) can be repeated essentially word by word.

The terms and symbols introduced here will be used in what follows without further reference.

2. Let \mathscr{F} be an ultrafilter in Q. Denote by $\mathscr{F}(T)$ the image of \mathscr{F} which is ultrafilter, too. Since the unit ball of A is weakly compact, K(T, G) is weakly compact, too, for every $T \in A$, and so the ultrafilter $\mathscr{F}(T)$ of the means of T converges weakly to an element S of K(T, G). Let this fact be expressed by the symbol $\lim_{\mathcal{F}} V(T) = S$.

Now we define two notions to express 'good behaviour' of the means of an operator.

Definition 2.1. Let the operator $T \in A$ be called *weakly quasi-ergodic* if it has the following properties:

(Li) $K(T,G) \cap A^G$ is non-empty

(Lii) for each $R \in K(T, G)$ the set $K(R, G) \cap A^G$ is non-empty.

Denote by L the subset of weakly quasi-ergodic elements of A.

Definition 2.2. Let the operator $T \in A$ be called *weakly ergodic* if it has the following properties:

- (Ei) $K(T, G) \cap A^G$ consists of exactly one element,
- (Eii) for each $R \in K(T, G)$ the set $K(R, G) \cap A^G$ consists of exactly one element.

Denote by E the subset of weakly ergodic elements of A. It is obvious that $A^G \subset \subset E \subset L$.

Proposition 2.1. L is a norm closed, G-invariant subspace of A.

Proof. The G-invariance and the homogeneity of L are rather obvious. First we prove the additivity of L. Let T_1 and T_2 be arbitrary elements of L. We shall show that the operator $T=T_1+T_2$ belongs to L. By assumption there is an operator S_1 such that $S_1 \in K(T_1, G) \cap A^G$. Let \mathscr{F}_1 be an ultrafilter in Q such that $\lim_{\mathfrak{F}_1} V(T_1) =$ $= S_1$. The limits $\lim_{\mathfrak{F}_1} V(T) = S_0$ and $\lim_{\mathfrak{F}_1} V(T_2) = R_2$ exist, $S_0 \in K(T, G)$ and $R_2 \in K(T_2, G)$. By condition (Lii) there exists an ultrafilter \mathscr{F}_2 in Q such that $\lim_{\mathfrak{F}_2} V(R_2) = R \in K(R_2, G) \cap A^G$. It follows taking account of the facts that $S_0 =$ $= S_1 + R_2$ and $K(S_0, G) \subset K(T, G)$ that $S = \lim_{\mathfrak{F}_2} V(S_0) = S_1 + R \in K(T, G) \cap A^G$. Now let us consider an arbitrary element Y of K(T, G). Then we can find an

Now let us consider an arbitrary element Y of K(T, G). Then we can find an ultrafilter \mathscr{F} in Q such that $Y = \lim_{\mathcal{F}} V(T)$. The limits $\lim_{\mathcal{F}} V(T_1) = Y_1$ and $\lim_{\mathcal{F}} V(T_2) = Y_2$ exist, and both belong to L. Since $Y = Y_1 + Y_2$, then using the previous result it is obvious that $K(Y, G) \cap A^G$ is non-empty, so we have finished proving that $T \in L$.

Now we are going to show that L is norm closed. Let the sequence $\{T_n\}$ of operators converge to the operator T uniformly. Let us suppose that for each n, $T_n \in L$. Passing, if necessary, to a subsequence, we can assume without loss of generality that $||T_{n+1}-T_n|| < 1/2^{n+1}$ for each n.

Using the technique of the previous part of the present proof we can construct a sequence $\{S_n\}$ recursively in the following way:

$$S_n \in K(T_n, G) \cap A^G$$
 and $S_{n+1} - S_n \in K(T_{n+1} - T_n, G)$

for each *n*. It is an obvious consequence of these facts that the sequence $\{S_n\}$ converges in norm, and the limit S of it belongs to A^G .

Now we prove that for any $\varepsilon > 0$ and for any finite system of vectors $x_1, x_2, ..., x_k; y_1, y_2, ..., y_k$ of H we can find an operator $R \in K_0(T, G)$ such that (*) $|((S-R)x_i, y_i)| < \varepsilon$ for each i = 1, 2, ..., k.

