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Mean ergodicity in G-semifinite von Neumann algebras 

SÁNDOR KOMLÓSI 

Introduction. Let A be a von Neumann algebra in a complex Hilbert space H, 
and let G be a semigroup of normal endomorphisms of A. Denote by AG the set 
of all elements of A which are invariant with respect to each element of G. If the 
identity I belongs to A°, then AA is a von Neumann algebra too, but if this isn't 
so, then A° is 'only' an ultraweakly closed involutive subalgebra of A, and hence 
there exists a largest projection P^I in A such that for every element T of A one 
has PT=TP=T ([7], Chap. I. §3, Théorème 2.). 

Let Q denote the set of positive, normal, linear mappings of A into itself obtained 
from the elements of G by forming convex combinations. The operators in A of the 
form V{T), where VÇQ and TÇA are called the means of the operator T. For 
any T£A let K0(T, G) denote the set of all means of T. The investigation of the 
'behaviour' of the means is one of the subjects of mean ergodic theory ([9], Kap. 1, 
§ 2.). Concerning von Neumann algebras we refer only to the classical results of 
J . DIXMIER ([6]) and the paper of I . KOVÁCS and J . Szűcs ([10]). 

The purpose of this paper is to investigate a special class of von Neumann 
algebras. 

§ 1 contains preliminary results without their proofs. 
In § 2 we define the notion of 'weak ergodicity in means' to express a 'good 

behaviour' of the means of an operator. This section is devoted to establishing the 
simplest consequences of this definition. 

Let K(T, G) be the weak closure of K0(T, G). In § 3 we shall give sufficient 
conditions for T in order that K(T, G)(~)AG be nonempty (Theorem 3.1.), and 
that K(T, G)DAG consist of exactly one operator. 

1. Definitions and preliminaries. Let us consider a pair (A, G) of a von Neu-
mann algebra A and a semigroup G of normal endomorphisms of A. We shall denote 
by A+ the positive portion of A. 
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A non-negative, finite or infinite valued function <p defined on A+ is called a 
weight on A + , if it has the following properties: 

(i) <p(T+S) = <p(T) + cp(S) for every T, S£A+; and 

(ii) (p(cT) = c<p(T) for every c & 0 and T£A+, 

(with the convention that 0-°° = 0). 

We call <p G-invariant if for every T£A+ and g£G we have <p(T) = cp(g(T)). 

The notion of a G-invariant weight is a very natural generalization of that of 
a trace. 

A weight <p on A + is said to be faithful if the conditions T£A+ and <p(T)=0 
imply T= 0; normal if, for every increasing directed set ^(zA+ with sup S= 

= T£A+, we have <p(T)= sup cp(S); semi-finite if, for every T£A+, 7 V 0 there 
Si? 

exists S€A+ , S^O such that S ^ T and <p(S)<°°. 
A weight <p on A+ is said to be non-infinite if there exists S£A+, S?¿0 such 

that 
For later purposes we state an important fact concerning weights. 

P ropos i t i on 1.1. ([8], Lemma 1.5) For any weight (p on A+ the following 
conditions are equivalent: 

(i) <p is normal, 
(ii) (p is ultraweakly lower semicontinuous, 

(iii) there exists a family of vectors {x,} in H such that 

<P(T) = 2 iTx" x>) f o r every T£A + . 
i 

Now we shall define special subspaces of A. Denote by r the set of normal 
faithful C-invariant non-infinite and non-zero weights defined on A+. 

Def in i t i on 1.1. A projection E£A is called finite, if there is a (pdT such 
that (p(E)«=°. An operator in A is called simple, if it is a linear combination of 
finite projections. Denote the set of simple operators by M0. 

Let <ptr and let M+ = {TeA + \(p(T)«*,}. Denote by M the smallest norm 
closed subspace of A that contains M+ for every (p£T. Since q> defines a linear 
form <p on the linear span of M+, it is not hard to see that the norm closure of M0 

is identical with M. 
Let N9={T£A\(p(T*T)«x>}. Nv is a left ideal in A. Denote by N the norm 

closed linear hull of all Nq>. It is obvious that M0QN and hence MQN. 
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Def in i t i on 1.2. A pair (A, G) is said to have property 77 if for every proper 
projection P£A such that g(P)sP for every g£G, we have that P£A°. 

We classify the pairs (A, G) by their weights. 

De f in i t i on 1.3. A pair (A, G) is called finite (resp. semifinite) if for every 
T£A+, 7V0 we can find a normal G-invariant finite (resp. semifinite) weight <p 
such that cp(T)^0. 