Let us choose a sufficiently large index p, for which $||S - S_p||$ and $||T - T_p||$ are both sufficiently small. Since $S_p \in K(T_p, G)$, there exists a $V_0 \in Q$ such that $|((S_p - V_0(T_p))x_i, y_i)|$ is sufficiently small for each i=1, 2, ..., k. Let $R = V_0(T)$. This operator satisfies (*), and this means that $S \in K(T, G) \cap A^G$.

Now let us consider an arbitrary element Y of K(T, G). We can find an ultrafilter \mathscr{F} in Q such that $Y = \lim_{\mathscr{F}} V(T)$. Let us set $Y_n = \lim_{\mathscr{F}} V(T_n)$. It is clear that $Y_n \in L$ for every n, and that the sequence $\{Y_n\}$ converges in norm to Y. Applying the preceding part to the sequence $\{Y_n\}$, we get that $K(Y, G) \cap A^G$ is non-empty.

The next proposition might bear the name 'The Theorem of Linear Choice'.

Proposition 2.2. For every $T_0 \in L$ and $S_0 \in K(T_0, G) \cap A^G$ we can find a positive linear mapping τ of L onto A^G which possesses the following properties:

(i) $\tau(T) \in K(T, G)$ for each $T \in L$,

- (ii) $\tau(TS) = \tau(T)S$ and $\tau(ST) = S\tau(T)$ for every $T \in L$ and $S \in A^G$,
- (iii) $\tau(T_0) = S_0$.

We omit the proof. It can be done by J. T. SCHWARTZ's method developed in ([11], Lemma 5).

Proposition 2.3. The weakly ergodic elements of A form a norm closed, G-invariant subspace E of A. Denote by $\tau_0(T)$ the single element of $K(T, G) \cap A^G$ for every $T \in E$. The mapping τ_0 is positive linear and has the property that

 $\tau_0(TS) = \tau_0(T)S$ and $\tau_0(ST) = S\tau_0(T)$ for every $T \in E$ and $S \in A^G$.

Proof. The G-invariance of E is based upon the fact that for every $T \in A$ the elements of G map K(T, G) into itself.

Denote by Λ the family of those linear mappings τ of L onto A^G which have properties (i) and (ii) of Proposition 2.2. Let τ and ψ be two arbitrary elements of Λ . Let us define the following subset

$$L_{\tau,\psi} = \{T \in L | \tau(T) = \psi(T)\}.$$

Taking into account the fact that every element of Λ is norm-continuous and linear it follows that $L_{\tau,\psi}$ is a norm closed subspace of A. Denote by L_0 the intersection of all such $L_{\tau,\psi}$ subspaces. It is obvious that L_0 is a norm closed subspace of A and by Proposition 2.2 it is identical with E.

If we restrict any τ occuring in Proposition 2.2 to *E*, then we get the mapping τ_0 with the desired properties.

4

Sándor Komlósi

3. In this section we shall investigate pairs (A, G) for which Γ is non-empty and hence the subspaces M and N defined in Definition 1.1. are different from the trivial subspace $\{0\}$.

Theorem 3.1. If for a pair (A, G) the set Γ is non-empty then all elements of the subspace N are weakly quasi-ergodic.

Proof. By virtue of Proposition 2.1 it is enough to prove that for every $\varphi \in \Gamma$ $N_{\varphi} \subset L$. Proving this we follow S. M. ABDALLA ([1], Chap. 3, Theorem 3.4). For our purposes it is sufficient to show that for every $T \in N_{\varphi}$

(i) $K(T, G) \subset N_{\varphi}$ and (ii) $K(T, G) \cap A^{G}$ is non-empty. Let $T \in N_{\varphi}$ and $R \in K(T, G)$. We can find a filter \mathscr{F} in Q such that $\lim_{\mathscr{F}} V(T) = R$ in the strong operator topology. As K(T, G) is bounded, we have $\lim_{\mathscr{F}} (V(T)^{*}V(T)) =$ $= R^{*}R$ in the weak operator topology. On the other hand, if $V \in Q$ and $V = \sum_{i=1}^{n} \alpha_{i}g_{i}$ $(\alpha_{i} > 0, \sum_{i=1}^{n} \alpha_{i} = 1, g_{i} \in G)$, then we have by Schwarz's inequality $\varphi(V(T)^{*}V(T)) = \varphi\left[\left(\sum_{i=1}^{n} \alpha_{i}g_{i}(T)^{*}\right)\left(\sum_{j=1}^{n} \alpha_{j}g_{j}(T)\right)\right] = \sum_{i,j} \alpha_{i}\alpha_{j}\phi(g_{i}(T)^{*}g_{j}(T)) \leq$

$$\leq \sum_{i,j} \alpha_i \alpha_j \varphi \big(g_i(T^*) g_i(T) \big)^{\frac{1}{2}} \cdot \varphi \big(g_j(T^*) g_j(T) \big)^{\frac{1}{2}} = \sum_{i,j} \alpha_i \alpha_j \varphi (T^*T) = \varphi (T^*T).$$

Since φ is normal, it is ultraweakly lower semicontinuous and so it is weakly lower semicontinuous on any bounded part of A^+ , thus $\varphi(R^*R) \leq \varphi(T^*T)$. This proves (i).

Since φ is normal it can be represented in the following form: $\varphi(T) = \sum_{i} (Tx_i, x_i)$ for every $T \in A^+$, where the x'_i s are suitable vectors from H. It follows that the function $S \rightarrow \varphi(S^*S)$ is weakly lower semicontinuous on any bounded part of A and thus it attains its minimum on the weakly compact bounded set K(T, G). Taking into account the fact that φ is faithful it follows that the function $S \rightarrow (\varphi(S^*S))^{1/2} =$ $= \|S\|_2$ is a pre-Hilbert norm on N_{φ} , therefore the minimum is attained only at one point. Denote by T_0 this element. It is not hard to see that for every element gof $G g(T_0) \in K(T, G)$. On the other hand, it is evident that $\varphi(T_0^*T_0) = \varphi(g(T_0)^*g(T_0))$ and this implies that $g(T_0) = T_0$. This means that $T_0 \in A^G$ and proves (ii).

The next theorem is a generalisation of J. B. CONWAY's result ([4], Lemma 6).

Theorem 3.2. If for a pair (A, G) the set Γ is non-empty and A^G does not contain any finite projection except 0, then for every $T \in M$, $K(T, G) \cap A^G = \{0\}$.

Proof. Let P be a finite projection in A. Then we can find a $\varphi \in \Gamma$ such that $\varphi(P) < \infty$. By Theorem 3.1 it follows that $K(P, G) \cap A^G$ is non-empty. Denote

by S an arbitrary element of this set. Since φ is weakly lower semicontinuous on K(P, G) and finite constant on $K_0(P, G)$, the values of φ are finite on K(P, G), thus $\varphi(S) < \infty$. On the other hand, $P \in A^+$, hence $S \in A^+$.

Let $S = \int \lambda dE_{\lambda}$ be the spectral decomposition of S, where E_{λ} is right-continuous. Let $\mu > \lambda$ be arbitrary positive reals. It is clear that $E_{\mu} - E_{\lambda}$ belongs to A^{G} and that $\lambda (E_{\mu} - E_{\lambda}) \leq S$. It follows that $\lambda \cdot \varphi (E_{\mu} - E_{\lambda}) \leq \varphi(S)$ so the projection $E_{\mu} - E_{\lambda}$ can't be infinite, and therefore $E_{\mu} = E_{\lambda}$. This proves that S = 0.

Now let $T \in M$ be arbitrary. For any $\varepsilon > 0$ we can find finite projections P_1, P_2, \ldots, P_n and complex numbers c_1, c_2, \ldots, c_n such that $||T - \sum_{i=1}^n c_i P_i|| < \varepsilon$. By Theorem 3.1 it follows that $K(T, G) \cap A^G$ is non-empty. Denote by S an arbitrary element of this set. By Proposition 2.2 there exists a positive linear mapping τ of L onto A^G such that for every $R \in L$, $\tau(R) \in K(R, G) \cap A^G$ and $\tau(T) = S$. Since $||\tau|| \le 1$, we have $||\tau(T) - \sum_{i=1}^n c_i \tau(P_i)|| < \varepsilon$. By the preceding part of the present proof we have $\tau(P_i) = 0$ for all indices *i*, hence $||\tau(T)|| < \varepsilon$. This proves that $\tau(T) = S = 0$.