To facilitate the statement of the next proposition it will be convenient to 
introduce the following notations. 

De f in i t i on 1.4. Let £ be a projection in A°. Let us consider the restricted 
von Neumann algebra AE. Since E£A°, every element g of G induces a normal 
endomorphism gE on AE. These restricted endomorphisms form a semigroup. Let 
us denote this semigroup by GB. The pair (AE, GE) is called a restriction of (A, G). 

P ropos i t i on 1.2. ([5], Theorem 1) If a pair (A, G) has property 77, then there 
exists a maximal projection E in AG such that the restricted pair (AE, GE) is finite. 

For finite pairs the following theorem will play an important role in proving 
Theorem 3.3. 

Theorem. (I. KOVÁCS—J. Szűcs ([10])) Let the pair (A, G) be finite. For every 
T£A the convex set K(T, G)f]AG contains exactly one element. 

In the following paragraphs we shall deal with pairs (A, G) for which the set 
r is non-empty. This requirement is fulfilled for example in the classical case, when 
the group t] of inner automorphisms of A plays the role of G, and A is semifinite. 
We do not know if this is the case in general for semifinite pairs, but we can state 
the following: 

P ropos i t i on 1.3. If a semifinite pair (A, G) has property 77 and tt <zG, then 
there exists a normal faithful G-invariant and semifinite weight on A+. 

Property 77 ensures that the support of any G-invariant weight defined on A+ 

does belong to AG. It follows from the condition t| c C that A° is part of the center 
of A and hence DIXMIER'S reasoning ([7], Chap. 1, § 6, Proposition 9.) can be repeated 
essentially word by word. 

The terms and symbols introduced here will be used in what follows without 
further reference. 

2. Let be an ultrafilter in Q. Denote by T) the image of J5" which is ultra-
filter, too. Since the unit ball of A is weakly compact, K(T, G) is weakly compact, 
too, for every T£A, and so the ultrafilter (T) of the means of J converges weakly 
to an element S of K(T, G). Let this fact be expressed by the symbol lim V(T) = S. 
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Now we define two notions to express 'good behaviour' of the means of an 
operator. 

De f in i t i on 2.1. Let the operator T£A be called weakly quasi-ergodic if it 
has the following properties: 

(Li) K(T, G)F)AG is non-empty 
(Lii) for each R£K(T, G) the set K(R, G)HAG is non-empty. 

Denote by L the subset of weakly quasi-ergodic elements of A. 

Def in i t i on 2.2. Let the operator T£A be called weakly ergodic if it has the 
following properties: 

(Ei) K(T, G)F)AG consists of exactly one element, 
i.Eii) for each R£K(T, G) the set K(R, G)DAG consists of exactly one ele-

ment. 
Denote by E the subset of weakly ergodic elements of A. It is obvious that AGC 
^EcL. 

Propos i t i on . 2.1. Lis a norm closed, G-invariant subspace of A. 

Proof . The G-invariance and the homogeneity of L are rather obvious. First 
we prove the additivity of L. Let 7\ and T2 be arbitrary elements of L. We shall 
show that the operator T= TX + T2 belongs to L. By assumption there is an operator 
iSj such that S^K(TX,G)V\AG. Let be an ultrafilter in Q such that lun K(7\) = 
= S1. The limits lim V(T) = S0 and lim V(T2) = R2 exist, S0£K(T,G) and 
R2£K(T2, G). By condition (Lii) there exists an ultrafilter in Q such that 
lim V(R2)=R£K(R2, G)HAG. It follows taking account of the facts that SG= 

= S! + R2 and K(S0, G)<^K(T, G) that -S'=lim F(S0) = S1+i?€is:(r, G)^A°. 

Now let us consider an arbitrary element Y of K(T, G). Then we can find an 
ultrafilter ^ in Q such that 7 = lim V(T). The limits lim V(T1) = Y1 and lim V(T2) = 
= Y2 exist, and both belong to L. Since Y= YT + Y2, then using the previous result it 
is obvious that K(Y, G)(~)AG is non-empty, so we have finished proving that T£L. 

Now we are going to show that L is norm closed. Let the sequence {r„} of 
operators converge to the operator T uniformly. Let us suppose that for each n, 
TN£L. Passing, if necessary, to a subsequence, we can assume without loss of gen-
erality that | | r B + 1 -7 ; | | < l/2n+1 for each n. 

Using the technique of the previous part of the present proof we can construct 
a sequence {Sn} recursively in the following way: 

SNIK(TN,G)NAG a n d SN+1 — SN£K(TN+1—T„, G) 

for each n. It is an obvious consequence of these facts that the sequence {Sn} con-
verges in norm, and the limit S of it belongs to AG. 
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Now we prove that for any and for any finite system of vectors 
JC15 JC2, •••, xk; y1,y2, - . . ,y k of H we can find an operator R£K0(T, G) such that 

(*) |((5—i?)x;, < e for each i = 1,2, ..., k. 

Let us choose a sufficiently large index p, for which || S—Sp|| and || T— TP\\ are both suf-
ficiently small. Since SP£K(TP, G), there exists a V0EQ such that j ((Sp - V0(TP)) XT, j .) | 
is sufficiently small for each /=1 ,2 , ...,k. Let R= V0(T). This operator satisfies 
O ) , and this means that S£K(T, G)DAG. 

Now let us consider an arbitrary element Y of K(T, G). We can find an ultra-
filter J5" in Q such that F=lim V(T). Let us set F„=lim V(T„). It is clear that 

Yn£L for every n, and that the sequence {F„} converges in norm to Y. Applying 
the preceding part to the sequence {F„}, we get that K(Y, G)P\A° is non-empty. 

The next proposition might bear the name 'The Theorem of Linear Choice'. 

P r o p o s i t i o n 2.2. For every T0£L and S0£K(T0, G)f)AG we can find a 
positive linear mapping x of L onto AG which possesses the following properties: 

(i) x(T)eK(T, G) for each T£L, 
(ii) x(TS)=z(T)S and T(ST) = SX(T) for every T£L and S£AG, 
(iii) x(T0) = S0. 

We omit the proof. It can be done by J. T. SCHWARTZ'S method developed in 
([11], Lemma 5). 

P r o p o s i t i o n 2.3. The weakly ergodic elements of A form a norm closed, 
G-invariant subspace E of A. Denote by X0(T) the single element of K(T, G)C\AG 

for every T£E. The mapping x0 is positive linear and has the property that 

T „ ( T S ) = T 0 ( T ) S ahd x0(SR) = Sx0(T) for every T£E and S£AG. 

Proof . The G-invariance of E is based upon the fact that for every T£A the 
elements of G map K(T, G) into itself. 

Denote by A the family of those linear mappings x of L onto AG which have 
properties (i) and (ii) of Proposition 2.2. Let x and i¡/ be two arbitrary elements of A. 
Let us define the following subset 

L^ = {T£L\x(T) = HT)}. 

Taking into account the fact that every element of A is norm-continuous and linear 
it follows that LTt<l/ is a norm closed subspace of A. Denote by L0 the intersection of 
all such LT^ subspaces. It is obvious that L0 is a norm closed subspace of A and by 
Proposition 2.2 it is identical with E. 

If we restrict any x oceuring in Proposition 2.2 to E, then we get the mapping T0 

with the desired properties. 

4 



332 Sándor Komlósi 

3. In this section we shall investigate pairs (A, G) for which f is non-empty 
and hence the subspaces M and N defined in Definition 1.1. are different from the 
trivial subspace {0}. 

T h e o r e m 3.1. If for a pair (A, G) the set r is non-empty then ail elements of 
the subspace N are weakly quasi-ergodic. 

P r o o f . By virtue of Proposition 2.1 it is enough to prove that for every q>^r 
N^czL. Proving this we follow S. M . ABDALLA ([1], Chap. 3, Theorem 3 .4) . For our 
purposes it is sufficient to show that for every 

(i) K(T, G) a Ny and (ii) K(T, G)i)AG is non-empty. 
Let TtNy and R£K(T, G). We can find a filter & in Q such that lim V(T)=R 

in the strong operator topology. As K(T, G) is bounded, we have lim (V{T)* V(T)) = 
n 

=R*R in the weak operator topology. On the other hand, if V£Q and V~ 2 
i = l 

n 

( a ; > 0 , 2 a i = 1. then we have by Schwarz's inequality 
¡=i 

cp(V{TfV{T)) = cp [( J ; a i g i ( r r ) ( i a y g j ( r ) ) j = 2 a .«^(g«(7TgjCO) 

S Z «ixMgi(T*)gi(T))^ • (p(gj(T*)gj(T)y* = 2 *i*MT*T) = <p{T*T). 

Since <p is normal, it is ultraweakly lower semicontinuous and so it is weakly 
lower semicontinuous on any bounded part of A+, thus <p(R*R)^(p(T*T)'. This 
proves (i). 