Theorem 3.3. Let the pair (A, G) possess property Π . Let us suppose that Γ is non-empty and that $\natural \subset G$. In this case for every $T \in M$, $K(T, G) \cap A^G$ consists of a single element. In other words, $M \subset E$.

Proof. Denote the largest projection of A^G by P. If P=0 then the statement of the theorem is trivial. If $P \neq 0$, then necessarily P=I. Indeed, if we set R=I-Pthen we have g(R)g(P)=0 and g(P)=P for every $g\in G$ and thus $g(R) \leq R$ for every $g\in G$. It follows from property Π that $R \in A^G$, and, consequently, I=P+ $+R \in A^G$.

In virtue of Proposition 2.3 and Theorem 3.1 it is sufficient to show that for every $\varphi \in \Gamma$ and $T \in M_{\varphi}^+$ the set $K(T, G) \cap A^G$ contains exactly one element.

Denote by Y the maximal projection of A^G for which the restriction (A_Y, G_Y) of (A, G) is finite (Proposition 1.2.). Let Z=I-Y. Taking into account that $\natural \subset G$ the projections Y and Z belong to the center of A. It follows immediately from this that for every $S \in A$ the operator S is uniquely determined by its 'parts' S_Y and S_Z .

By Theorem 3.1 $K(T, G) \cap A^G$ is non-empty. Denote by R and S two elements of it. Using the facts that

(1) $(K(T,G)\cap A^G)_Y \subseteq K(T_Y,G_Y)\cap A_Y^{G_Y}$ and

(2)
$$(K(T,G) \cap A^G)_Z \subseteq K(T_Z,G_Z) \cap A_Z^G z$$

4+

the restricted operators R_Y and S_Y belong to the set (1) and the restricted operators R_Z and S_Z belong to the set (2). By the theorem of I. Kovács—J. Szűcs the set (1)

1

consists of a single element, so $R_Y = S_Y$. By Theorem 3.2 it follows that $R_Z = S_Z = 0$. This means that R = S, and thus the set $K(T, G) \cap A^G$ has only one element.

Acknowledgement. I am indebted to Prof. J. Szűcs for his continued interest in my work and for several valuable suggestions.

References

- [1] S. M. ABDALLA, *Invariant positive maps on von Neumann algebras* Dissertation for Candidate's Degree, Bolyai Institute (Szeged, 1974).
- [2] L. ALAOGLU-G. BIRKHOFF, General ergodic theorems, Ann. Math., 41 (1940), 293-309.

[3] N. BOURBAKI, Topologie générale, Chap. I. Structures topologiques, (Paris, 1949).

- [4] J. B. CONWAY, The numerical range and a certain convex set in an infinite factor, J. Functional Analysis, 15 (1970), 428-435.
- [5] DANG-NGOC-NGHIEM, Sur la classification des systèmes dynamiques non commutatifs, J. Functional Analysis, 15 (1974), 188-201.
- [6] J. DIXMIER, Les anneaux d'opérateurs de classe finie, Ann. Éc. Norm. Sup., 66 (1949), 209-261.
- [7] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars (Paris, 1969).
- [8] U. HAAGERUP, Normal weights on W*-algebras, J. Functional Analysis, 19 (1975), 302-317.
- [9] K. JACOBS, Neuere Methoden und Ergebnisse der Ergodentheorie, Springer-Verlag (Berlin-Göttingen-Heidelberg, 1960).
- [10] I. Kovács—J. Szűcs, Ergodic type theorems in von Neumann algebras, Acta Sci. Math., 27 (1966), 233—246.
- [11] J. T. SCHWARTZ, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math., 16 (1963), 19-26.

FACULTY OF ECONOMICS UNIVERSITY OF PÉCS 7601 PÉCS, PF. 219. HUNGARY

334