Since <p is normal it can be represented in the following form: (p(T) — 2 (Tx,, x,) 
i 

for every T£A+, where the x,'s are suitable vectors from H. It follows that the func-
tion S—cp(S*S) is weakly lower semicontinuous on any bounded part of A and 
thus it attains its minimum on the weakly compact bounded set K(T, G). Taking 
into account the fact that cp is faithful it follows that the function S-*(cp(S* S))1/z— 
= US||2 is a pre-Hilbert norm on Nv, therefore the minimum is attained only at 
one point. Denote by T0 this element. It is not hard to see that for every element g 
of G g(T0)£K(T, G). On the other hand, it is evident that (p(T*T0)=<p(g(T0)*g(T0)) 
and this implies that g(J'0) = r 0 . This means that T0£Aa and proves (ii). 

The next theorem is a generalisation of J. B. CONWAY'S result ([4], Lemma 6). 

T h e o r e m 3.2. If for a pair (A, (?) the set r is non-empty and A° does not con-
tain any finite projection except 0, then for every T^M, K{T, G)C\AG = {0}. 

P r o o f . Let P be a finite projection in A. Then we can find a (p£T such that 
<?(/>)<oo. By Theorem 3.1 it follows that K(P, G) C\AG is non-empty. Denote 



Mean ergodicity in G-semifinite von Neumann algebras 333 

by S an arbitrary element of this set. Since q> is weakly lower semicontinuous on 
K(P, G) and finite constant on K0(P, G), the values of q> are finite on K(P, G), thus 
cp(S)<oo. On the other hand, P£A+, hence Sg^4". 

Let S=f XdE} be the spectral decomposition of S, where E, is right-continuous. 
Let be arbitrary positive reals. It is clear that E^—E^ belongs to A° and 
that XiE^-E^S. It follows that X-<p(Ell-EÁ)^(p(S) so the projection Ep-Ex 

can't be infinite, and therefore E^Ex- This proves that S=0. 
Now let T£M be arbitrary. For any s > 0 we can find finite projections 

P l5 P2 , ...,P„ and complex numbers cv, c2, ..., cn such that llr— 2 Cirill<e- By 
1 i = l 

Theorem 3.1 it follows that K(T, G)F)AG is non-empty. Denote by S an arbitrary 
element of this set. By Proposition 2.2 there exists a positive linear mapping % of 
L onto A° such that for every R£L, T(R)£K(R, G)DAG and T (T) = S. Since | | T | | S 1 , 

we have | | T ( T ) — 2 C I ' R ( ^ > > ) | | < E . By the preceding part of the present proof we 

have t (P;)=0 for all indices I, hence | | t (r) | |<6. This proves that T(T) = S=Q. 

Theorem 3.3. Let the pair (A, G) possess property II. Let us suppose that F is 
non-empty and that 11 c C . In this case for every T£M, K(T,G)PlAG consists of 
a single element. In other words, M<zE. 

P r o o f . Denote the largest projection of AG by P. If P = 0 then the statement 
of the theorem is trivial. If I V 0, then necessarily P=I. Indeed, if we set R=I—P 
then we have g(R)g(P)=0 and g(P)=P for every g£G and thus g(R)SR for 
every g£G. It follows from property II that R£A°, and, consequently, l—P-V 
+ReAG. 

In virtue of Proposition 2.3 and Theorem 3.1 it is sufficient to show that for 
every <p£T and the set K(T, G)C\AG contains exactly one element. 

Denote by Y the maximal projection of AG for which the restriction (AY, GR) 
of (A, G) is finite (Proposition 1.2.). Let Z—I- Y. Taking into account that fc| c G 
the projections Y and Z belong to the center of A. It follows immediately from 
this that for every SZA the operator S is uniquely determined by its 'parts' SY 

and SZ. 
By Theorem 3.1 K(T, G)C\AA is non-empty. Denote by R and S two elements 

of it. Using the facts that 

(1) (K(T, G ) N ^ C ) R G K(TY, GJ^A^T a n d 

(2) (K(T, G) 0 AG)Z i K(TZ, GZ)C\AGZ 

the restricted operators RR and SY belong to the set (1) and the restricted operators 
RZ and SZ belong to the set (2) . By the theorem of I . KOVÁCS—J. Szűcs the set (1) 

4* 
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consists of a single element, so RR=SY. By Theorem 3.2 it follows that RZ = 
= SZ=0. This means that R = S, and thus the set K(T, G)DAG has only one 
element. 
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